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Abstract—The MPC-in-the-Head framework has been pro-
posed as a solution for Non-Interactive Zero-Knowledge Ar-
guments of Knowledge (NIZKAoK) due to its efficient proof
generation. However, most existing NIZKAoK constructions
using this approach require multiple MPC evaluations to
achieve negligible soundness error, resulting in proof size and
time that are asymptotically at least λ times the size of the
circuit of the NP relation. In this paper, we propose a novel
method to eliminate the need for repeated MPC evaluations,
resulting in a NIZKAoK protocol for any NP relation that we
call Diet. The proof size and time of Diet are asymptotically
only polylogarithmic with respect to the size of the circuit C of
the NP relation, but are independent of the security parameter
λ. Hence, both the proof size and time can be significantly
reduced.

Moreover, Diet offers promising concrete efficiency for
proving Learning With Errors (LWE) problems and its vari-
ants. Our solution provides significant advantages over other
schemes in terms of both proof size and proof time, when con-
sidering both factors together. Specifically, Diet is a promising
method for proving knowledge of secret keys for lattice-based
key encapsulation mechanisms (KEMs) such as Frodo and
Kyber, offering a practical solution to future post-quantum
certificate management. For Kyber 512, our implementation
achieves an online proof size of 83.65 kilobytes (KB) with
a preprocessing overhead of 152.02KB. The implementation
is highly efficient, with an online proof time of only 0.68
seconds and a preprocessing time of 0.81 seconds. Notably,
our approach provides the first reported implementation of
proving knowledge of secret keys for Kyber 512 using post-
quantum primitives-based zero-knowledge proofs.

Weihao Bai & Long Chen led efforts with equal contribution and should
be considered co-first authors. Long Chen and Zhenfeng Zhang are the
corresponding authors.

1. Introduction

Zero-knowledge (ZK) proofs [1], [2], [3] and their non-
interactive variants [4], [5], [6] are among the most funda-
mental and versatile cryptographic primitives for both theory
and practice. Non-Interactive Zero-Knowledge Arguments
of Knowledge (NIZKAoK) is a protocol that enables a com-
putationally bounded prover to convince a verifier that they
know a witness for a specific statement, without disclosing
any further information about the witness. These protocols
have been crucial building blocks for real-world cryptogra-
phy applications. For instance, a Certificate Authority (CA)
may require an applicant to provide a NIZKAoK as proof
of knowledge of a secret key to prevent rogue key attacks
[7], [8], [9].

Ishai et al. [10] provided an ingenious method for
constructing zero-knowledge proofs from secure multi-
party computation (MPC) protocols. The MPC-in-the-Head
paradigm leverages MPC protocols to enable a prover to
convince a verifier of their knowledge of a witness ω with
respect to a statement x, for any NP relation R(x, ω). This
approach computes a function f for the circuit of R using
shares ω1, . . . , ωn of ω as inputs. The prover emulates the
MPC protocol in her head, yielding one transcript per party.
By revealing a subset of transcripts and checking their
consistency, the verifier is convinced that the prover knows
ω. The MPC-in-the-Head paradigm provides a powerful tool
for constructing ZK proofs based on MPC protocols.

In recent years, several notable works [11], [12], [13],
[14], [15], [16] have demonstrated the impressive efficiency
of NIZKAoK proofs based on semi-honest MPC protocols.
However, these constructions require repeating the MPC
evaluation during the proof, which may be computationally
expensive. Intuitively, for a cheating prover to violate sound-
ness, they must generate at least one pair of inconsistent
views. To detect such behavior with probability 1/

(
n
2

)
by

randomly revealing the views of two players among n play-



ers, the soundness error must be reduced to 2−λ for security
parameter λ. This requires the ZK prover to repeat the MPC
evaluation O(λn2) times. Even if a constant number of MPC
players is chosen, for an arbitrary circuit C, the proof size
and proving complexity are both at least O(λ|C|), where λ
is the security parameter.

Ishai et al. [10] propose constructing NIZK proofs from
maliciously secure MPC protocols, rather than semi-honest
MPC protocols, to enhance efficiency and avoid redundant
MPC evaluations. The underlying intuition is that security
against t malicious players ensures that any attempt to
violate the correctness of the MPC protocol Πf (or the
soundness of the ZK protocol) must result in inconsistencies
between the views that are “well spread” in such a way
that opening t random views reveals an inconsistency with
overwhelming probability. Consequently, malicious security
benefits the verifier by enabling them to detect inconsis-
tencies with higher probability from a single execution of
the protocol. By leveraging highly efficient and perfectly
robust MPC protocols with minimal communication [17],
[18], it is possible to construct NIZKAoK protocols without
repeating the MPC evaluation. The proof size and com-
putational complexity for the proved circuit C are both
O(|C|)+poly(λ)(λ, log |C|). Notably, avoiding the repeated
MPC evaluation may cause the proof size and the proving
complexity to be both proportional to the circuit size, with
a constant factor, which would be a significant efficiency
improvement for practical applications.

Although NIZKAoK protocols based on maliciously se-
cure Multi-Party Computation (MPC) protocols are asymp-
totically more efficient than those based on semi-honest
MPC protocols, their practical efficiency has not been fully
explored. It remains an open question whether avoiding
repeating the MPC evaluation can also significantly improve
the concrete efficiency of the NIZKAoK protocols. Ishai
et al.’s black-box construction [10] suggests leveraging the
MPC protocols proposed by Damgård et al. [17], [18],
which have optimal asymptotic overheads. However, these
protocols are considerably complex, which may raise doubts
about their concrete efficiency. Indeed, all of these proto-
cols rely on complex information-theoretic Verifiable Secret
Sharing (VSS), which may impact their practical efficiency.
Moreover, these schemes rely on packed Shamir’s secret
sharing, which requires one to convert the circuit into one
consisting of l-fold gates. In this case, the basic operation
of the MPC protocol is based on a vector-wise approach.
Rearranging the circuit may be challenging and limit the
applicability of these schemes to specific problems.

It would be interesting to explore whether the con-
crete efficiency of the current MPC-in-the-Head framework
can be improved by avoiding the repetition of the MPC
evaluation. Additionally, we hope that any new framework
developed will be beneficial to real-world applications.

1.1. Our Contributions

In this work, we aim to improve the concrete efficiency
of NIZKAoK protocols derived from MPC-in-the-Head via

avoiding the repetition of the MPC evaluation. Our key
observation is that leveraing a full-fledged perfectly robust
MPC protocol, as proposed by Ishai et al. [10], is not the
only way to reduce the soundness error. Specifically, we
observe that carefully modifying the criteria allows for sim-
ple Shamir’s secret sharing, instead of complex information-
theoretic VSS, to suffice in guaranteeing the soundness of
NIZK with negligible error. This eliminates the need to
repeat MPC evaluations O(λ) times at low cost, reducing
computational and communication overheads.

Moreover, we observe that it is always cheaper to verify
each gate than to compute them. When verifying the cor-
rectness of a multiplication gate, involving a random share
of intermediate results for the multiplication gate can avoid
the generation of double randomness in the MPC prepro-
cessing phase. This may further reduce the computational
and communication overheads associated with MPC-in-the-
Head approaches, enabling the design of a more efficient and
practical NIZKAoK protocol for real-world applications.

Based on the aforementioned observations, we propose
a NIZKAoK system named “Diet”. Our system not only
imposes an asymptotically polylogarithmic overhead for any
NP relation, but also achieves significant concrete efficiency
improvements compared to all existing NIZK proving tech-
niques in multiple specific scenarios, particularly for proving
large-scale arithmetic circuits. By improving concrete effi-
ciency, our approach significantly reduces the computational
and communication complexity of proving lattice problems
such as plain LWE and ring-LWE, making it more practical
and efficient for real-world applications, especially for post-
quantum Public Key Infrastructure (PKI) systems.

NIZKAoK for lattice. Zero-knowledge proofs of knowl-
edge have been extensively studied in the literature [13],
[19], [20], [21] for lattice problems, such as plain LWE and
ring-LWE. Two main approaches have been proposed: direct
construction of a zero-knowledge proof from the algebraic
properties of the problem, or using a generic technique like
SNARKs [22] or MPCitH [10].

For the first approach, Lyubashevsky et al. [19], [20],
[21] proposed the best-known zero-knowledge proof of
knowledge protocol for LWE, achieving an impressive proof
size of 33.3KB. However, achieving such a proof size may
require a rejection sampling rate as large as 0.85 (Table 3 in
[15]), which means that the repetition time for proof gen-
eration is likely to exceed 6. To our best knowledge, these
constructions have never been reported to be implemented. It
is worth noting that the size-optimal protocols require that q
be an NTT-friendly prime, which limits their applicability to
arbitrary arithmetic circuits and makes them unsuitable for
proving plain LWE-based schemes with power-of-2 mod-
ules, such as FrodoKEM.

For the second approach, SNARKs offer an asymptot-
ically constant rate proof size, but the runtime of existing
concrete constructions [23] is estimated to be in the range
of dozens of seconds [24]. Currently, the only promising
practical construction for LWE problems may be from Baum
and Nof [13], who presented an MPCitH-based approach



with preprocessing for zero-knowledge proof of binary LWE
secrets. Their approach achieves a proof time of 2.4 seconds
and a proof size of 4.1MB.

In contrast to Baum and Nof’s work, Diet achieves a
reduction of at least 80% in proof size while still main-
taining a competitive running time. A detailed comparison
between Diet and Baum and Nof’s approach [24] for binary
LWE secrets is provided in Table 1. This demonstrates the
potential of Diet as a practical solution for zero-knowledge
proofs of knowledge in lattice problems. Such proofs could
be used to provide proof of knowledge of the lattice-based
commitment scheme [25] or to prove the well-formedness
of somewhat homomorphic encryption ciphertexts [26].

Applications for post-quantum PKI systems. Public Key
Infrastructure (PKI) systems enable secure communication
over a network using public key cryptography. In PKI, CAs
issue digital certificates to help users verify each other’s
identity and public keys. In PKI systems, proof of the
knowledge of secret keys (KOSK) is necessary to ensure
the security of the system against rogue key attacks. Without
such proof, an attacker could potentially impersonate a legit-
imate user by selecting an arbitrary public key and applying
for a certificate from a CA by falsely claiming to possess the
corresponding secret key. By requiring proof of the knowl-
edge of the secret key, a legitimate user can demonstrate that
they actually know the secret key associated with a given
public key in the issued certificate and should be trusted to
use that key for secure communication. This helps to prevent
unauthorized access to sensitive information and ensures
that only authorized parties have access to the resources
protected by the PKI system.

Diet is a promising method for proving the knowledge of
secret keys in lattice-based key encapsulation mechanisms
(KEM), offering a practical solution to certificate manage-
ment for future post-quantum secure protocols like the KEM
TLS [30]. We have developed an implementation of Diet for
FrodoKEM 640 [31] that provides proof of knowledge of
secret keys with a size of 473.51 kilobytes (KB) and a pre-
processing overhead of 123.36 KB. The implementation has
a proof time of 12.81 seconds and a preprocessing time of
6.5 seconds and a verification time of 7.3 seconds. Similarly,
for Kyber 512 [32], our implementation achieves a proof
size of 83.65 kilobytes (KB) with a preprocessing overhead
of 152.02 KB. The implementation is highly efficient, with
a proof time of only 0.68 seconds, a preprocessing time of
0.81 seconds, and a verification time of 0.84 seconds. To
the best of our knowledge, our implementation is the first
to provide proof of knowledge of secret keys for these post-
quantum KEMs within seconds.

