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Abstract

Two aspects of neural-net analysis are addressed: the application of neural
nets to physics analysis and the analysis of neural nets. Feed-forward nets with
error back-propagation are applied to the search for the Standard Higgs Boson
at LEP 200. New methods to select the most efficient variables in such a classi-
fication task and to analyse the nets are presented. The sensitivity of the nets
for systematic effects is studied extensively. The efficiencies of the neural nets
are found to be significantly better than those of standard methods.

(Submitted to Computer Physics Communications)

1 Introduction

The search for new elementary particles is among the most important tasks in High
Energy Physics. In general events containing new particles are produced along with
a much larger number of conventional events. Hence an analysis looking for new phe-
nomena needs a filtering process intended to separate signal and background events.

In this study a traditional filtering method, using standard one-dimensional cuts,
is compared with a Neural Net (NN) approach in the search for the Higgs boson at
LEP 200. The following two mass hypotheses are chosen: 70 and 90 GeV/c?. The
lower mass represents the easier case because the signal is higher and the backgrounds
can be better discriminated. The higher mass is rather challenging since it is just below
the Z mass.

Standard feed-forward nets with one hidden layer and error back-propagation are
used. Emphasis is given to the selection of the best input-variables by analyzing their
utility inside the net. Systematic effects are studied in detail.

The physics case is discussed in section 2, followed by a description of the gener-
ation and the preselection of the input data. Section 4 is dedicated to the standard
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analysis based on one-dimensional cuts. Section 5 contains the technical details of
the net generation, like architecture and learning procedure, and a description of the
methods developed to analyse neural nets and to select the best input-variables. The
performance of the NNs in the Higgs search is demonstrated in section 6. Systematic
effects are studied extensively in section 7 in order to test the reliability of the methods.
Finally conclusions are given.

2 Higgs production and backgrounds at LEP 200

The Standard Model of Particle Physics [1] is the commonly accepted theory to explain
the interactions among elementary particles. This model predicts the existence of the
Higgs boson, H, responsible of the so-called Symmetry Breaking mechanism [2]. During
the last years the Large Electron Positron collider (LEP) at CERN, operating with a
center-of-mass energy (E.,) around 91 GeV (LEP 100), has performed a very intensive
Higgs search in the mass range 0 < my < 60 GeV/c? [3]. Unfortunately at present
no evidence of the Higgs boson has been found. However the second phase of LEP
(LEP 200), running at Ec,, = 170 — 200 GeV, will extend the search up to Higgs masses
around 90 GeV/c?. In this study a center-of-mass energy of 190 GeV is assumed.

At LEP 200 the neutral Higgs boson could be produced through the reaction:

ete" > H 7.

Its cross section at E., = 190 GeV is 0.82 pb for a 70 GeV/c? Higgs (Hzo) and 0.36 pb
for a Higgs with a mass of 90 GeV/c? (Hgo) [3]. A heavy Higgs (mpy > 15 GeV/c?), as in
the case considered here, decays predominantly into a quark-antiquark (¢g) pair. The
7 decays into hadrons (= 70%), charged leptons (= 10%) or into neutrinos (= 20%).
In this analysis only the most abundant decay channel will be considered, that is:

ete">HZ, H—qq, Z—4qq.

The physical backgrounds for this reaction along with their production cross sec-
tions are given in Table 1 [4].

3 Simulation and preselection

A fast Monte Carlo program of a LEP detector was implemented. This allows to
produce very high statistics event-samples for signal and background processes. The
simulation includes realistic numbers for momentum resolution and reconstruction ef-
ficiencies of charged tracks. The detector response for neutral hadronic and electro-
magnetic particles is also implemented. In addition, the detector ability to identify
electrons and muons is simulated, as well as the capability to detect secondary ver-
tices from heavy flavor decays. The parameters are tuned to achieve Higgs detection
efficiencies and background rejection with standard cuts similar to those obtained in
previous studies [4, 5].



Reaction Cross Section [pb]
Signal:

ete” — Hy Z 0.82

ete™ — Hgo Z 0.36
Backgrounds:

ete" > 77 0.6

ete” - WtW- 18.0

ete™ — qggg 90.0

Table 1: The cross sections for Higgs production at 70 and 90 GeV/c? and its main
backgrounds in the hadronic channel at E.,, = 190 GeV.

