CERN Accelerating science

CERN Document Server 找到 2,040 笔记录  1 - 10下一个最後  跳到记录: 检索需时 0.17 秒. 
1.
Current methods of processing experimental data in high energy physics / Ososkov, G A ; Polanski, A ; Puzynin, I V
Three basic methods that are extensively applied at JINR to process recent experimental data are reviewed, namely, robust methods of mathematical statistics, artificial neural networks including cellular automata, and wavelet analysis. This review primarily covers studies in which scientists from the Laboratory of Informational Technologies participated, in particular, in collaborations with the leading centers of physics such as CERN, DESY, BNL, etc. [...]
2002 - Published in : Phys. Part. Nucl. 33 (2002) 347-82
2.
An application of cellular automata and neural networks for event reconstruction in discrete detectors / Kisel, I V ; Ososkov, G A
CERN, 1992 Published version from CERN: TIF PDF;
In : Proceedings of the international conference on computing in High Energy Physics '92, pp.646-649
3.
Periodic points and entropies for cellular automata
CERN-SPS-88-5-AMS ; CERN-IFM-E2-88 - 1988. - 21 p.
4.
An experimental accelerator driven system based on plutonium subcritical assembly and 660 MeV protons accelerator / Barashenkov, V S ; Polanski, A ; Puzynin, I V ; Sissakian, A N
JINR-E2-99-206.
- 1999. - 12 p.
Access to fulltext document - Access to fulltext document
5.
Higgs Search and Neural-Net Analysis
/ Stimpfl, G ; Yepes, P
CERN-ALEPH-93-125; CERN-ALEPH-PHYSIC-93-106.- Geneva : CERN, 1993 Fulltext: PDF;
6.
A method for reconstruction of electromagnetic shower parameters in calorimeter with a rectangular cellular structure / Chernov, N I ; Ososkov, G A ; Rusakovitch, N A ; Velev, G V ; Zakharchenko, A N
E11-89-262 ; JINR-E11-89-262.
- 1989. - 12 p.
CERN library copies
7.
Track filtering by robust neural network / Baginyan, S A ; Kisel, I V ; Konotopskaya, E V ; Ososkov, G A
JINR-E10-93-86.
- 1993. - 13 p. CERN library copies
8.
Controlled neural network application in track-match problem / Baginyan, S A ; Ososkov, G A
E10-93-415; JINR-E10-93-415.- Dubna : Joint Inst. Nucl. Res., 1993 - 12 p. Access to document: TIF PDF;
In : 4th International Workshop on Software Engineering, Artificial Intelligence and Expert Systems for High-energy and Nuclear Physics : AIHENP '95, Pisa, Italy, 3 - 8 Apr 1995, pp.731-736 - CERN library copies
9.
Using neural networks with new morphological variables to recognize the number of jets in $e^{+} e^{-}$ reactions / Mjahed, M
In this work, we aim to construct a new set of variables, to recognize the number of jets produced in the e/sup +/ e/sup -/ events. These so-called morphological variables usually used in image processing and recognition problems, are comparable to the classical sphericity, aplanarity etc.. [...]
1999 - Published in : Nucl. Instrum. Methods Phys. Res., A 432 (1999) 170-5
10.
Momentum reconstruction and triggering suggested for the ATLAS detector / Dror, G ; Etzion, E
A neural network solution for a complicated experimental high energy physics problem is described. The method is used to reconstruct the momentum and charge of muons produced in collision of particles in the ATLAS detector. [...]
2001
In : 7th International Workshop on Advanced Computing and Analysis Techniques in Physics Research, Batavia, IL, USA, 16 - 20 Oct 2000, pp.67-9

没有寻找到什么? 尝试在以下的服务器查寻:
recid:590821 在 Amazon
recid:590821 在 CERN EDMS
recid:590821 在 CERN Intranet
recid:590821 在 CiteSeer
recid:590821 在 Google Books
recid:590821 在 Google Scholar
recid:590821 在 Google Web
recid:590821 在 IEC
recid:590821 在 IHS
recid:590821 在 INSPIRE
recid:590821 在 ISO
recid:590821 在 KISS Books/Journals
recid:590821 在 KISS Preprints
recid:590821 在 NEBIS
recid:590821 在 SLAC Library Catalog