1.2. Technique Overviews

Below is a summary of the novel techniques utilized in
the construction of Diet.

Consistency check on Shamir’s secret shares. A notable
observation is that the semi-honest secure BGW MPC proto-
col [33] can be utilized to construct NIZK protocols without

the need for repeated evaluation of the verification circuit
via MPC, if the verifier additionally checks the consistency
of all broadcasted secret shares in the final output gates. This
approach offers an efficient alternative to constructing NIZK
protocols while avoiding redundant MPC evaluations. In
contrast, the general approach presented by Ishai et al. [10]
requires MPC protocols to have robustness against malicious
players, which may impose additional computational and
communication overheads. This, in turn, may impact the
efficiency of the NIZK.

The BGW protocol is an MPC protocol based on
Shamir’s secret sharing. It achieves perfect security against
semi-honest adversaries who control a minority of parties.
In this protocol, the parties compute shares of the output of
a circuit gate for each gate of an algebraic circuit. These
shares are computed given shares of the input wires of that
gate. The addition gates in the circuit can be emulated using
local computation only. However, the parties must interact
in order to emulate the computation of multiplication gates.
Finally, the parties reconstruct the secrets from the shares
of the output wires of the circuit to obtain their output.

When converting a BGW protocol to a NIZK protocol
via the MPC-in-the-Head paradigm, the witness is shared
via Shamir’s secret sharing instead of the additional secret
sharing used by Ishai et al. [10]. Let RL denote a relation
corresponding to an NP language L. That is, RL(x, ω) = 1
if and only if x ∈ L and ω is a witness for x. The ZK
protocol ΠZK begins with the prover carrying out all the
steps of an n-party BGW MPC protocol for the circuit
RL(x, ·) in the prover’s head. First, the prover secretly
shares ω into ω1, . . . , ωn via Shamir’s secret sharing and
executes the BGW MPC protocol among n virtual parties to
produce the protocol transcript of inputs, initial randomness,
and messages broadcast during the execution of MPC. The
prover then sends commitments of the transcript to the
verifier. Next, the verifier selects a random set S of |S| < n
parties and challenges the prover to open the commitments
to the private inputs, their randomness, and all messages
sent or received by parties in S.

Our approach differs from the one proposed by Ishai
et al. [10] mainly in the acceptance criteria of the verifier.
While in [10] the verifier accepts if the openings form
consistent views of the MPC execution and every party in
the set S follows the protocol and finally outputs 1, we
require the verifier to additionally verify that the broadcasted
secret shares in the final output gates belong to the same
polynomial during the reconstruction process. The intuition
behind this additional verification is that if a malicious
prover intends to modify the final result of the MPC eval-
uation, they must alter n − d broadcast shares in the final
reconstruction process. If less than n−d shares are modified,
the verifier will reject the shares as they do not belong
to the same polynomial. The soundness error arises from
whether the selected subset S contains a modified party. The
soundness error is bounded by

(
d
t

)
/
(
n
t

)
, which is negligible

for appropriately chosen parameters.

Committing random shares of intermediate results. Our



TABLE 1: Comparison of Proof Sizes and Runtime for Several Schemes

Scheme Technique PLWE2 Frodo6403 Kyber5124

Size Time(s) Size Time(s) Size(KB) Time(s)
Stern [27] ZKP from SIS 4.3MB × × × × ×

[24] Σ-protocol 444KB × × × × ×
Ligero [28] zkSNARK from PCPs 200KB × × × × ×
Aurora [23] zkSNARK for R1CS 71KB × × × × ×

[29] ZKP from MLWE & MSIS × × × × 19 ×
BN20 [13] MPCitH 4.1MB 2.4 ≥ 8.42 MB × × ×

Ours1 MPCitH 245.88KB (350KB) 0.528 (5.596) 473.51KB(123.36KB) 12.81(6.5) 83.65(152.02) 0.68(0.81)

“×” indicates estimates for parameter regimes not available in the original paper or subsequent literature.
1 (·) means the preprocessing time and size.
2 PLWE parameters: modulus q = 261,number of secret entries |(s, e)| = 4096, binary secrets {0, 1}, 128 bit security level.
3 Frodo640 parameters: modulus q = 215,number of secret entries |(s, e)| = 10640, secrets [0,±12], 128-bit security level.
4 Kyber512 parameters: modulus q = 3329,number of secret entries |(s, e)| = 1024, secrets [0,±2], 128-bit security level.

second observation is that for NIZK constructions, it is
always more cost-effective to verify each multiplication gate
by previously committing shares of intermediate results.

In Shamir’s secret sharing scheme over a finite field
F, a polynomial p(x) of degree d with constant term s is
randomly selected from F[x]. The share of the i-th party
Pi is then set to p(αi), where α1, . . . , αn are distinct non-
zero field elements, and s ∈ F is the secret to be shared.
Given shares p(αi) and q(αi) of the two input wires to a
multiplication gate, we can obtain shares of a polynomial
r(x) with constant term p(0) · q(0) as desired by computing
r(αi) = p(αi) · q(αi). However, the degree of r(x) is
2d, since the degrees of p(x) and q(x) are both d. To
further compute the protocol, MPC protocols usually involve
a complex interactive procedure to reduce the degree of
the polynomial r(x) back to d. For example, this may
involve resharing every coefficient of r(x) [33] or using
a preprocessing phase to generate double random sharings
[34] or Beaver’s triples [35]. However, the resharing method
incurs O(n2) communication complexity, while the pre-
generated double random sharings or Beaver’s triples must
be verified via the cut-and-choose technique [11], [13]. All
of these approaches significantly increase the NIZK-proof
complexity and size during the MPCitH.

We propose a method to reduce the NIZK proof com-
plexity and size by requiring the prover to commit a new
set of random shares of all intermediate results for each
multiplication gate in MPC protocols. Specifically, instead
of using the traditional approach of reducing the degree
of the polynomial r(x) back to d, the prover can pro-
vide another random polynomial r′(x) with degree d and
prove that p(0) · q(0) − r′(0) = 0 by outputting all shares
p(αi) · q(αi) − r′(αi). Then, further computations can be
carried out on the degree-d polynomial r′. Our approach
only requires the prover to commit one more polynomial
r′(x), making it more efficient than other methods that in-
volve generating double random sharings or using Beaver’s
triples.

MPCitH via Packed Secret Sharing. To further reduce
the communication and computation complexity of MPC
protocols, the packed secret-sharing technique introduced by
Franklin and Yung [36] can be used instead of the traditional
Shamir’s secret sharing. This technique can also be adapted

for the MPC-in-the-Head approach. For large-scale algebraic
circuits, the amortized proof size and computational cost
for each gate can be reduced from O(λ) to O(1) by using
this technique. This reduction in complexity is achieved by
packing multiple secrets into a single tuple of secret shar-
ing, thereby reducing the number of rounds and messages
required to perform the computation.

When using the packed secret-sharing technique, each
addition and multiplication gate operates on vectors
coefficient-wise. However, permuting the coefficients in a
vector can be challenging. To address this issue, we pro-
pose leveraging a preprocessing phase to handle any linear
transformations of vectors. For a linear transformation T ,
our approach involves generating multiple pairs of linear
transforms of the form [r⃗]d and [T (r⃗)]d in the preprocessing
phase. Here, r⃗ is a randomly chosen vector and T is the
corresponding linear transformation matrix. To prove the
correctness of a linear transformation T on a vector x⃗ using
our proposed approach, the emulated players reconstruct
x⃗ + r⃗ by computing [x⃗ + r⃗]d, compute the linear trans-
formation T (x⃗ + r⃗) directly and then secret-share it. The
emulated players can then subtract shares of [T (x⃗+ r⃗)]d and
[T (r⃗)]d locally to obtain [T (x⃗)]d. This process allows for
the efficient and secure verification of linear transformations
on vectors.

In addition, it is necessary to verify the random pairs [r⃗]d
and [T (r⃗)]d in the MPC-in-the-Head scenario. To achieve
this, we propose an efficient and secure cut-and-choose
technique. To generate random pairs [r⃗]d, [T (r⃗)]d, the prover
generates and commits k + v + 1 random vector pairs
(f⃗0, T (f⃗0)), . . . , (f⃗k+v, T (f⃗k+v)). To verify these pairs, the
prover constructs a polynomial of vectors f⃗0 + f⃗1x+ · · ·+
f⃗k+vx

k+v. To ensure the validation of all [f⃗j ]d, [T (f⃗j)]d for
j = 1, . . . , k + v + 1, the verifier chooses random elements
α1, . . . , αk and checks whether T (f⃗0 + · · · + f⃗k+vα

k+v
i )

and T (f⃗0)+ · · ·+T (f⃗k+v)α
k+v
i are equal for i = 1, . . . , k.

If this check passes, the verifier chooses another random
element α1, . . . , αv and computes f⃗0+· · ·+ f⃗k+vα

k+v
i = r⃗j

and T (f⃗0) + · · · + T (f⃗k+v)α
k+v
i = T (r⃗j). Notably, since

the preprocessing phase for a linear transformation T only
needs to be executed once and can be reused for multiple
gates with the same type of transformation, the cost of pre-



computation can be eventually amortized.

1.3. Other Related Works

Verifiable Key Generation vs. Proof of Knowledge of
Secret Key. Guneysu et al. [9] recently proposed a veri-
fiable key generation method for lattice-based KEMs such
as Kyber and Frodo. Their algorithm generates a proof of
possession simultaneously with the key generation process.
However, due to the concurrent generation procedure, their
technique can only be used during certificate issuance and
not during other periods of the certificate’s lifecycle, such
as revocation.

In comparison to their approach, our proposed proof
guarantees that the lattice public key is well-formed, pro-
viding an additional level of security guarantee. This is
in contrast to their proof, which fails to ensure that the
generated public key is well-formed, potentially allowing
dishonest parties to register an ill-formed public key that is
not an LWE instance.

Moreover, several works [7], [8] have noted that proofs
of possession of a secret key are insufficient to resist rogue
key attacks, where the adversary may choose a public key
as a function of an honest user’s key. To fundamentally
prevent rogue-key attacks, it is necessary to require proof of
knowledge of the secret key during public key registration to
a CA, rather than just providing proof of possession. Hence,
our proposed NIZKAoK provides stronger security than the
proof of possession by Guneysu et al. [9].

MPCitH from Shamir’s secret sharing. Feneuil and Rivain
[16] recently also suggested that the MPCitH from Shamir’s
secret sharing may be more efficient than the additional
secret sharing-based approach. Braun et al. [37] extend the
MPC-in-the-head framework, used in recent efficient zero-
knowledge protocols, to work over the ring Z2k , which is
compatible with any threshold linear secret sharing scheme
and draw inspiration from MPC protocols adapted for ring
operations. Compared to these works, our approach achieves
improved efficiency by leveraging packed secret sharing
to reduce computation and proof size. We have devised
an efficient method for computing a linear transformation
for the packed secret vector, which is essential for making
packed secret sharing work. Moreover, we have developed
novel methods for handling multiplication gates without the
need to verify preprocessed Beaver’s triples. This further
reduces computational overhead and improves the efficiency
of our approach.

2. Preliminaries

Throughout the paper, we will assume that elements in
Zq are represented by integers in the range

[
− q−1

2 , q−1
2

]
for a prime q. We will represent vectors in bold-face let-
ters and matrices in bold-face capital letters. A ring R,
which is often taken to be a degree-n polynomial ring
of the form R = Z[x]/(f(X)). The elements of R can

be canonically represented by their modulo (f(X)), which
are integer polynomials of degree less than n. We define
Rq = R/qR = Zq[x]/(f(X)), whose canonical representa-
tives are polynomials of degree less than n with coefficients
from some set of canonical representatives of Zq. Through-
out this work, we use λ to denote the security parameter. We
denote by [n] the set of integers {1, . . . , n} and by [m,n]
the set {m, . . . , n}.