As already mentioned this work is focused on the hadronic channel, that is when the
Higgs and the accompanying Z decay each into a quark-antiquark pair. Subsequently
each of those quarks will generate a jet. In this analysis jets are reconstructed using
the LUCLUS algorithm [6]. Then only events with 4 or more jets are accepted. In
order to avoid contamination from channels with leptons in their final state, events are
required not to have electrons nor muons with more than 20 GeV energy. In addition
events with energetic (> 20 GeV) and isolated particles are not considered for further
analysis. A particle is considered isolated when its energy is more than 90% of the
energy of the jet it belongs to. Finally only events with a fitted Higgs mass (m};) in
a +5 GeV/c? window around the searched Higgs mass are selected (the fit algorithm
is explained in the next section). The number of events for the different samples left
after the preliminary cuts is listed in Table 2, normalized to an integrated luminosity
of 1000 pb~!. All results presented in this paper are based on this luminosity. It is
higher than what is expected but only one Higgs channel is considered and the results
can easily be scaled to other luminosities.

Reaction H-o Hgo
ete” — H70 Z 227 -

ete™ = Hgo Z - 115
ete" =277 28 135
ete” - WHW- 2774 844
ete™ — qqgg 2746 1010

Table 2: Number of events left for my = 70 and 90 GeV/c? after the preselection for
an integrated luminosity of 1000 pb~!.



Since the number of events for a process is given by the cross section times the
integrated luminosity the total number of events for each background (ZZ, WW, qq) is
600, 18000 and 90000, respectively (see Table 1). Many more events are used for the
analyses in order to lower statistical fluctuations. The results obtained in this study
are based on a production of about 80k ZZ events, 240k WW events, 800k ¢g events,
and 50k signal events.

4 Higgs search with standard cuts

The standard analysis is tuned for both Higgs masses (70 and 90 GeV/c?). The selection
criteria used are very similar but not identical as it is explained in the following.

The background with the highest cross section is efe™ — qggg . At this energy the
quark pair is often produced with a radiated energetic gamma. This kind of events
can be rejected by demanding no photon with more than 30 GeV energy (E},.). The
second cut against this background is based on the so-called thrust (T). This quantity
reflects the event isotropy: T = 0.5 means an isotropic event, while T ~ 1 indicates
a narrow back-to-back event. Higgs candidates are required to have a thrust smaller
than 0.9. Some of the background events left are found to have a large multiplicity.
They are rejected by applying the cut Ny < 40 (47) for Hzo (Hgo).

Additional cuts are based on secondary vertices from particles containing the b
quark. The Higgs boson decays predominantly into b quarks while backgrounds tend to
disintegrate into all quarks. In order to take advantage of this characteristic the number
of secondary particles (N,;;) is calculated. A particle is considered to be a secondary,
if the distance between its origin and the main vertex is larger than three times the
spatial resolution of the detector. The total invariant mass of all secondaries (m,yy)
is also calculated. A large fraction of the background is then rejected by demanding
Noss >4 and m,s; > 10 GeV/c2

Since a topology with four jets is searched for, all events are forced into four jets.
Then a mass fit procedure [7] is applied with two hypotheses: HZ, with the Higgs
mass as a free parameter, and WW. From the first hypothesis the fit quality, x},
and mJ; are obtained. While the second only provides the fit quality x3yy,. The WW
background is further suppressed by demanding x¥w — x%; < 0.5 (3.0) for the Hzo
(Hgo) analysis.

When the event is fitted with the Higgs hypothesis, two of the four jets are assumed
to come from the Higgs decay. The number of secondaries, fo s» should be high if those
jets come from a Higgs decay, as explained above. Therefore the requirement Ng' §>9
is applied to further reduce the background.

The number of events left for the signal and the different background sources are
shown in Table 3 for the two Higgs masses considered.

The efficiency of a given analysis can be measured by the statistical significance
defined as: N,=N,/v/Ny, where N, (N,) is the number of expected signal (background)
events. The minimum luminosity for discovery is defined as the luminosity for which
the statistical significance is five. These two quantities are also shown in Table 3.



Reaction H~o Hgo
ete” - H70 Z 60.5 -

ete™ — Hgo Z - 38.0
ete™ — qqgg 22.3 11.9
ete” - WtW- 25.0 11.8
ete” - 77 1.4 11.4
Total background 48.7 35.1
Statistical significance 8.7 6.4
Min. luminosity [pb™] 330. 610.

Table 3: Signal and background events left after applying the standard cuts, statistical
significance, and minimum luminosity for both masses. The statistical significance is
the signal divided by the square root of the background. The minimum luminosity is
defined as the luminosity for which the statistical significance is 5.

