Hyperbelfunktion

mathematische Funktion

Die Hyperbelfunktionen sind die korrespondierenden Funktionen der trigonometrischen Funktionen (die auch als Winkel- oder Kreisfunktionen bezeichnet werden), allerdings nicht am Einheitskreis , sondern an der Einheitshyperbel .

Sinus hyperbolicus (rot)
Kosinus hyperbolicus (blau)
Tangens hyperbolicus (grün)
Kosekans hyperbolicus (rot)
Sekans hyperbolicus (blau)
Kotangens hyperbolicus (grün)

Wie eng diese Funktionen miteinander verwandt sind, erschließt sich noch deutlicher in der komplexen Zahlenebene. Sie wird durch die Relation vermittelt. So gilt z. B. .

Folgende Funktionen gehören zu den Hyperbelfunktionen:

  • Hyperbelsinus oder lat. Sinus hyperbolicus (Formelzeichen: )
  • Hyperbelkosinus oder lat. Cosinus hyperbolicus ()
  • Hyperbeltangens oder lat. Tangens hyperbolicus ()
  • Hyperbelkotangens oder lat. Cotangens hyperbolicus ()
  • Hyperbelsekans oder lat. Sekans hyperbolicus ()
  • Hyperbelkosekans oder lat. Kosekans hyperbolicus ().

In der deutschen und der holländischen Sprache werden noch sehr häufig die lateinischen Namen verwendet, mit teils eingedeutschter Schreibweise.

Sinus hyperbolicus und Kosinus hyperbolicus sind für alle komplexen Zahlen definiert und auf dem gesamten Gebiet der komplexen Zahlen holomorph. Die übrigen Hyperbelfunktionen haben Pole auf der imaginären Achse.

Definition

Bearbeiten
 
Eine Gerade aus dem Ursprung schneidet die Hyperbel   im Punkt  , wobei   die Fläche zwischen der Geraden, ihrem Spiegelbild an der  -Achse, und der Hyperbel ist.

Definition über die Exponentialfunktion

Bearbeiten

Mittels der Exponentialfunktion können   und   wie folgt definiert werden:

 
 

Daher sind die hyperbolischen Funktionen periodisch (mit rein imaginärer Periode). Die Potenzreihen von   und   lauten

 

wobei der Ausdruck   für die Fakultät von  , das Produkt der ersten   natürlichen Zahlen steht. Im Gegensatz zu den Potenzreihenentwicklungen von   und   haben alle Terme ein positives Vorzeichen.

Geometrische Definition mit Hilfe der Hyperbel

Bearbeiten

Wegen ihrer Verwendung zur Parametrisierung der Einheitshyperbel  :

 

werden sie Hyperbelfunktionen genannt, in Analogie zu den Kreisfunktionen Sinus und Kosinus, die den Einheitskreis   parametrisieren:

 

Die Funktionen stellen eine Verbindung her zwischen der Fläche  , die von einer vom Nullpunkt ausgehenden Geraden und ihrem Spiegelbild an der  -Achse sowie der Hyperbel eingeschlossen wird, und der Länge verschiedener Strecken.

Dabei ist   die (positive)  -Koordinate des Schnittpunkts der Geraden mit der Hyperbel und   die dazugehörige  -Koordinate;   ist die  -Koordinate der Geraden bei  , d. h. die Steigung der Geraden.

Berechnet man die Fläche durch Integration, erhält man die Darstellung mit Hilfe der Exponentialfunktion.

Eigenschaften der reellen Hyperbelfunktionen

Bearbeiten
 
Graph der reellen Hyperbelfunktionen
  • Für alle reellen Zahlen   sind auch   und   reell.
  • Die reelle Funktion   ist streng monoton steigend und besitzt in   ihren einzigen Wendepunkt.
  • Die reelle Funktion   ist auf dem Intervall   streng monoton fallend, auf dem Intervall   streng monoton steigend und besitzt bei   ein globales Minimum.

Wegen   gelten alle Eigenschaften der komplexen Hyperbelfunktionen, die im nachfolgenden Absatz aufgeführt sind, auch für die Funktionen, die auf die reellen Zahlen eingeschränkt sind.

Eigenschaften der komplexen Hyperbelfunktionen

Bearbeiten

Für alle komplexen Zahlen   gilt:

Symmetrie und Periodizität

Bearbeiten
  •  , d. h., sinh ist eine ungerade Funktion.
  •  , d. h., cosh ist eine gerade Funktion.
  •  ,

d. h., es liegt rein „imaginäre Periodizität“ vor mit minimaler Periodenlänge  .