2.1. Packed Secret-Sharing

We will use the packed secret-sharing technique intro-
duced by Franklin and Yung [36] in our NIZK construction.
This is similar to standard Shamir’s secret-sharing [38] over
F, but here a block of l different values x⃗ = (x1, . . . , xl) ∈
Fl are shared at once using a polynomial that evaluates to
x1, . . . , xl in l distinct points. Let N be the number of
parties and l be the number of secrets that are packed in
one sharing. Assume that |F| > 2N such that β1, . . . , βl

and α1, . . . , αN are fixed N + l distinct elements in F. A
d-degree packed Shamir sharing of x⃗ = (x1, . . . , xl) ∈ Fl is
a vector (w1, . . . , wN ) for which there exists a polynomial
f(·) ∈ F[X] of degree at most d such that f(βi) = xi for all
i ∈ {1, . . . , l} and f(αi) = wi for all i ∈ {1, . . . , N}. The
i-th share wi is held by party Pi. Reconstructing a degree-d
packed Shamir sharing requires d+1 shares and can be done
by Lagrange interpolation. For a random degree-d packed
Shamir sharing of x⃗, any d− l+1 shares are independent of
the secret x⃗. Any vector of shares {s1, . . . , sN} among N
parties is called d-consistent if the shares correctly match a
degree at most d polynomial in the N first points and there-
fore uniquely defines a block of secrets. In the following,
denote by [x⃗]d a packed secret-sharing of the l dimensional
vector x⃗ using a polynomial of degree at most d. The i-th
share of [x⃗]d is denoted as [x⃗]d(i).

By employing packed secret sharing, it is possible to
execute secure addition or multiplication on a set of l values
concurrently [36]. This observation directly expedites the
parallel evaluation of the same circuit with l independent
inputs using the MPC protocol. In particular, the evaluation
of the circuit C should consist of three types of operations
on l-dimensional blocks in Fl (gates for blocks), namely:

• l-addition:

l−Add((x1, . . . , xl), (y1, . . . , yl)) = (x1+y1, . . . , xl+yl),

• l-multiplication:

l−Mult((x1, . . . , xl), (y1, . . . , yl)) = (x1·y1, . . . , xl·yl),

• linear transformation T :1

T (x1, x2, . . . , xl) = (x1, x2, . . . , xl) · T .

Operations (addition and multiplication) between two
packed Shamir sharings are coordinate-wise. Obviously, we
have [x⃗]d+[y⃗]d = [x⃗+ y⃗]d and [x⃗]d ·[y⃗]d = [x⃗⋆y⃗]2d, where ⋆

1. We can view T as a matrix in Fl×l, allowing us to achieve the linear
transformation by multiplying the vector with the matrix.



denotes the coordinate-wise multiplication operation. These
properties directly follow from the computation of the un-
derlying polynomials. To compute a [x⃗]d multiply with a
constant vector c⃗ = (c1, . . . , cl), we can compute [⃗c]d by
making f(βi) = ci for all i ∈ {1, . . . , l} and f(αi) = 1 for
all i ∈ {1, . . . , d− l+1}. These d points already determine
a unique polynomial f , so one makes wi = f(αi) for all
i ∈ {d−l+2, . . . , N}. Then one can get [x⃗]d ·[⃗c]d = [x⃗⋆c⃗]2d.
Moreover, for two packed secret sharings with two different
degrees [x⃗]2d and [y⃗]d, then [x⃗]2d + [y⃗]d = [x⃗+ y⃗]2d.

Recall that t is the number of corrupted parties. Also,
recall that a degree-d packed Shamir secret sharing scheme
is of threshold d− l+ 1. To ensure that the packed Shamir
secret sharing scheme has threshold t and is multiplication-
friendly, we choose l such that t ≤ d− l + 1 and 2d ≤ N .

2.2. Schwartz-Zippel Test

Let f(x) and g(x) be two (single variable) polynomials
with coefficients in a finite field F. The Schwartz-Zippel test
[39] can be used to determine whether f and g are identical
or not.

Lemma 1 ( Schwartz-Zippel Lemma). Let p(x1, . . . , xn)
be a polynomial of degree d. Let S be any set of numbers
and a1, . . . , an be n random numbers drawn from S. Then
Pr[p(a1, . . . , an) = 0] ≤ d/|S|.

2.3. Zero-Knowledge Arguments of Knowledge

Let LR ∈ {0, 1}∗be an NP language and R be its related
NP-relation for circuits over F. Thus (x = (C, y), ω) ∈ R iff
(C, y) ∈ LR and C(ω) = y. We write Rx = {ω|(x, ω) ∈ R}
for the set of witnesses for a fixed x.

Definition 1 (Honest Verifier Zero-Knowledge Argument
of Knowledge). Assume (P, V ) is a pair of probabilistic
polynomial time interactive Turing machines and let p →
[0, 1] be a function. We say that (P, V ) is a zero-knowledge
argument of knowledge for the relation R if the following
properties hold:

Completeness: If P and V follow the protocol on input
x ∈ LR and private input ω ∈ Rx to P , then V always
outputs 1.

Knowledge Soundness: There exists a probabilistic al-
gorithm E called the knowledge extractor, such that for every
interactive prover P̂ and every x ∈ LR, the algorithm E
satisfies the following condition: let δ(x) the probability
that V accepts on input x after interacting with P̂ . If
δ(x) > p(x), then upon input x ∈ LR and oracle access
to P̂ , the algorithm E outputs a vector ω ∈ Rx in expected
number of steps bounded by 1

δ(x)−p(x) .
Honest Verifier Zero-Knowledge: Let viewP

V (x, ω) be
a random variable describing the random challenge of V
and the messages V receives from P with input ω during
the joint computation on common input x. Then, there exists
a PPT simulator S, such that for all x ∈ LR,ω ∈ Rx:
S(x) ≈c view

P
V (x, ω).

3. The Construction Framework

In this section, we present a novel non-interactive zero-
knowledge argument of knowledge (NIZKAoK) that is built
upon the MPC-in-the-Head paradigm and utilizes packed
secret sharing. Here we assume the circuit consists of three
types of l-fold gates: l-fold addition gates, l-fold multipli-
cation gates, and linear transformation gates. To optimize
computation and communication costs, we propose different
novel methods for proving each type of gate in the context
of packed secret sharing. Additionally, we provide rigorous
security proof for our NIZKAoK that establishes its sound-
ness and zero-knowledge properties.

3.1. NIZKAoK from Packed Secret Sharing

We consider a zero-knowledge proof system designed
for an NP language L that corresponds to a relation R.
Given a statement x ∈ L, we assume the existence of a
witness ω such that R(x, ω) = 1 and the function R(x, ·)
can be converted into an arithmetic circuit C over the field
F such that C(ω) = 1.

Without loss of generality, we assume that ω can be
represented as a collection of n l-dimensional vectors, de-
noted as ω⃗1, . . . , ω⃗n ∈ Fl, where each ω⃗i is a vector over
the field F. Based on the findings presented in [18], it is
possible to efficiently convert the circuit C into a circuit C ′

that consists of three types of l-fold gates: l-fold addition
gates, l-fold multiplication gates, and linear transformation
gates. Consequently, the function R(x, ·) can be transformed
into an arithmetic circuit C ′ over the field Fl such that
C ′(ω⃗1, . . . , ω⃗n) = 1⃗.

To establish the NP relation R, the prover begins by
computing the circuit C ′ and carefully recording all inter-
mediate results associated with the multiplication gates and
linear transformation gates. Subsequently, the prover simu-
lates N virtual parties and employs a degree-d packed secret
sharing scheme to divide each vector ω⃗i ∈ Fl, i = 1, . . . n
into N shares denoted as [ω⃗i]d = ([ω⃗i]d(1), . . . , [ω⃗i]d(N)).
Each party j securely holds a distinct share [ω⃗i]d(j). Given
that the prover possesses knowledge of the inputs and out-
puts of each gate, the corresponding proof can be systemat-
ically generated. Figure 1 provides an overview of the proof
generation process for each gate type.

In the case of an l-fold addition gate, represented as
x⃗ + y⃗ = z⃗, the virtual parties independently perform local
computations to obtain the packed secret sharing [z⃗]d =
[x⃗]d + [y⃗]d using the shares [x⃗]d and [y⃗]d. Subsequently,
they transmit [z⃗]d as inputs to the subsequent gates.

In the context of an l-fold multiplication gate denoted
as x⃗ ⋆ y⃗ = z⃗, the prover instructs the virtual parties to
locally compute [z⃗]2d = [x⃗]d · [y⃗]d by multiplying their
respective shares. However, using [z⃗]2d directly as input
for subsequent gates is not feasible due to its secret share
degree of 2d. To address this, the prover generates a new
random packed secret sharing [z⃗]d for z⃗ and provides proof
that [z⃗]2d − [z⃗]d is a secret share of 0⃗. To ensure the cor-
rectness of the computation, the verifier employs a random



Prove: The circuit C ′ consists of l-fold addition gates, l-fold multiplication gates and h different types of linear
transformations T1, . . . , Th corresponding to NP relation R and the statement x. Specifically, the witness ω can be

encoded into ω⃗1, . . . , ω⃗n where ω⃗j ∈ Fl and C ′(ω⃗1, . . . , ω⃗n) = 1⃗. Hcom and HC are hash functions.

Input Gate:
The prover encodes the symbol ω as ω⃗1, . . . , ω⃗n, where each ω⃗j belongs to the field Fl. For each ω⃗j , the
prover generates packed secret sharings of degree d and records the i-th share as [ω⃗j ]d(i) in the set Vi. Let
[ω⃗]d(i) = ([ω⃗1]d(i), . . . , [ω⃗n]d(i)).

Preprocessing:
When the circuit C contains v linear transformation gates of type T , the prover does the following:

1) The prover generates k + v + 1 random vector f⃗j ∈ Fl for j = 0, . . . , k + v.
2) The prover generates the d degree packed secret sharing for each f⃗j and commits the i-th share of [f⃗j ]d

and [T (f⃗j)]d as T comi = Hcom

(
[ω⃗]d(i), {[f⃗j ]d(i), [T (f⃗j)]d(i)}j∈[0,k+v]

)
for i = 1, . . . , N . The prover

also records T comi in Vi.
3) The prover computes k + v random elements: HC (T com1, . . . , T comN ) = α1, . . . , αk+v ∈ Fl and

computes [β⃗j ]d(i) = [f⃗0]d(i)+· · ·+[f⃗k+v]d(i)α
k+v
j and [γ⃗j ]d(i) = [T (f⃗0)]d(i)+· · ·+[T (f⃗k+v)]d(i)α

k+v
j

for j = 1, . . . , k. The prover records all shares of [β⃗j ]d(i) and [γ⃗j ]d(i) for j = 1, . . . , k in each Vi.
4) The prover computes [r⃗j−k]d(i) = [f⃗0]d(i) + · · · + [f⃗k+v]d(i)α

k+v
j and [T (r⃗j−k)]d(i) = [T (f⃗0)]d(i) +

· · ·+ [T (f⃗k+v)]d(i)α
k+v
j for j = k + 1, . . . , k + v.