5 Generation and analysis of NNs

5.1 Network layout

Throughout the whole study simple nets with one hidden layer and one output neuron
are used. The neurons have a sigmoid activation function. The inputs to the nets are
the values of the selected variables normalized to the interval [0,1]. The number of
hidden neurons (Nj;q) is about half the number of input neurons (N;,) in case of more
than 15 input neurons and N;, — 1 else. A cut is applied to the value of the output
neuron: events below the cut are regarded as background, the other ones as signal.
The cut is chosen such that the statistical significance is maximal.

5.2 Learning procedure

The nets are trained with a mixture of events from the three different background
samples and from the signal. The output values 0 and 1 are demanded for background
and for signal events, respectively. The weights are adjusted with the well-known error
back-propagation algorithm. A description of such NN training can be found in [8].

The learning data are selected applying the preliminary cuts described in section
3 except from the cut on the fitted mass mJ;. The elimination of this cut does not
diminish the learning capability and it allows to train mass-independent nets. Like in
a previous NN study [8] the best performance is found using twice as many background
as signal events. As shown in Table 2 almost the same number of ¢¢ and WW events
is left after the preselection, whereas the number of ZZ events left is much smaller. In
order to train all three background classes reasonably well the backgrounds ¢q, WW,
and ZZ are mixed in the ratio4:4:1.



Reaction Number of events
ete” — H70 Z 4500

ete” — Hgo Z 4500

ete™ — Hgg Z 4500

Total signal 13500

ete™ — qqgg 12000

ete” - WTW- 12000 -
ete" - 77 3000

Total background 27000

Table 4: Number of events from each subgroup used for learning.

Like in the case of kink recognition [9] the performance of the nets is slightly better
if they are trained with a mixture of masses (or energies in the case of the kinks) and
not for each mass separately. One single net can be trained for the whole mass-range
between 70 and 90 GeV/c? by mixing signal events of different masses in the same
proportions. Very satisfactory performance is achieved with signal events from mpy
= 70, 80 and 90 GeV/c?®. In agreement with other NN applications in High Energy
Physics a few 10* events are needed for optimal training. About 4 10* events are
necessary here (see Table 4).

Table 5 contains the statistical significance for nets with 7 and 10 input variables
trained for each mass separately (sep) or with a mixture of signal events from mpy =
70, 80 and 90 GeV/c? (mix).

N,‘n Learning H70 Hgo

7 sep 12.3 7.9

mix 12.6 8.0
10 sep 12.6 8.2
10 mix 14.2 8.4

Table 5: Statistical significance at my = 70 and 90 GeV/c? for nets with 7 and 10
input variables trained with signal events from the same mass (sep) or with a mixture
of signal events from different masses (mix).

A comparison of the performance between the mass-independent net (mix) and the
mass-dependent nets (sep) at my = 75, 80 and 85 GeV/c? shows similar results. Hence
only the mass-independent nets are used in the following. This is a big advantage over
the standard method where the cuts have to be adjusted to each mass for which the



search is carried out.

5.3 Network analysis

There exists a variety of methods to analyse NNs during the learning in order to
optimize the layout (number of hidden neurons, connections, etc.). But the best ar-
chitecture for simple classification tasks can usually be found with a few trials. The
challenge in physics analysis is to understand the functioning of the already trained
net.

5.3.1 Partial derivatives

The partial derivatives of the NN output with respect to the input variables are a
powerful tool to analyse a NN [10]. This method has to be adapted to the special
requirements of a particle search. The basic ideas are described in this section.

The state (activation) of a neuron in a standard feed-forward net is a continuous and
differentiable function (the so-called activation function) of the state of the neurons in
the preceding layer (see e.g. [8]). This means that also the state of the output neurons
S¢t is a continuous and differentiable function of the state of the input neurons (i.e.
of the input variables) Si*. Hence the partial derivatives of the output neurons with
respect to the input neurons (952**/0S!") exist. They measure the sensitivity of the
output k for changes in the input 1.

The calculation of the derivatives is straight forward. The frequent case of feed-
forward nets with one hidden layer and connections only between the input neurons
and the hidden neurons and between the hidden neurons and the output neurons is
described in the following. It can easily be extended to more complicated nets.

For convenience the input neurons are labelled with i, the hidden neurons with j,
and the output neurons with k. S denotes the state of a neuron and B its bias input.
W;; is the weight of the connection between input neuron i and hidden neuron j, W,
the weight between hidden neuron j and output neuron k. The activation function is
called f. It describes the state of a neuron for a given input I: S = f(I).