Additionstheoreme

Bearbeiten
  •  
  •  
  •  

Zusammenhänge

Bearbeiten
 
 
 

Ableitung

Bearbeiten

Die Ableitung des Sinus hyperbolicus lautet:

 .

Die Ableitung des Kosinus hyperbolicus lautet:

 .

Die Ableitung des Tangens hyperbolicus lautet:

 .

Differentialgleichung

Bearbeiten

Die Funktionen   und   bilden wie   und   eine Lösungsbasis (Fundamentalsystem) der linearen Differentialgleichung

 .

Fordert man allgemein für die beiden Basislösungen   dieser Differentialgleichung zweiter Ordnung noch  ,  und  , , so sind sie bereits eindeutig durch   und   festgelegt. Sprich, diese Eigenschaft kann ebenfalls als Definition dieser beiden Hyperbelfunktionen herangezogen werden.

Bijektivität der komplexen Hyperbelfunktionen

Bearbeiten

Es seien folgende Teilmengen der komplexen Zahlen definiert:

 
 

Dann bildet die komplexe Funktion   den „Streifen“   bijektiv auf   ab.

Es seien folgende Teilmengen der komplexen Zahlen definiert:

 
 

Dann bildet die komplexe Funktion   den „Streifen“   bijektiv auf   ab.

Historische Notation

Bearbeiten

In deutschsprachiger Literatur wurden zur Unterscheidung von den trigonometrischen Funktionen die Hyperbelfunktionen lange Zeit in Frakturschrift dargestellt – mit initialer Großschreibung und ohne abschließendes h:[1]

 
 
 
 
 
 

Alternative Namen

Bearbeiten
  • Für die Hyperbelfunktionen ist auch der Name hyperbolische Funktionen gebräuchlich.
  • Für   sind auch die Namen hsin, Hyperbelsinus und Sinus hyperbolicus gebräuchlich.
  • Für   sind auch die Namen hcos, Hyperbelcosinus und Cosinus hyperbolicus gebräuchlich. Der Graph entspricht der Kettenlinie (Katenoide).

Abgeleitete Funktionen

Bearbeiten
  • Tangens hyperbolicus:  
  • Cotangens hyperbolicus:  
  • Secans hyperbolicus:  
  • Kosecans hyperbolicus:  

Umrechnungstabelle

Bearbeiten
Funktion            
             
             
             
             
             
             

Cauchysche Reihen

Bearbeiten

Analog zum Eulerschen Beweis des Basler Problems können unendliche Produktreihen für den Sinus Hyperbolicus und den Cosinus Hyperbolicus aufgestellt werden:

 
 

Die erste gezeigte Funktion stellt die nicht normierte Variante des Hyperbolischen Kardinalsinus dar.

Die Summen der diskreten Cauchy-Verteilung ergeben die Hyperbelfunktionen:

 
 
 
 

Alle sechs nun gezeigten Reihen sind für alle reellen Werte   konvergent!

Der Buchstabe L steht für die Langevin-Funktion, welche in der Elektrodynamik bei der Beschreibung des Paramagnetismus und in der statistischen Thermodynamik bei der Beschreibung der Wärmeenergie eine essentielle Rolle spielt und einen Spezialfall der Brillouin-Funktionen bildet. Und generell gilt für alle reellen Zahlen a, b und c mit dem Kriterium   folgende Formel:

 

Umkehrfunktionen

Bearbeiten

Die Umkehrfunktionen der Hyperbelfunktionen heißen Area-Funktionen.

Siehe auch: Zusammenhang mit den Kreisfunktionen

Literatur

Bearbeiten
  • Ilja N. Bronstein: Taschenbuch der Mathematik. Deutsch (Harri).
  • Nickos Papadatos: The characteristic function of the discrete Cauchy distribution. Department of Mathematics, National and Kapodistrian University of Athens, Panepistemiopolis, 157 84 Athens, Greece, 2022
Bearbeiten
Commons: Hyperbolic functions – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

Bearbeiten
  1. Stefan Hildebrandt: Analysis. Springer, 2002, ISBN 978-3-540-42838-1, S. 243, doi:10.1007/978-3-662-05694-3 (eingeschränkte Vorschau in der Google-Buchsuche).