The prover will perform the following computations sequentially for each gate of C ′ and update the view of each
virtual party Vi accordingly.
l-fold Addition Gate:

For the l-fold addition gate that x⃗ + y⃗ = z⃗add, the prover computes the packed secret sharing [z⃗add]d =
[x⃗]d + [y⃗]d from [x⃗]d and [y⃗]d.

l-fold Multiplication Gate:
For the l-fold multiplication gate that x⃗ ⋆ y⃗ = z⃗mult, the prover does the following:

1) The prover computes the packed secret sharing [z⃗mult]2d = [x⃗]d · [y⃗]d.
2) The prover reshares secret z⃗mult and generates a new packed secret sharing [z⃗mult]d. He also adds the

i-th share of [z⃗mult]d(i) to the list Vi.
3) The prover computes [u⃗]2d = [z⃗mult]2d − [z⃗mult]d and outputs the shares of [u⃗]2d(i) in Vi.

Linear Transformation T :
For each linear transformation gate T in C, the prover picks one unused random linear transformation pair
([r⃗]d, [T (r⃗)]d) and does the following:

1) The prover computes [r⃗ + x⃗]d and reveals x⃗+ r⃗ in each Vi.
2) The prover deterministically reshares T (x⃗+ r⃗) and gets [T (x⃗+ r⃗)]d for the virtual parties.
3) The prover computes [T (x⃗)]d(i) = [T (x⃗+ r⃗)]d(i)− [T (r⃗)]d(i).

Output Gate:
For the output y of the circuit C, the prover has already generated [y⃗]2d from the previous computation.
The prover records all shares of [y⃗]2d in each Vi.

Challenge:
After running all gates, the prover commits all views (com1, . . . , comN ) = (Hcom(V1), . . . ,Hcom(VN ))
and computes challenge set HC(com1, com2, . . . , comN ) = I ⊂ [N ] where |I| = t.

Output proof:
Finally, the prover produces the proof π = (πpre, πonline)

πpre =

({
{[f⃗j ]d(i), [Tτ (f⃗j)]d(i)}j∈[k+v]

}
i∈I,τ∈[h]

,
{
{[β⃗j ]d(i), [γ⃗j ]d(i)}j∈[k], Tτ comi,

}
i/∈[I],τ∈[h]

)
;

πonline =
(
{[ω⃗]d(i), {[z⃗mult]d(i)}∀mul gate}i∈I , I,

{
comi, {[u⃗]2d(i)}∀mul-gate, {[x⃗+ r⃗]d(i)}∀Tτ -gate,τ∈[h]

}
i/∈[I]

)
.

Figure 1: The proof algorithm of Diet



selection process to choose a subset I of indices from the
set [N ], where |I| < d. Subsequently, the prover reveals
the corresponding shares of [x⃗]d, [y⃗]d, and [z⃗]d within the
challenge set I, along with all shares in [x⃗]d · [y⃗]d − [z⃗]d.
The equation [x⃗]d · [y⃗]d − [z⃗]d = [x⃗ ⋆ y⃗]2d − [z⃗]d = [⃗0]2d
holds true. Therefore, the verifier’s task is to verify the
consistency between the revealed shares of x⃗, y⃗, and z⃗ and
their corresponding shares in [x⃗]d · [y⃗]d− [z⃗]d. Additionally,
it is crucial to ensure that the shares of [x⃗]d · [y⃗]d − [z⃗]d
can be represented by a polynomial and accurately reflect
the share of 0⃗. Next the parties transmit [z⃗]d as inputs for
subsequent gates.

For a linear transformation gate T denoted as y⃗ = T (x⃗)
operating on a packed shared secret vector x⃗, the prover
initiates the computation by precomputing pairs of the form
[r⃗]d, [T (r⃗)]d for random vectors r⃗ and the corresponding
linear transformation matrix T . Given [r⃗]d and [x⃗]d, all
virtual parties perform a local computation to reconstruct
x⃗+ r⃗ by adding [r⃗]d and [x⃗]d, and then compute T (x⃗+ r⃗).
Consequently, the prover generates [T (x⃗+ r⃗)]d. Given that
[T (x⃗ + r⃗)]d = [T (x⃗) + T (r⃗)]d and [T (r⃗)]d, the virtual
players locally subtract shares to obtain [T (x⃗)]d, which can
be utilized as inputs for subsequent gates.

The remaining question pertains to the generation of a
random pair [r⃗]d, [T (r⃗)]d that can be verified in the MPCitH
scenario. To address this, we employ the cut-and-choose
method, utilizing k pairs for correctness verification and the
remaining v pairs for proof. Specifically, we leverage the
following fact: let f⃗j = (f1

j , . . . , f
l
j)

T ∈ Fl and a random
challenge α, one have:

r⃗ =
(
f⃗0, f⃗1, . . . , f⃗k+v

)
· (1, α, . . . , αk+v)T

= f⃗0 + f⃗1α+ · · ·+ f⃗k+vα
k+v

while(
T (f⃗0), T (f⃗1), . . . , T (f⃗k+v)

)
·
(
1, α, . . . , αk+v

)T
=T

(
f⃗0, f⃗1, . . . , f⃗k+v

) (
1, α, . . . , αk+v

)T
= T (r⃗)

.

To generate v random pairs [r⃗]d, [T (r⃗)]d, the prover ini-
tiates the process by generating k+v+1 random vector pairs
(f⃗0, T (f⃗0)), . . . , (f⃗k+v, T (f⃗k+v)). By utilizing random ele-
ments α1, . . . , αk, the prover computes [β⃗j ]d = [f⃗0]d+· · ·+
[f⃗k+v]dα

k+v
j and [γ⃗j ]d = [T (f⃗0)]d + · · ·+ [T (f⃗k+v)]dα

k+v
j

for each j ∈ [k]. The prover presents the evidence of correct-
ness when T (β⃗j) = γ⃗j holds for all i ∈ [k]. Subsequently,
the prover employs the remaining αj , j ∈ [k + 1, k + v], to
compute the pair of linear transformations [r⃗]d, [T (r⃗)]d. To
ensure negligible soundness errors, we rely on the Schwartz-

Zippel lemma, which guarantees
(

k+v
|F|

)k
< 1

2λ
. Notably,

this procedure only needs to be performed once for v linear
transformation gates with the same type of linear transfor-
mation since a single preprocessing phase can generate v
random pairs [r⃗]d, [T (r⃗)]d.

The verification process, illustrated in Figure 2, consists
of several steps. Firstly, the verifier recomputes the linear

TABLE 2: Asymptotic Complexity of Proof Size and Runtime

Scheme l parallel Multip. l parallel Add. Linear Trans.
Size Cost1 Size Cost Size Cost

MPCitH2 O(λ · l) O(λ · l) free O(λ · l) free O(λ · l)
Diet O(l) O(l) free O(l) O(l) O(l)

1 Cost refers to the basic arithmetic operation
2 the MPCitH constructions [11], [13], [14] with Additional secret sharing

transformation pairs and verifies their correctness. Next,
the verifier recomputes the circuit and checks if the out-
put is accurate. Finally, the verifier verifies the correctness
of the opened commitments of Vi. In particular, for each
secret share that requires resharing, the verifier additionally
ensures that all shares correspond to points on the same
reconstructed polynomial.

3.2. Security Proof

In this subsection, we will present our fixed theorem
and provide a formal security proof for Diet. We refer the
interested reader to Appendix A for a more detailed and
rigorous proof.

Theorem 1. Let us assume that HC is a random oracle,
Hcom is collision-resistant, and the packed secret sharing
parameters are denoted as (l, t). The protocol, as depicted
in Figure 1, when instantiated with the parameter (N, t),
serves as a non-interactive zero-knowledge argument of
knowledge for any NP relation R. The protocol achieves

a soundness error of (2(t+l)
t )

(Nt )
+
(

k+v
||F ||

)k
· t
2(t+l)+1 ·

(
N−t

t+2l+1

)
.

Furthermore, if a malicious prover successfully convinces
the honest verifier V to accept with a probability ϵ̂ :=
Pr[⟨P ∗, V ⟩(x) → 1] > ϵ, then there exists an efficient
probabilistic extraction algorithm E0. Given rewindable
black-box access to P ∗, this algorithm produces, on av-
erage, a witness ω satisfying C(x, ω) = 1 by making a
bounded number of calls to P ∗, which is upper-bounded by
4

ϵ̂−ϵ ·
(
1 + ϵ̂ · 8·(N−t)

ϵ̂−ϵ

)
.

3.3. Asymptotic Performance

In this subsection, we analyze the asymptotic complexity
of Diet in Figure 1. To ensure the optimized size and com-
putational complexity of Diet, we set that the packed size l
is equal to t, where t ≈ O(λ) corresponds to the number of
opened views. As a result, we obtain d = t+ l = 2t, and we
establish N ≥ 2d+1 = 4t+1. Additionally, we let N = ct,
where c is a small constant greater than 4. Here, d represents
the degree of the polynomials applied in the system, while
N denotes the number of virtual MPC players.

For an arithmetic circuit with l-fold gates, the proof size
of Diet is only l times the number of gates and constant to
the security parameter. For each l-fold multiplication gate
and transformation gate in the circuit, the proof needs to
include N more field elements, of which the size is O(l).
For each linear transformation gate, the preprocessing will



Verify: The verifier inputs the statement x and the proof π and outputs whether it is a validly proof.

Set: πpre =

({
{[f⃗j ]d(i), [Tτ (f⃗j)]d(i)}j∈[k+v]

}
i∈I,τ∈[h]

,
{
{[β⃗j ]d(i), [γ⃗j ]d(i)}j∈[k], Tτ comi,

}
i/∈[I],τ∈[h]

)
;

πonline =
(
{[ω⃗]d(i), {[z⃗mult]d(i)}∀mul gate}i∈I , I,

{
comi, {[u⃗]2d(i)}∀mul-gate, {[x⃗+ r⃗]d(i)}∀Tτ -gate,τ∈[h]

}
i/∈[I]

)
.

Check the random linear transformation pairs:
1) For each i ∈ I and each type of the linear transformation T , the verifier recalculates T comi

using [ω⃗]d(i) and {[f⃗j ]d(i), [T (f⃗j)]d(i)}j∈[0,k+v] provided in the proof. The verifier then checks if
HC (T com1, . . . , T comN ) = (α1, . . . , αk+v) ∈ Fk.

2) According to α1, . . . , αk, the verifier recomputes {[β⃗j ]d(i), [γ⃗j ]d(i)}j∈[k] for each i ∈ [I] via the
polynomial evaluation.

3) By combining the sets {[β⃗j ]d(i), [γ⃗j ]d(i)}i/∈I
j∈[k] retrieved from the proof, the verifier reconstructs the sets

{β⃗j , γ⃗j}j∈[k] and checks: T (β⃗j)? = γ⃗j for each j ∈ [k].
4) For each j ∈ [k], the verifier validates whether all shares of [β⃗j ]d correspond to points on the same

reconstructed polynomial. Likewise, the verifier checks if all shares [γ⃗j ]d correspond to points on the
same reconstructed polynomial.

Check the evaluation of the circuit
Extract the {[ω⃗]d(i)}i∈I from the proof and verify the accuracy of the evaluation using the following
procedure.

1) For an l-fold addition gate, compute [z⃗add]d(i) = [x⃗]d(i) + [y⃗]d(i) for i ∈ I.
2) For an l-fold multiplication gate, the verifier’s task is as follows.

a) The verifier computes the share [z⃗mult]2d(i), which is the product of [x⃗]d(i) and [y⃗]d(i), for each i in
the set I.

b) The verifier retrieves the i-th share of [z⃗mult]d(i) for each i in the set I and compute [u⃗]2d(i) is equal
to the difference between [z⃗mult]2d(i) and [z⃗mult]d(i).

c) The verifier retrieves the other shares of [u⃗]2d(i) for i /∈ I from the proof. The verification process
involves checking if validates whether all shares [u⃗]2d correspond to points on the same polynomial.

d) The verifier checks if the reconstruction of [u⃗]2d is 0⃗.
According to the views {ωi}i∈I , the verifier computes the {[u⃗]2d(i)}i∈I .