The states S; of hidden neuron j and Sj, of output neuron k are obtained by summing
over their inputs

S;=fO-SWi+B;), Se=f(Q_SiWik+ Br) .
g J

Substituting the left equation into the right one and differentiating with respect to S,
or using directly the chain rule g_?f =3, g—gfg—;% yields

=Y SIW Wik (1)
J

The sum runs over all hidden neurons j. S’ is the total derivative of S. If the sigmoid
function is chosen as activation function, i.e. S(I) = (14 e~f)~!, then the derivatives
S’ have the simple form §' = S(1 — S). Fig. 1 shows the sigmoid function f(x) (a) and
its first, second, and third-order derivatives versus x (b) and versus f(x) (c).
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Figure 1: The sigmoid activation-function f(z) = (1 + e™*)~" (a) and its first (full
line), second (dashed line), and third-order derivative (dotted line) versus x (b) and
versus f(x) (c).

Eq. (1) has an interesting form since the change of output k caused by a small
change in input i is factorized into two terms. The first one, S}, depends only on the
output and the second one, the sum over the hidden neurons j, only on the hidden
layer. This weighted sum over the derivatives of the states of the hidden neurons is
called hidden sum in the following.

Eq. (1) can easily be extended to higher orders. For the sake of simplicity only the
second order is given here. It reads

9%y

—'—asas = S;/c/ Z S; ‘/V,']'M/jk Z S; I’V,’/j I’V]'k + Si Z S;/"'V,'J' "Vi’j I/ij . (2)
Bl j J J

S" denotes the second-order derivative of S. The diagonal terms of the second and of
the third order are

0%Sk

55—2 = Z(Z S;I/V,'j I/ij)z + S,’c Z S;"’Vlzj W]‘k (3)
1 J J
and
aSSk " ! 3 " AP "nyyr2 ! myxr3
553 = Si (32 SiWiiWin)* +3 Sy 30 SiWeWis 3 STWE Wi+ S, 30 ST WiEWie . (4)
¢ J J J J

The similarities between the diagonal terms of order n can easily be seen from the
above equations. The first and the last terms have the form

SENY S;WuWie)" and S, 30 SMWEW
J J

respectively. S(®) is the derivative of S of order n. Terms with sums over powers of W;;
are suppressed in our application since most of the weights W;; are smaller than 1. On
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the contrary the weights W, are generally bigger than 1. Hence the partial derivatives
are dominated by the first term.

These features are demonstrated for the NN with 10 variables (Njo) at mg = 90
GeV/c? (see section 6). Fig. 2 shows the sums of the first (a), of the second (b), and
of the third-order partial derivatives (c) of each event versus the output. These sums
run over all input variables (D, = 3, 9"S,/9S?).

72 3 1200

D,
D.

600

0.5 1
Output

Figure 2: Sums of first (a), second (b), and third-order partial derivatives (c) versus
the output for Nig at mg = 90 GeV/c%

The shape of the plots follows nicely the shape of the derivatives of the activation
function (fig. 1c), except from fluctuations for small mean-values and from the sign of
the first and of the third-order derivatives.

5.3.2 Zero point

The difference in the sign of odd-order derivatives can easily be understood. Whether
an increase of the inputs increases or decreases on average the output depends on
the zero point (or bias output) of the net. This is the output of a net if all inputs
vanish. Therefore it depends only on the bias inputs of the hidden and of the output
neurons and on the weights between the hidden and the output neurons. For the net
shown above the zero point is 0.98 . Hence an increase of the inputs tends to decrease
the output. Nets with a small zero point do not change the sign of the odd-order
derivatives. The zero point is usually near the edges because NNs are more stable near
saturation than in the central output-region.

5.3.3 Hidden sums

In order to understand the good agreement between the shape of the partial derivatives
in fig. 2 and the output derivatives in fig. lc, the second term in the expression of the
partial derivatives in eq. (1), the hidden sum

yhid — Z SIW; Wik (5)
J
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has to be studied in more detail. This sum plays an important role in understanding
systematic changes in the inputs, like shifting or smearing. Using eqgs. (1) and (5) the
change of the output Sk induced by a small change AS; of the input S; is given by
0Sk
dS;
If correlations and non-linear effects are ignored then the effect of systematically chang-
ing the inputs onto the output can be estimated by combining the contributions of
each input variable. For shifts the changes have to be added linearly and for smearing
quadratically. Of special interest are worst-case shifts where all changes A;Si have
equal sign.