3) For the jth linear transformation gate T in C, the verifier does the following:
a) The verifier recomputes the polynomial evaluation [r⃗]d(i) = [f⃗0]d(i) + · · · + [f⃗k+v]d(i)α

k+v
j+k and

[T (r⃗)]d(i) = [T (f⃗0)]d(i) + · · ·+ [T (f⃗k+v)]d(i)α
k+v
j+k for i ∈ I.

b) The verifier retrieves {[(x⃗+ r⃗)]d(i)}i/∈I from the proof and reconstructs x⃗+ r⃗.
c) The verifier verifies if all the shares [x⃗+ r⃗]d correspond to points on the reconstructed polynomial.
d) The verifier generates [T (x⃗+ r⃗)]d and computes [T (x⃗)]d(i) = [T (x⃗+ r⃗)]d(i)− [T (r⃗)]d(i) for i ∈ I.

4) To check the output gate for [y]2d, the verifier first reconstructs the value of y⃗ and checks if it is
equal to 1⃗. Additionally, the verifier checks if all shares correspond to points on the same reconstructed
polynomial.

Check the commitment opened successfully
If the above check fails, then outputs 0; otherwise:

1) The verifier recomputes comi = Hcom(Vi) for each i ∈ [I].
2) According to {comi}i/∈I and I in π, the verifier checks: I? = HC(com1, com2, . . . , comN ).

Figure 2: The verification algorithm of Diet



include {[β⃗j ]d(i), [γ⃗j ]d(i)}i/∈I
j∈[k], {T comi}i/∈I in the proof.

{[β⃗j ]d(i), [γ⃗j ]d(i)}i/∈I
j∈[k] consists 2(N − t)k elements while

the size of {T comi}i/∈I is N − t elements. Since this
preprocessing procedure can generate random tuples for v
independent linear transformations, the amortized proof size
for each linear transformation gate is 2(N−t)k+(N−t)

v =
2(cl−l)k+(c−1)l

v , which is O(1) when v = O(l).
Similarly, the computational cost of Diet is only l times

the number of l-fold gates and constant in the security
parameter. For each l-fold addition gate in the circuit, the
computational cost needs to include N more field elements
operations, of which the cost is O(l). For each l-fold
multiplication gate and transformation gate in the circuit,
the computational cost needs to include N + d more field
elements operations, of which the cost is O(l). For the linear
transformation T , it contains a reveal operation and matrix
multiplication. A reveal operation consists of 2N + d ele-
ments while the computational cost of matrix multiplication
is 2l2 elements. Therefore, the computational cost for each
linear transformation gate is 2N+d+2l2

v , which is O(l) when
v = O(l).

The analysis presented above can be summarized in Ta-
ble 2, which demonstrates that for l parallel multiplications
or additions, the proof size and computational cost of our
proposed Diet protocol remain constant with respect to the
security parameter. Further, the amortized size and computa-
tional cost of each gate is O(1). In contrast, the complexity
of similar operations, except for linear transformations, in
MPC-in-the-Head constructions [11], [13], [14] would be at
least O(λ) times that of Diet.

To obtain a more accurate estimate of the asymptotic
proof size and computational cost, it is necessary to consider
the overhead incurred by converting a traditional arithmetic
circuit C into a circuit C ′ consisting of l-fold gates. To this
end, Damgard, Ishai, and Krogstrup [18] propose leveraging
Beneš networks [40] to transform any arithmetic circuit
C consisting of ordinary fan-in-2 gates into a circuit C ′

consisting of l addition gates, l multiplication gates, and
different kinds of permutations within blocks. The new
circuit C ′ computes the same function as the original circuit
C, but more efficiently with respect to operations on blocks.

Specifically, the intuition behind the circuit transforma-
tion in [18] is to rearrange the circuit so that the values
are computed block by block. Each block contains l values.
The transformation first divides the original circuit C into
a minimal amount of layers so that every layer now only
consists of one type of multiplication or addition gate.
The size of the rearranged circuit C1 remains the same as
O(C). Next, a permutation subcircuit is inserted into two
layers to ensure that the circuit can be computed by only
permuting blocks, permuting within blocks, or doing nothing
between two layers. The transformed circuit C2 will involve
O((C logC + depth(C)2C log3 C)/l) permutations within
blocks. Finally, when we transform the above circuit C2

into C3, which only consists of l-fold gates, the number
of l-fold addition and multiplication gates in C3 is no
more than |C2|/l = O(|C|/l). Moreover, C3 will involve

O((C logC+depth(C)2C log3 C)/l) fold permutation gates
except for l-fold addition and multiplication gates. Specifi-
cally, they prove the following lemma:

Lemma 2. Given an arithmetic circuit C that is at least l
gates wide, there is an efficient algorithm to transform it
into another circuit C ′ with the following properties:

1) C ′(x) = C(x) for all inputs x.
2) C ′ consists of l-fold gate.
3) |C ′| = O((|C| log |C|+ depth(C)2|C| log3 |C|)/l).
4) depth(C ′) = O(log2 |C|depth(C)).

According to Lemma 2 and Table 2, we have:

Theorem 2. Given an arithmetic circuit C that is at least l
gates wide, then there is an efficient NIZKAoK with a proof
size of O

(
|C| log |C|+ depth(C)2n log3 |C|+ |ω|

)
+

poly(λ) and computational cost of
O
(
|C| log |C|+ depth(C)2n log3 |C|

)
+O(λ).

In comparison to previous works, which have a proof
size and computational cost of O(λ|C|), our proposed
NIZKAoK protocol, Diet, exhibits a polylogarithmic over-
head of |C| that is independent of λ. This result highlights
the effectiveness and efficiency of our approach for proving
knowledge of arbitrary arithmetic circuits C.

Remark. The asymptotic results provided only capture the
worst-case scenario for computation and communication
complexity. However, it is important to note that these re-
sults may vary significantly in specific cases due to the inef-
ficiency of the general circuit transformation process, which
can introduce unnecessary permutation gates. Nevertheless,
for most circuits, particularly those with a large circuit
width and fewer permutation gates between layers, the size
of the transformed circuit is approximately O(C)/l. This
characteristic gives our algorithm a distinct advantage. As a
result, our algorithm shows promise in scenarios involving
lattice problems and in verifying the legality of multiple
identical statements simultaneously, such as the verification
of multiple AES ciphertexts [41]. Concrete examples will
be presented in Section 6.

4. NIZKAoK for Lattice Problems

In this section, we present our construction of a
NIZKAoK for lattice problems, with a particular emphasis
on the LWE problem. LWE is commonly utilized in numer-
ous post-quantum digital signature and key encapsulation
algorithms. However, our approach and analysis are also
applicable to other variants of lattice problems, such as Short
Integer Solution (SIS) problems.

4.1. NIZKAoK for LWE

In this subsection, we present a detailed description of
the practical implementation of our framework for proving
the LWE problem. This implementation can be applied to
demonstrate the key generation of FrodoKEM [31], which



is an alternative candidate algorithm for post-quantum cryp-
tography standardization by NIST. The LWE problem in-
volves the sampling of a matrix A ∈ Zn×n

q , along with
the generation of two n × n secret matrices S and E,
which contain entries sampled from a distribution χ. The
public key comprises of two matrices (A,B), satisfying
B = AS+E, while the secret key is (S,E). In this context,
the distribution χ is relatively small compared to modulus
q, and we sometimes use the notation [−η, η] to distinguish
between integers sampled from χ and Zq.

The central concept of the proof is to employ a combi-
nation of linear transformation and multiplication gates to
establish the two relations inherent in the problem. The first
relation, AS + E = B, is established through the use of
a linear transformation gate to calculate AS, which is then
added to E through an addition gate to obtain B. To establish
the second relation, which requires demonstrating that every
element of S and E lies within the interval [−η, η], multiple
multiplication gates are utilized to prove the validity of
each element of (S,E). For instance, we employ expression
si,j(si,j−1) to demonstrate that every coefficient si,j of S is
in the set {0, 1}. The proof consists of the following steps.

Prove the linear relation of B = AS + E:
1) For each secret S = [s1||s2|| . . . ||sn] and E =

[e1||e2|| . . . ||en] where each si, ei ∈ Zn
q , we

generates its corresponding packed secret sharing
[s⃗1]d, [s⃗2]d, . . . , [s⃗n]d and [e⃗1]d, [e⃗2]d, . . . , [e⃗n]d.

2) The prover evaluates the preprocessing phase to gener-
ate a linear transformation pair ([r⃗i]d, [Ar⃗i]d) for each
i ∈ [n]. We let R = [r1||r2|| . . . ||rn].

3) For each i ∈ [n], the prover computes [s⃗i]d + [r⃗i]d and
reveal it to get si + ri.

4) The prover computes A(s1+ r1||s2+ r2|| . . . ||sn+ rn)
and reshares it to get [A(s⃗1+ r⃗1)]d, . . . , [A(s⃗n+ r⃗n)]d.

5) The prover computes [A(s⃗1 + r⃗1)]d −
[Ar⃗1]d, . . . , [A(s⃗n + r⃗n)]d − [Ar⃗n]d and gets [AS⃗]d.

6) The prover computes [AS⃗]d + [E⃗]d and reveals it to
prove that it equals to B.

Prove each elements of S and E lie in [−η, η]:
1) The prover generates a series of different packed secret

sharing of [⃗ij ]d, [⃗i′j ]d for each i⃗j , i⃗
′
j ∈ {−η, . . . , η}n

and computes ([s⃗j ]d− [⃗ij ]d) and ([e⃗j ]d− [⃗i′j ]d),j ∈ [n].
2) The prover computes each ([s⃗j ]d− [⃗ij ]d)([s⃗j ]d−[−⃗ij ]d)

in pairs and reshares it to get degree-d secret sharing.
3) The prover multiplies in pairs continually and finally

get the degree-2d shares of Πη
i=−η([s⃗j ]d − [⃗ij ]d) and

Πη
i=−η ([e⃗j ]d − [⃗ij ]d) for each j ∈ [n].

4) The prover proves that the packed secrets are all zeros
by revealing the final degree-2d shares.

4.2. NIZKAoK for Modular LWE Problem

This section presents an exposition of our framework’s
practical realization for proving the Modular Learning with
Errors (MLWE) problem. This implementation can be ap-
plied to demonstrate the key generation of KyberKEM [32],

which is the selected algorithm for post-quantum cryptogra-
phy standardization by NIST. Let us consider a ring element
Rq = Zq[x]/(x

n + 1), where n is a power of 2, and two
random ring elements A ∈ Rk×k

q ,b ∈ Rk
q . The prover’s

objective is to demonstrate knowledge of two short vectors
s ∈ Rk

q and e ∈ Rk
q such that As + e = b, where each

coefficient of s and e falls in [−η, η].
One common and straightforward approach is to convert

the MLWE problem into an equivalent LWE problem and
then establish the security proof for the resulting LWE
problem. However, when considering a ring element a ∈ Rq,
its conversion into the corresponding LWE problem involves
transforming a into A ∈ Zn×n

q , with n denoting the dimen-
sion of the ring element. This necessitates a minimum of
n operations involving multiplication gates applied to the
proof. Such a requirement inherently impacts the efficiency
of the cryptographic system.

To address these issues, an alternative approach is to
directly establish the security of the MLWE problem instead
of proving the transformed LWE problem. In this approach,
polynomial multiplication on the ring is performed using
the traditional Number Theoretic Transformation (NTT),
which converts it into the multiplication of correspond-
ing coefficients after the NTT transformation. Let NTT()
and NTT−1() be the functions for number theory trans-
formation and its inverse, respectively, satisfying a × b =
NTT−1(NTT(a) ◦ NTT(b)) for each a, b ∈ Rq, where ◦
denotes coefficient multiplication. The NTT transformation
can be represented as NTT(a) = T ·a, where T is a matrix
with respect to the primitive 256-th root of unity modulo q.
The proof procedure consists of the following steps.

Prove the linear relation of b = As + e:

1) For the matrix A =

a11 . . . a1k
. . .

ak1 . . . akk

 ∈ Rk×k
q , the prover

computes its NTT form T A =

T a11 . . . T a1k. . .
T ak1 . . . T akk

.

2) For each secret s = [s1, s2, . . . , sk] ∈ Rk
q and e =

[e1, e2, . . . , ek] ∈ Rk
q , we packed the corresponding

ring element coefficients and get its packed secret
sharing [s⃗1]d, [s⃗2]d, . . . , [s⃗k]d, [e⃗1]d, [e⃗2]d, . . . , [e⃗k]d.

3) The prover evaluates the preprocessing phase to gener-
ate several transformation pairs ([r⃗i]d, [ ⃗T ri]d),i ∈ [2k].

4) For each i ∈ [k], the prover computes [s⃗i]d + [r⃗i]d and
[e⃗i]d+[r⃗i+k]d and reveals it to get si+ri and ei+ri+k.

5) For each i ∈ [k], the prover computes [ ⃗T (si + ri)]d −
[T (r⃗i)]d, [T (e⃗i+r⃗i+k)]d−[T (r⃗i+k)]d and get [T (s⃗i)]d,
[T (e⃗i)]d.

6) For each j ∈ [k], the prover computes T aj1 ·[ ⃗T (s1)]d+
· · ·+ T ajk · [ ⃗T (sk)]d + [T ej ]d and reveals it to prove
that it equals to T b = [T b1, T b2, . . . , T bk].

Prove each elements of s and e lie in [−η, η]:
1) The prover generates a series of different packed secret

sharing of [⃗ij ]d, [⃗i′j ]d for each i⃗j , i⃗
′
j ∈ {−η, . . . , η}n



publicly and computes ([s⃗j ]d− [⃗ij ]d) and ([e⃗j ]d− [⃗i′j ]d)
for each j ∈ [k].

2) The prover multiply in pairs continually and finally gets
the degree-2d shares of Πη

i=−η([s⃗j ]d−[⃗ij ]d) and Πη
i=−η

([e⃗j ]d − [⃗ij ]d) for each j ∈ [k].
3) The prover proves that the packed secrets are all zeros

by revealing the final degree-2d shares.

5. Application to Knowledge of Secret Key

PKIs issue certificates that associate an entity’s public
key with identifying information about the entity [42], [43].
To ensure system security against rogue key attacks, it
is essential to provide proof of the knowledge of secret
keys (KOSK) in PKI systems. Without KOSK proofs, a
malicious attacker could potentially impersonate a legitimate
user by falsely claiming to possess the corresponding secret
key while applying for a certificate from a CA using an
arbitrary public key. The PKCS #10 Certificate Signing
Request (CSR) [44] is commonly used in many certificate
enrollment protocols such as CMP [45], ACME [46], EST
[47], and SCEP [48] to allow certificate applicants to prove
their possession of secret keys. Typically, CSR contains a
fresh signature which can be verified by the public key in
the certificate.

Notably, CSRs have gained popularity due to their non-
interactive nature, which makes them highly portable. Un-
like other certificate enrollment methods, CSRs do not re-
quire real-time communication between the entity requesting
the certificate and the CA. As a result, CSRs can be validated
out of the band, allowing for their transport across different
networks. For instance, many web PKI CAs [46] offer sim-
ple certificate enrollment workflows that involve pasting a
CSR into the CA’s web page. This allows for key generation
and CSR creation to take place on a production server, while
the certificate request is initiated from a workstation outside
the production network. Furthermore, even fully automated
certificate issuance protocols such as ACME [46] do not
require the CSR to contain any protocol state information
that would necessitate its generation as part of the certificate
issuance exchange.

The current design of CSRs has a significant limitation
in that they require a digital signature, which restricts their
use to proving possession of digital signature-type keys.
This limitation becomes particularly severe in the post-
quantum era, where KEM-based authentication is likely to
become more popular than signature-based authentication
[30]. When the certificate for post-quantum TLS protocols
is instantiated using lattice-based KEMs such as Frodo [31]
or Kyber [32], there is an urgent need for a post-quantum
replacement for CSRs to be used in future PKI systems.

Fortunately, Diet provides practical proof for KOSK for
post-quantum KEMs, which offers a viable solution for
designing post-quantum PKI systems for KEM TLS. By
using the algorithms presented in §4.1 and §4.2, we can
easily instantiate NIZKAoK for two lattice-based KEMs,
Kyber and FrodoKEM, in Round 3 of the NIST post-
quantum cryptography standardization project, and achieve

reasonable proof sizes and performance. The benchmark can
be found in Table 1 and §6.3.

Note that Guneysu et al. [9] also proposed an efficient
algorithm called Combined Proof of Possession (cPOP) to
replace current CSRs in the post-quantum era. The cPOP
algorithm generates a proof of possession of the secret key
simultaneously with the key generation phase. However, this
approach cannot be used to authenticate other events in
the certificate lifecycle, such as certificate revocation in the
PKI Certificate Management Protocol (CMP) [45], because
proof generation occurs concurrently with key generation.
Moreover, the cPOP algorithm proposed by Guneysu et al.
does not strictly ensure that a secret key is perfectly well-
formed. It is still possible for a malicious user to register a
public key that is maliciously generated. Furthermore, cPOP
does not provide a guarantee that the prover has knowledge
of the secret key since one cannot extract the secret key even
by repeatedly invoking the proving algorithm in the security
proof. These weaknesses suggest that the security notion of
cPOP is strictly weaker than the standard notion of the proof
of knowledge of secret keys. In history, past experiences
have shown that weakening the security requirements of the
proof of KOSK in PKI systems may lead to serious real-
world attacks [8], [49].

6. Implementation and Evaluation

In this section, we show the performance of Diet de-
signed for the LWE problem which is used in the some-
what homomorphic encryption schemes and the lattice-
based KEM Kyber and Frodo. We implement our protocols
in C++ 14 language experimentally. We use NTL 11.5.12

and GNU Multiple Precision Arithmetic 6.2.13libraries to
implement the polynomial and vector operations in our
protocols and choose SHA256 from the OpenSSL library as
a hash function. Our performance benchmarks are conducted
on a 14-inch Apple MacBook Pro laptop which is powered
by the Apple Silicon M1 Pro (3.2GHz) with 10-cores and
16GB of RAM.

6.1. Benchmark for Proving Different Gates

We conducted experiments to evaluate the performance
of the components for proving each l-fold multiplication
gate and linear transformation gate. Since the addition gate
is almost free in our scheme, the performance evaluation
is omitted here. In Table 4, we report the performance of
our system with q = 261 and statistical security parameter
λ = 128 with different multiplication gate batch sizes. Our
protocol can evaluate 128 multiplication gates by a packed
secret sharing in about 21ms with a proof size of 8.32KB
and 2048 multiplication gates by a packed secret sharing in
about 1394ms with a proof size of 70.61 KB. In Table 3, we
report the performance of our transformation gate with q =
261 and statistical security parameter λ = 128. Our protocol

2. https://libntl.org/doc/tour.html
3. https://gmplib.org/



can evaluate a transformation gate by a packed secret sharing
of l = 128 in about 14ms with a preprocessing time of 66ms
and a packed secret sharing of l = 2048 in about 733ms with
a preprocessing time of 3398ms.

As shown in Table 3 and 4, there is a trade-off between
parameters t and N . When the number of opened players
t increases, the size of the proof will decrease; conversely,
the efficiency of the proof will be faster.

TABLE 3: Batch Linear Transformation Gates

t l N Pre-Time(ms) Tran-Time (ms)

t = 100

128 1118 66 14
256 1737 120 26
512 2990 228 63
1024 5488 910 206
2048 10483 3398 733

t = 200

128 1028 76 19
256 1429 133 33
512 2229 302 75
1024 3828 875 229
2048 7374 3116 763

TABLE 4: Batch Multiplication Gates

t l N Time(ms) Size(KB)

t = 100

128 1118 21 8.32
256 1737 40 12.19
512 2990 111 21.52
1024 5488 361 40.12
2048 10483 1394 70.61

t = 200

128 1028 34 7.65
256 1429 60 10.64
512 2229 139 16.60
1024 3828 434 28.50
2048 7374 1647 54.91

6.2. NIZKAoK for LWE

We conducted experiments to evaluate the performance
for proving LWE instances of the form (A,As + e). Here
A ∈ Zm×n

q where q is the modulus. For a better comparison,
we choose the same parameter set considered by Baum and
Nof [13] which could potentially be used for the validation
proof of somewhat homomorphic encryption ciphertexts
[26]. Hence we choose s and e as binary vectors where
m = n = 2048 and q = 261.

We provided a comparison of different NIZK techniques
[13], [23], [24], [27], [29], [50] for proof size and prov-
ing time in the third and fourth columns in Table 1. The
parameters of the packed secret sharing we chose are set
as (N, t, l) = (2140, 200, 512) which implies packing s
and e into eight packed secret sharing polynomials. We
set (k, v) = (23, 4) to make the soundness error of pre-
processing less than 2−128 . The size of our online proof
is 245.88KB, while the size of a preprocessing is 350KB.
Our online proof time is 0.528s, with a preprocessing time
of 5.596s. Compared to other schemes, our solution offers
significant advantages in terms of both proof size and proof
time, when considering both factors in combination.

Interestingly, if one simultaneously proves multiple in-
stances of the LWE problem, the efficiency can be further

improved. This observation makes our scheme potentially
useful for the validation proof of a large number of some-
what homomorphic encryption ciphertexts, which may be
required for the preprocessing phase of MPC protocols such
as SPDZ [51]. This observation comes from that the cut-and-
choose proof component in the preprocessing phase could
be set up for an arbitrary number of same type of linear
transformation gates. Note that the polynomial of vectors
(3.1) set during the preprocessing phase is k + v degree,
while the size of the cut-and-choose component is only
proportion to k but this polynomial can be used to generate
random vector pairs for v linear transformation gates. Hence
the amortization efficiency will get better if v is increased.
This observation is demonstrated by experiments shown in
Figure. 3. Figure 3(a) shows that the total proof size varies
as we prove {5, 10, 100, 1000} instances at a time. The
proof sizes of the other four schemes are taken from [9].
Figure 3(c) shows the amortized proof size per proof as we
prove different numbers of instances at a time, while Figure
3(b) shows the amortized proof time per proof for the same
number of instances. Specifically, we run our protocol for
{5, 10, 100, 1000} instances and calculate the average proof
size and time per proof.

6.3. KOSK for Lattice Based KEMs

We conducted experiments to evaluate the performance
for proving the knowledge of secret keys for two lattice-
based KEMs Frodo640 and Kyber512. The proof size and
proof time are shown in Table 1.