Defining the absolute hidden-sum

Ezbs — Z lAStE%‘ﬂ = Z |AS, Z S;VVUWJ” (7)
J

A Sk =

AS; = S.THIAS, | (6)

1 1

and the quadratic hidden-sum
£ =[S (ASTh) = \/E(Asizsgw,-jwjk)? 8)
[ ! 7

allows to express the effect of worst-case shifts in the form

ASM = £ 3 |AS] = £5,51 (9)

and smearing in the form

AS = [ (ASK)? = S E (10)

The basic features of a NN can be studied by uniform smearing and shifting (a test
with more realistic input changes based on an error estimation of each variable shows
qualitatively no difference). For convenience |AS;| = 1 is chosen in the following.

The partial derivatives and hidden sums are studied now as function of the output
Sk. The whole output-range [0,1] is divided into 100 intervals (bins) and mean values
are calculated by averaging over the contributions of each event with an output in
the same bin. The mean values of the hidden sums of each variable, £%? have a
rather strong dependence on S;. However the mean values of the absolute, £¢**, and
the quadratic sums, ¥;7, depend only weakly on Sk (at least for the nets used in this
study). This is illustrated in fig. 3a for £2** and in fig. 3b for £}’ using the net Nyq at
my = 90 GeV/c2

This means that the shape of the dependence of the partial derivatives from the
output is determined by the shape of S}, the derivative of the output. The mean value
of the hidden sum can in good approximation be considered as constant scaling factor.

In order to show the spread of these hidden sums in relation to the value of the
derivatives two scatter plots are included in fig. 3 : the sum of the absolute value
of the partial derivatives of each event (c) and the partial derivatives of each event
summed quadratically over the inputs (d) versus the output. The distributions of the
hidden sums are almost flat apart from edge effects for small outputs which are strongly
suppressed by S;. Hence the scatter plots have the shape of Sj.
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Figure 3: Mean values of the absolute (a) and of the quadratic hidden-sums (b) and
scatter plots of the corresponding first-order partial derivatives (c,d) versus the output
for Nio at mpy = 90 GeV/c2.

5.4 Variable selection

The importance of variables is often estimated by analyzing their distributions and
correlations. Since NNs are non-linear and since they learn to correlate their inputs in
such a way that their output is optimized it seems to be natural to take in the selection
of the input variables the special features of NNs into account. This can be done very
efficiently by stepwise elimination of the weakest variables found with a combination
of the following three tests:

1. Partial derivative:
The partial derivative of the output with respect to an input is a measure of the

sensitivity of the output against small variations in the input. The mean value (over
a test sample) of the partial derivatives for an input serves therefore as first selection
criterion.

As explained in the previous section the partial derivatives depend strongly on the
output value. The mean value of a first-order partial derivative is therefore dominated
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by the central output-region. The power of a variable near the edges can be evaluated
with the second-order derivative which is positive in the first half of the output interval
and negative in the second half. Since background events cluster in the first half and
signal events in the second half the difference in the mean values of the second-order
derivatives between background and signal events measures also the discrimination
strength of a variable. For the Higgs search it turns out that the second order is well
suited at the beginning of the variable selection but less powerful than the first order
towards the end of the selection process. Therefore only the first-order derivative is
used here.

2. Mean value:

Some variables have small partial derivatives but important correlations with other
variables. Hence a complementary test is necessary to avoid the elimination of such
very useful variables. It is inspired by an observation about missing inputs made in an
application of NNs for kink recognition [8]. In that case the inputs are the residuals of
a track fit to measured coordinates. These inputs are only weakly correlated for small
kinks and it is found that the input corresponding to a missing coordinate can be fairly
well substituted by 0, i.e. by its mean value.

To evaluate the correlation power of a variable a test is made where the actual value
of the variable is replaced by its mean value. The decrease of the statistical significance
measures the importance of the variable.

3. Correlations between partial derivatives:

The third test aims to eliminate highly-correlated variables. Since a NN builds
up (during training) its own correlations between the inputs it is necessary to study
the correlations in the output and not simply in the input. This can be done via
the second-order partial derivatives or more efficiently by calculating the correlations
between the first-order partial derivatives.

A variable is considered bad if the absolute value of the mean of its partial derivative
is small and if the mean-value test shows a small decrease in performance. Among
variables with strongly-correlated partial derivatives only the best one is kept.

The tests described above measure the importance of a variable in a given NN but
not necessarily for the classification task itself. A variable with rather poor test-results
might perform much better in a net with less inputs. It is therefore very important
to eliminate only the worst variables, to retrain with the reduced variable set and to
test again. In this study about a quarter of the variables can be eliminated in one step
between 45 and 10 variables. Then the elimination task becomes much harder.