Frodo640: Given the parameters (N, t, l) for packed
secret sharing used in MPCitH paradigm, we have set
(k, v) = (90, 8) to make the soundness error of preprocess-
ing less than 2−128. For both Frodo640 and our NIZKAOK
system, we have chosen n = 640, n = 8, q = 215, and
(N, t, l) = (2500, 250, 640).

In the study of proof sizes in existing constructions,
Baum [13] illustrated the conventional MPCitH methodol-
ogy’s implementation for Frodo key generation with a proof
size of 8.42 megabytes (MB). By employing the packed
secret sharing technique, our work reduces the proof size
from over 8.42 MB to 473.51 kilobytes (KB), with a pre-
processing overhead of 123.36 KB. Thus, we achieve at least
80% reduction in proof size compared to the previous ap-
proach. Additionally, we have developed an efficient imple-
mentation. Our proof time is 12.81s, with a pre-processing
time of 6.5s and a verification time of 7.3s. Specifically,
the time taken to prove the linear relationship is 0.2s, and
the time taken to prove the secret vector range is 12.61s.
As Table 1 illustrates, we are the first to provide a concrete
implementation of a NIZKAoK system for Frodo640.

Kyber512: Given the parameters (N, t, l) for packed se-
cret sharing used in MPCitH paradigm, we have set (k, v) =
(70, 4) to make the soundness error of preprocessing less
than 2−128. For both Kyber512 and our NIZKAoK system,
we have chosen modular rank k = 2 and η = 2, q = 3329,
and (N, t, l) = (1454, 150, 256).
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Figure 3: Amortized Efficiency

Our proposed approach achieves a proof size of 83.65
KB for online computation, with an additional preprocessing
overhead of 152.02 KB. To demonstrate the practicality and
efficiency of our approach, we provide a concrete implemen-
tation that achieves high performance, with a proof time of
only 0.68 seconds, a preprocessing time of 0.81 seconds, and
a verification time of 0.84 seconds. Specifically, the time
required to prove the linear relationship is 0.07 seconds,
while the time required to prove the range is 0.56 seconds.

While previous works [20], [52] have achieved better
proof sizes, the concrete efficiency of their approaches has
not been tested via implementation. As pointed out by
Feneuil et al. [15], their rejection sampling rate is 0.85
under their parameters for the lattice-based zero-knowledge
(ZK) scheme. This suggests that the repetition time for
proof generation is likely to exceed 6, which may affect
the efficiency of their approach.
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zero-knowledge proofs and applications: shorter, simpler, and more
general,” in Advances in Cryptology–CRYPTO 2022: 42nd Annual
International Cryptology Conference, CRYPTO 2022, Santa Barbara,
CA, USA, August 15–18, 2022, Proceedings, Part II. Springer, 2022,
pp. 71–101.

Appendix A.
Security Proof of Theorem 1

Proof. We will address completeness, soundness, and zero
knowledge individually. Our proving technique is inspired
by Feneuil and Rivain [16].

Completeness: The completeness holds from the com-
pleteness property of the underlying MPC protocol. A prover
P who knows a witness ω such that C (x, ω) = 1 and
who follows the steps of the protocol always succeeds in
convincing the verifier V .

Knowledge Soundness: Suppose that there is an effi-
cient prover P∗ that, on input x, convinces the honest ver-
ifier V to accept, then, there exists an efficient probabilistic
extraction algorithm E0 that, given rewindable black-box
access to P∗, outputs a witness ω satisfying C (x, ω) = 1.

When restraining to only bad witnesses: Given all
the transcripts, we have a unique hash commitment hcom

in the transcript. This hash commitment uniquely defines
the shares of the witness ω (by assumption on the absence
of hash/commitment collisions). In the following, we shall
denote ωJ the witness corresponding to the shares (ωi)i∈[J].
Since the multiplication gate requires at most 2d+1 values
to determine a secret, |J | = 2(t+ l)+1. We have a total of(

N
2(t+l)+1

)
possibly distinct witnesses ωJ . We shall say that

ωJ is a good witness whenever (x, ωJ) ∈ R, otherwise we
call ωJ a bad witness.

For any malicious prover P ∗, the hash commitments
Hcom uniquely define the transcript Vi. The hash com-
mitments HC also uniquely define the challenge value
α = (α1, α2, . . . , αk+v). we shall denote by H the set of
honest parties, that is, the set of the parties for which the
committed transcript Vi is consistent with the committed
input shares ωi. More formally, H = {i : Vi = ϕ(ωi, α)}
where ϕ is the function corresponding to the circuit C on
which the MPC protocol operates.

We further denote Y the random variable that corre-
sponds to the number of honest parties, that is, Y = |H|. We
stress that {Vi}i∈[N ], H, Y depend on the randomness of the
(malicious) prover generated random vector (f⃗j)j∈[0,k+v]

and the hash function HC . For every i ∈ [N ], we shall
further denote V̂i the transcript obtained through an hon-
est computation from the committed input shares, that is:

V̂i = ϕ(ωi, α). We stress that V̂i may not be equal to Vi.
We actually have i ∈ H if and only if V̂i = Vi.

In the following, we shall say that witness ωJ gives rise
to a wrong result(for a bad witness ω outputs C(x, ω) = 1)
in the MPC protocol, and denote the probability event EJ

whenever C(V̂i) = 1 where V̂i are the plain values which
contain the witness share and randomness and broadcast
values used in the MPC protocol. By definition of the MPC
protocol and the Schwartz-Zippel lemma, we have: ∀J s.t.

|J | = 2(l + t) + 1,Pr[EJ ] ≤
(

k+v
||F ||

)k
.

For the first step of the proof, we shall consider a subset
D of parties, i.e. D ⊂ {1, 2, ..., N}, and we denote N ′ =
|D| and J = {J ⊂ D : |J | = 2(l + t) + 1}. We will show
that, if {ωJ}J∈J are all bad witnesses, then the probability

Pr[succP∗ ] is upper bounded by Pr[succP∗ ] ≤ (Nd)
(N

′
d )
·ϵ where

ϵ is the soundness error defined in the theorem statement,

which is ϵ :=
(2(t+l)

t )
(Nt )

+
(

k+v
||F ||

)k
· t
2(t+l)+1 ·

(
N−t

t+2l+1

)
.

For J ∈ J and b ∈ {0, 1}, let us introduce the notation:

Ab
J =

{
EJ , if b = 1,

EJ , if b = 0.

Let x = (xJ)J∈J and let y ∈ {0, . . . , N}. Let us assume
that succP∗ , Y = y and {AxJ

J }J∈J jointly occur. Since
succP∗ occurs, we have C(vi) = 1. Then for each set J ∈ J
(wJ is a bad witness) such that J ⊂ H (the parties in J are
honest), we have Vi = V̂i for every i ∈ J , which implies
C(v̂i) = C(vi) = 1. Namely, a bad witness ωJ gives rise to
a wrong result(for a bad witness ω outputs C(x, ω) = 1)
in the MPC protocol that necessarily occurs for ωJ ,i.e.
xJ = 1, whenever J ∈ J with J ⊂ H . Thus wtH(x) ≥∑

J∈J :J⊂H xJ =
(

y
2(t+l)+1

)
where wtH(x) is the number

of a bad witness ωJ gives rise to a proof that can be verified.
By defining ymax := max{y : wtH(x) ≥

(
y

2(t+l)+1

)
}

we get that Pr[succP∗ , Y = y|{AxJ

J }J∈J ] = 0, if y >
ymax and Pr[succP∗ |Y = y] =

∑ymax

y=0 Pr[succP∗ , Y =
y|{AxJ

J }J∈J ].
The only way for the transcript to be successful is that

the set I of challenged opened parties only contains honest
parties, i.e. I ⊂ H . Thus, Pr′[succP∗ |{AxJ

J }J∈J , Y =

y] ≤ Pr[I ∈ H|I ∈ D,Y = y] =
(yt)
(N

′
t )

. We deduce

Pr′[succP∗ |{AxJ

J }J∈J , Y = y] ≤
∑ymax

y=0
(yt)
(N

′
t )
· Pr′[Y =

y|{AxJ

J }J∈J ] ≤ (ymax
t )

(N
′

t )
.

Since wtH(x) is a non-negative integer, let us consider
three cases:
Case1: ymax = 2(t+ l), it means that wtH(x) = 0, then

Pr[succP∗ |{AxJ

J }J∈J ] ≤
(
ymax

t

)(
N ′

t

) =

(
2(t+l)

t

)(
N ′

t

)
=

wtH(x) ·
(
2(t+l)
t−1

)
+
(
2(t+l)

t

)(
N ′

t

)



Case2: ymax = 2(t+ l) + 1, it means wtH(x) ≥ 1, then

Pr[succP∗ |{AxJ

J }J∈J ] ≤
(
ymax

t

)(
N ′

t

) =

(
2(t+l)+1

t

)(
N ′

t

)
≤

wtH(x) ·
(
2(t+l)
t−1

)
+
(
2(t+l)

t

)(
N ′

t

)
Since

(
2(t+l)+1

t

)
=
(
2(t+l)
t−1

)
+
(
2(t+l)

t

)
.

Case3: ymax ≥ 2(t+ l) + 2, then

Pr[succP∗ |{AxJ

J }J∈J ] ≤
(
ymax

t

)(
N ′

t

) =

(
2(t+l)+1

t

)(
ymax−t
t+2l+1

) · ( ymax

2(t+l)+1

)(
N ′

t

)
≤
(
2(t+l)+1

t

)(
ymax−t
t+2l+1

) · wtH(x)(
N ′

t

) ≤
(
2(t+l)+1

t

)
t+ 2l + 2

· wtH(x)(
N ′

t

)
≤

wtH(x) ·
(
2(t+l)
t−1

)
+
(
2(t+l)

t

)(
N ′

t

)
The last inequality can be prove using Lemma 5 of [16]
since

(
2(l+t)+1

t

)
=
(
2(t+l)
t−1

)
+
(
2(t+l)

t

)
.

In any case, we have Pr[succP∗ |{AxJ

J }J∈J ] ≤
wtH(x)·(2(t+l)

t−1 )+(2(t+l)
t )

(N
′

t )
for any x ∈ {0, 1}|J |. According to

Lemma 4 of [16], we have

Pr[succP∗ ] =
∑

x∈{0,1}J

Pr[succP∗ |{AxJ

J }J∈J ] · Pr[{AxJ

J }J∈J ]

≤
∑

x∈{0,1}J

wtH(x) ·
(
2(t+l)
t−1

)
+
(
2(t+l)

t

)(
N ′

t

) · Pr[{AxJ

J }J∈J ]

=

(
2(t+l)

t

)(
N ′

t

) +

(
2(t+l)
t−1

)(
N ′

t

) · ∑
x∈{0,1}J

wtH(x) · Pr[{AxJ

J }J∈J ]

≤
(
2(t+l)

t

)(
N ′

t

) +

(
2(t+l)
t−1

)(
N ′

t

) ·∑
J∈J

Pr[EJ ]

≤
(
2(t+l)

t

)(
N ′

t

) +

(
2(t+l)
t−1

)(
N ′

t

) · |J |(k + v

||F ||

)k

=

(
N
t

)(
N ′

t

) ·((
2(t+l)

t

)(
N
t

) +

(
2(t+l)
t−1

)(
N
t

) ·
(

N ′

2(t+ l) + 1

)(
k + v

||F ||

)k
)
≤
(
N
t

)(
N ′

t

) · ϵ
Since(
2(l+t)
t−1

)(
N

2(t+l)+1

)(
N
t

) =

N ! · (2(l + t))! · t! · (N − t)!

N ! · (2(l + t) + 1)! · (t− 1)!(N − 2t− 2l − 1)!(t+ 2l + 1)!