6 Higgs search with NNs

In order to evaluate the potential of NNs in the Higgs search a net with 45 variables
is trained using a 45—22—1 layout. The emphasis of this exercise is not to achieve the
optimal result by fine-tuning of the layout and of the learning procedure, but to obtain

12



sort of an upper limit for NNs with a reduced number of input variables.

With the methods described in the previous section the number of variables (input
neurons) can be reduced to 10 without losing much in statistical significance for the
90 GeV/c? mass. For the lower mass the loss of statistical significance is much more
pronounced. This is due to the higher correlations inside the net. In this context
high correlation does not mean that the variables are highly correlated (in which case
the elimination of some correlated variables would not diminish the performance sig-
nificantly). It rather means that more variables are nearly half-correlated (correlation
coefficient & + 0.5). The performance drops significantly for both masses if the number
of variables falls below six.

The results for both masses are listed in Table 6 for several nets with N;, input
neurons and Nj;; hidden neurons. Nj;4 of the two biggest nets is not optimized, but
the layouts represent an educated guess for fairly good performance (cf. [11]). The
other nets have the optimal number of hidden neurons.

Nin Nhrid H~o Hgo
45 22 19.1 8.7
20 10 15.8 8.7
15 14 15.5 8.7
10 9 14.2 8.4
9 8 13.2 8.4
8 7 13.2 8.2
7 6 12.6 8.0
6 5 10.9 3.0

Table 6: Statistical significance as function of the number of input variables for both
masses.

In the following the nets will be referred to by their number of input neurons. Ny,
for example, specifies the net with 10 inputs.

The 10 most efficient variables are the following in decreasing order of importance
(the positions 2 and 3 are interchanged for the search at 70 GeV/c?):

1. Number of secondary tracks (N,yy).

2. x* when the event is fitted with the HZ hypothesis (x%z)-
3. Energy of the most energetic gamma (E7,,..).

4. Number of charged tracks (Ny.x).

5. Thrust (T).

6. x? when the event is fitted with the WW hypothesis (v#,1).
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7. Invariant mass of all secondary tracks (moyy).
8. Sum of the angles between the jets if the event is forced into three jets (Sy).

9. Momentum of the most energetic electron (P%,,.).

maxr

10. Number of secondaries in the Higgs jets when the event is fitted with the HZ
hypothesis (fof).

These variables are the inputs for Njg. The inputs to the smaller nets N,, are the
variables 1 to n of the list.

In compromising between the number of input variables and the performance two
nets from Table 6 are chosen for further study. The net with 10 inputs (Nyo) for high
performance and the net with only 7 inputs (N7) but still good performance.

A comparison with section 4 shows that all variables used in the standard analysis
are contained in the list above. There are two new variables: Sy (8) and P¢ . (9).
Adding them to the standard analysis does not improve the statistical significance. To
allow for a direct comparison between the conventional and the NN analysis, a net is
trained with the 7 variables used in the standard analysis (Ng). 6 hidden units are
used and the same learning procedure is applied as for the other nets.

o 16 o 10 2
2 70 GeV/c? g 90 GeV/c
3 ) S 8
»g 12 <Ly = X
5 : :
o u » o7 )
8 ! :
s ;
:I :l
Al "
¢ : 2r i
i ]
pl ]
O 1 | BT 1 1 o | s 1 1 .
0 0.2 04 06 038 1 0 0.2 4 06 0.8 1
Cut Cut
(a) (®)

Figure 4: Statistical significance at mpy = 70 GeV/c? (a) and my = 90 GeV/c? (b) for
N,: (dotted line), N7 (dashed line) and Nyo (full line) as function of the output cut.
The result of the standard analysis (horizontal line) is included for comparison.

Fig. 4 shows the statistical significance of the three nets as function of the cut on the
output for both masses. At least two background events above the cut are demanded
to avoid big statistical fluctuations. The threshold at 0 is due to the preselection. The
statistical significances raise almost linearly with the cut, reaching their maximum
around 0.9.

The number of accepted signal and background events of the three nets and the
statistical significance are shown in Table 7 and 8 for the analysis at 70 and 90 GeV/c?,
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Reaction Cuts N N~ Nio
ete™ — Hyo Z 60.5 29.5 23.6 40.9
eTe = qdeg 2.3 24 1.9 3.7
ete” - WtW- 25.0 3.2 1.4 4.0
ete” - Z 7 1.4 0.4 0.2 0.6
Total background 48.7 6.0 3.5 8.3
Statistical significance 8.7 12.0 12.6 14.2
Min. luminosity [pb™*] | ~ 330. 174. 157. 124.

Table 7: Signal and background events left for standard and NN analyses at mg = 70
GeV/c? and their statistical significance.

Reaction Cuts h\pe N, Nio
ete™ — Hgo Z 38.0 30.5 26.4 22.0
ete™ — qqgg 11.9 5.0 3.0 1.1
ete” - WtW- 11.8 3.9 2.6 1.6
ete" - 717 11.4 6.6 5.3 4.2
Total background 35.1 15.5 10.9 6.9
Statistical significance 6.4 7.7 8.0 8.4
Min. luminosity [pb™!] 610. 422. 391. 354.

Table 8: Signal and background events left for standard and NN analyses at mpg = 90
GeV/c? and their statistical significance.

respectively. The cut on the NN output is chosen such that the significance is maximal.
The results of the standard cuts (Table 3) are included to ease the comparison.

The NNs show a significantly higher performance than the standard method. The
difference between them is considerably higher at mgyg = 70 GeV/c?. This can be
explained by the higher correlation between the variables (cf. Table 6) which favours
the NN technique over the standard method based on independent cuts.

The nets can be further analysed in order to better understand this behaviour. Njg
at 90 GeV/c? is chosen as typical example. The output distributions of background (a)
and signal events (b) are shown in fig. 5. Since the statistical significance is calculated
from the number of events above the cut the output distributions have to be integrated
from right to left. Fig. 6 contains the number of background (a) and signal events (c)
and the square root of the number of background events (b) above the cut. The shape
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of the distributions in fig. 6b and 6¢ explains the almost linear raise of the statistical
significance with the cut in fig. 4.
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Figure 5: NN output for background (a) and signal events (b) with Njg at mg = 90
GeV/c2.
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Figure 6: Number of events above cut for background (a) and signal (c) with Ny at
my = 90 GeV/c?. The curve in the middle (b) is the square root of the number of
background events above cut.

7 Systematic effects

The results presented in the last section were obtained under the assumption that the
learning data and the test data are qualitatively exactly the same. In this case the
errors on the results arise only from statistical fluctuations in the test data sets due
to the limited number of events. Now the question of systematic effects, i.e. effects
coming from qualitative differences between the training data and the test data, is
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addressed. This is a crucial problem for the analysis of real data if the NNs are trained
on simulated data.

7.1 Changes of the input

Systematic effects are studied by shifting and smearing the input variables and by
changing parameters of the data simulation program. The nets are not retrained and
the same cuts are applied as before for the unbiased samples. The statistical signif-
icances are calculated from the evaluated signal and the expected background. The
expected background is the number of background events obtained with the unbiased
data. The signal is evaluated by adding the number of accepted signal and background
events for the biased data and by subtracting the expected background.

The variables used in the standard analysis are normalized to 1 now in order to
ease the comparison with the NNs.

7.1.1 Shifting

The robustness of the methods against systematic shifts in the input is checked first.
The shift of a variable is called positive if the number of accepted events increases
and negative if this number decreases. The biggest effects are obtained if the shifts of
all variables are either positive or negative (worst-case shifts). In these cases shifts of
about 0.002 are tolerable for the standard and the NN methods.

7.1.2 Smearing

Now the input variables are smeared randomly by adding a normal-distributed value
with mean 0 and root mean-square (rms) between 0.01 and 0.05. A change in statistical
significance of about 1 is observed with rms = 0.05 for the standard method and with
rms between 0.02 and 0.05 for the NNs. In the standard method the cut of each variable
is chosen such that the distribution of the variable around the cut is fairly flat. For the
NNs the cuts on the input variables are chosen implicitly by the net as function of the
learning and of the cut applied to the output neuron. It is therefore not astonishing
that the conventional method has an advantage in this respect. As explained in section
5.3 the total effect of shifting or smearing can approximately be decomposed into the
contributions from each input (eqs. (9) and (10)).

7.1.3 Changes in the simulation

The parameters controlling the detector resolution and the energy scale are modified
in order to study systematic effects. Firstly changes improving and worsening the
resolution of the momentum of charged tracks and of the energy of neutral showers by
roughly 25% are introduced. Then the energies and momenta are shifted systematically
by +5%, +10%, -5%, and -10%.