=
t

2(t+ l) + 1

(
N − t

t+ 2l + 1

)
Building of the extractor We now show how to build an

extractor which outputs a witness ω satisfying (x, ω) ∈ R (if
not a hash or commitment collision) when giving rewindable
black-box access to a malicious prover P ∗ which produces
successful transcripts with a probability ϵ̂ > ϵ.

Let us fix an arbitrary value α ∈ {0, 1} such that (1 −
α)ϵ̂ > ϵ (such α exists since ϵ̂ > ϵ). Below we denote
by Rh the randomness of P ∗ which is used to generate
the initial randomness {fi}i∈[k+v+1] and the secret share
of ω, and we denote rh a possible realization of Rh. We
will say that rh is good if it is such that Pr[succP∗ |Rh =
rh] ≥ (1− α)ϵ̂. By the Splitting Lemma 3 of [16] we have
Pr[Rh good|succP∗ ] ≥ α.

Our extractor first runs the P ∗ with honest verifier re-
quests until obtaining a successful transcript T0 by running.
If this T0 corresponds to a good rh, then we can obtain
further successful transcripts with “high” probability (i.e.
probability greater than (1−α)· ϵ̂) by rewinding the protocol
just after the commitment of HC . Based on the assumption
that rh is good, a sub-extractor E0 will build a list of
successful transcripts T , all with same initial commitment.
We denote P (T ) the set of the parties which have been open
in at least one transcript of T , i.e. P (T ) := ∪T∈T IT where
IT is the set of opened parties of the transcript T.

For a certain number N1 of iterations, the sub-extractor
E0 tries to feed the list T until there exist a good witness
among the open input shares. We formally describe the sub-
extractor routine in the following pseudocode:

• T = T0.
• Do N1 times:
• Run p∗ with honest V and same rh as T0 to get

transcript T .
• If T is a successful transcript,
• T ← T ∪ {T}.
• If T contains a good witness ω, Return ω.
• Return ϕ.

Let us evaluate the probability that the stop condition
is reached in a given number of iteration N1. Consider a
loop iteration in E0 at the beginning of which we have a
list T of successful transcripts (which does not contain a
good witness since the stop condition has not been reached)
and a transcript T sampled at Step 3. We denote Z the event
that a new party is open (a party which is not in P (T )) in
the transcript T. This event is defined with respect to the
randomness of the challenges in T.

Let us lower bound the probability to have a successful
transcript T and the event Z occurring in the presence of a
good Rh: PG := Pr[succp∗ ∩ Z|Rh good]. We have:

PG =Pr[succP∗ |Rh good]− Pr[succP∗ ∩ Z|Rh good]

=Pr[succP∗ |Rh good]−
Pr[succP∗ |Rhgood, Z] · Pr[Z|Rh good]

≥(1− α)ϵ̂− Pr[succP∗ |Rhgood, Z] · Pr[Z|Rh good]

where the last inequality holds by Pr[succP∗ |Rh = rh] ≥
(1 − α)ϵ̂. The probability that a new party is not opened
corresponds to the probability that the set I of opened parties

is a subset of P (T ), i.e. Pr[Z|Rh good] = Pr[Z] =
(|P (T )|

t )
(Nt )

.
The success probability knowing that no new party is

open corresponds to the success probability when restricting
to the |P (T )| parties which have been already open. By



assumption (T does not contain a good witness), the shares
of those parties only correspond to bad witnesses. Thus,
this probability can be upper bounded using Pr[succP∗ ] ≤
(Nt )
(N

′
t )
· ϵ with N ′ = |P (T )| and Pr[succP∗ |Rh good, Z] ≤

(Nt )
(|P (T )|

t )
· ϵ. Thus, we get PG ≥ (1− α) · ϵ̂− ϵ.

In the presence of a good Rh, the probability of the
event succP∗∩Z (i.e. getting a successful transcript T which
opens a new party) is lower bounded by (1−α) · ϵ̂− ϵ > 0.
Moreover, the event succP∗ ∩ Z can occur at most N − t
times, because T0 already opens t parties and there are N
parties in total. We deduce that after N − t occurrences of
succP∗ ∩ Z, the list T contains a good witness.

Let us now define N1 = 4(N−t)
p0

with p0 := (1−α)ϵ̂−
ϵ and let X ∼ B(N1, p0) a binomial distributed random
variable with parameters (N1, p0). The probability that E0

reaches the stop condition and returns a (good) witness for
a successful transcript T0 with good Rh satisfies:

Pr[E0(T0) ̸= ϕ|succT0

P∗ ∩Rh good] ≥ Pr[X > N − t]

= Pr[
X

N1
− p0 >

N − t

N1
− p0]

= 1− Pr[
X

N1
− p0 ≤

N − t

N1
− p0]

= 1− Pr[
X

N1
− p0 ≤ −

3

4
p0]

≥ 1− Pr[| X
N1
− p0| ≥

3

4
p0] ≥ 1− p0 · (1− p0)

N1 · P 2
0 · ( 34 )2

= 1− 16

9
· 1− p0
4(N − t)

= 1− 4

9
· 1− p0
N − t

≥ 1− 4

9
≥ 1

2

The inequality holds from the Bienayḿe-Techbychev in-
equality. Thus, using N1 = 4(N−t)

p0
, the probability to reach

stop condition assuming a good Rh is at least 1/2. Without
assumption on Rh, the probability to reach stop condition
satisfies:Pr[E0(T0) ̸= ϕ|succT0

P∗ ] ≥ Pr[Rh good|succT0

P∗ ] ·
Pr[E0(T0) ̸= ϕ|succT0

P∗ ∩Rh good] ≥ α
2 .

Let us now describe the complete extractor procedure:

• Repeat +∞ times:
• Run p∗ with honest V to get transcript T0.
• If T0 is not a successful transcript, go to next

iteration.
• Call E0 on T0 to get list of transcripts T .
• If T ≠ ϕ, return T .

Let NC denotes the number of calls to P ∗ made by the
extractor before ending. While entering a new iteration:

• The extractor makes one call to P ∗ to obtain T0.
• If T0 is not successful, which occurs with probability

(1− Pr[succT0

P∗ ])
• The extractor continues to the next iteration and

makes an average of E[NC ] calls to P ∗,
• If T0 is successful, which occurs with probability

Pr[succT0

P∗ ]
• The extractor makes at most N1 calls to P ∗ in the

loop of E0,

• Then E0 returns an empty list, which occurs with
probability Pr[E0(T0) = ϕ|succT0

P∗ ] , the extractor
continues to the next iteration and makes an average
of E[NC ] calls to P ∗,

• Otherwise, if E0(T0) returns a non-empty list, the
extractor stops and no more calls to P ∗.

The mean number of calls to P ∗ hence satisfies: E[NC ] =
1 + (1 − Pr[succT0

P∗ ]) · E[NC ] + Pr[succT0

P∗ ] · (N1 +
Pr[E0(T0) = ϕ|succT0

P∗ ] · E[NC ]) Which gives:

E[NC ] ≤ 1 + (1− ϵ̂) · E[NC ] + ϵ̂(N1 + (1− α

2
) · E[NC ])

≤ 1 + ϵ̂ ·N1 + E[NC(1−
ϵ̂ · α
2

)) ≤ 2

α · ϵ̂
· (1 + ϵ̂ ·N − 1)

=
2

α · ϵ̂
· (1 + ϵ̂ · 4 · (N − t)

(1− α) · ϵ̂− ϵ
)

To obtain an α-free formula, let us take α such that
(1 − α) · ϵ̂ = 1

2 (ϵ̂ + ϵ). We have α = 1
2 (1 −

ϵ
ϵ̂ ) and the

average number of calls to P ∗ is upper bounded as 4
ϵ̂−ϵ ·(

1 + ϵ̂ · 8·(N−t)
ϵ̂−ϵ

)
.

Zero-Knowledge There exists an efficient simulator S
that outputs a transcript that is indistinguishable from a real
transcript of our NIZK Protocol.

Firstly, S executes the preprocessing honestly. The
simulator S randomly selects

(
ω⃗i, {[f⃗j ]d(i), [T (f⃗j)]d(i)}

)
for each i ∈ [N ], j = 0, . . . , k + v and calculates
T comi = Hcom

(
ω⃗i, {[f⃗j ]d(i), [T (f⃗j)]d(i)}

)
,i ∈ [N ], j =

0, . . . , k + v. Meanwhile, S computes k + v random el-
ements HC (T com1, . . . , T comN ) = α1, . . . , αk+v ∈ Fk

and computes [β⃗j ]d = [f⃗0]d + · · · + [f⃗k+v]dα
k+v
j and

[γ⃗j ]d = [T (f⃗0)]d + · · ·+ [T (f⃗k+v)]dα
k+v
j for j = 1, . . . , k.

The simulator S records all shares of [β⃗i]d and [γ⃗i]d for
i = 1, . . . , k in each Vi.

Then, S chooses a random index set I∗ which is the
opened views’ index. Additionally, S simulates {[T (x⃗∗ +
r⃗∗)(i)], [u⃗∗]2d(i)}i/∈I∗ by utilizing interpolation polynomi-
als, in order to ensure that each {V∗

i }i∈I∗ outputs 1 for
C(x, ω). This procedure by faking the check of each mul-
tiplication gate and faking v linear transformation pairs
(ri, T (r∗i )) in i /∈ I∗. This simulation is simple because
S have already determined the set of indexes I∗ and each
view {Vi}i/∈I∗ is never opened. Finally, the simulator S
computes the commitment of the view comi = Hcom(V∗

i )
for i ∈ [I∗] and randomly chooses comj for j /∈ [I∗].
Then S program the random oracle HC such that I∗ =
HC({com∗

i }i∈I∗ , {comj}j /∈I∗).
As we can see, {V∗

i }i∈I∗ is the same as the output of a
real proof. {comi, T comi}i/∈I∗ are chosen randomly from
the distribution of Hcom and Hcom satisfies the property
of hiding. Because the preprocessing phase is performed
honestly, {[β⃗j ]d(i), [T (β⃗j)]d}i/∈I

j∈[k], {[T (x⃗ + r⃗)(i)]}i/∈[I] is
indistinguishable from the real proof distribution. I∗ is
chosen randomly. Therefore, the above simulation is com-
putationally indistinguishable from the real proof.



Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper introduces a new MPC in the Head (MPCitH)
NIZK Argument of Knowledge (NIZKAoK) called Diet.
The key contribution of Diet is improvement to the concrete
efficiency of MPCitH protocols by observing that one can
suitably modify the MPCitH protocol to allow for packed
Shamir secret sharing to (1) increase efficiency; and (2)
reduce the soundness error to negligible without multiple
repetitions (as in the case of other MPCitH protocols).
The paper demonstrates that these theoretical results lead
to practical improvements with applications to proving NP
statements about lattice-based problems, obtaining state-of-
the-art proof-of-secret-key-knowledge for popular lattice-
based KEMs.

B.2. Scientific Contributions

• The paper provides a valuable step forward in an
established field. Namely, it constructs more efficient
MPC-in-the-head-based zero knowledge protocols,
and shows how to use these for highly-efficient
proofs of lattice-theoretic computations.

B.3. Reasons for Acceptance

1) The paper proposes interesting new techniques to opti-
mize MPC-in-the-head protocols that can serve as the
foundation for new directions in such protocols. For
example, MPCith protocols underlie many proposed
post-quantum signature schemes, and it is plausible
that the techniques from this paper can benefit those
schemes.

2) The paper is reasonably well-written, and explains its
contributions well.
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