In all cases and for both methods the changes of the statistical significances are not
bigger than about 1.
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7.2 Analysis of the results

So far the cut for the systematics tests was set such that the statistical significance
is maximal for unbiased data. Now the differences of the statistical significances are
studied as function of the output. Again Njo at 90 GeV/c? is chosen as example.
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Figure 7: Changes of the statistical significance due to shifting (a) and smearing (b)
of input data with Njp at my = 90 GeV/c?. The full line represents the statistical
significance for unbiased data. The results of positive and negative shifts are shown as
dashed and dotted line, respectively, and the effect of smearing as dashed line.
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Figure 8: Changes of the statistical significance due to modifications in the Monte
Carlo: detector resolution (a) and shifts in particle energy and momentum (b) with
Nio at my = 90 GeV/c?. The statistical significance for unbiased data is shown as full
line, for improved resolution and positive shifts as dashed line, and for worse resolution
and negative shifts as dotted line.

Fig. 7 shows the effect of worst-case shifts of £ 0.002 (a) and of smearing with rms
= 0.02 (b). The influence of the modifications in the simulation program can be seen
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in fig. 8 for the changes in resolution of £25% (a) and for the shifts of energies and
momenta of + 10% (b).

The differences between the unbiased and the biased samples are mainly due to
changes in the background samples since the background density is much higher than
the signal density over a large range of the output (see fig. 5). The big differences at
small cuts in fig. 8b come from the preselection of the data. The shifts increase and
decrease the number of accepted ¢¢ background events by 13% to 14%, respectively.
This leads to a higher number of events with small NN output for positive shifts and
to a smaller number for negative shifts. Hence the background is underestimated
in the first case and overestimated in the second case. An underestimation of the
background means an overestimation of the signal and vice versa. The estimated
statistical significance is therefore too high for positive shifts and too low for negative
shifts. The influence of the preselection becomes smaller for harder (higher) cuts.

The explanation for lower statistical significance by increased resolution in fig. 8a
is analogous. Higher resolution leads to a better background rejection and therefore to
an underestimation of the signal.

The regular behaviour for smearing and shifting needs further explanation. The
distributions shown in fig. 5 and 6 are quite smooth apart from edge effects. Since
the sigmoid function is smooth too, the output changes only slowly if the inputs are
slightly changed. The effect of input smearing onto the output is shown in fig. 9 for
Nio at 90 GeV/c?. The differences in the output between unbiased and smeared inputs
(rms = 0.02) are plotted for 3 unbiased output values: 0.1 (a), 0.5 (b), and 0.9 (c).
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Figure 9: Effect of input smearing onto the output for unbiased output values of 0.1
(a), 0.5 (b), and 0.9 (c) with Njp at mpy = 90 GeV/c?.

The differences in the widths correspond to the differences in the derivative of the
activation function at these points. The shape of the distributions on the left and on
the right side is asymmetric. This is due to the asymptotic behaviour of the activation
function which makes it harder to push an output into the direction of saturation than
into the opposite direction.

As explained in section 5.3, arguments based on the derivative of the output are
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only valid if the hidden sum is fairly independent from the output. Therefore a final
test is made with a net which does not fulfil this condition. This is the case for the NN
with 10 inputs specially trained for the 70 GeV/c? mass (N{7). Since the hidden sums
are smaller around the cut, stronger systematic changes as before are applied: shifts
of 0.005 and smearing with rms = 0.05. The results are summarized in fig. 10. Since
the absolute (a) and the squared hidden-sum (b) decrease significantly with increasing
output-values the differences in statistical significance between biased and unbiased
data become smaller at higher cuts (c,d). But the smaller sensitivity for input changes
has the disadvantage that the statistical significance is reduced too. The difference in
statistical significance between this robust mass-dependent net and the corresponding
mass-independent net (trained with a mixture of signal events from different masses)
is rather big: 12.6 compared to 14.2 (cf. Table 5).
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Figure 10: Distributions for unbiased and biased inputs with Nig at my = 70 GeV/c%.
a) Mean value of the absolute hidden-sum versus the output for unbiased inputs.

b) Mean value of the quadratic hidden-sum versus the output for unbiased inputs.

c) Statistical significance for unbiased and for shifted inputs.

d) Statistical significance for unbiased and for smeared inputs.

The results for unbiased data are represented by full lines, for positive and negative
shifts as dashed and dotted line, respectively, and for smearing as dashed line.
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7.3 Recognition of systematic effects

Although the results are fairly stable against systematic changes of the input data it
is necessary to recognize significant differences between the training and the test data.
The most obvious method is to check the distributions and correlations of the input
variables. This can be done very efficiently with NN techniques [12].

Another possibility is to analyse the performance of the net by comparing the partial
derivatives and their correlations for the learning and the test sample. In addition the
significance distribution (statistical significance as function of the cut) is quite sensitive
to systematic changes as shown above.

Differences in the composition of the background can further be studied with a
special NN trained to discriminate between the different backgrounds. It has the same
architecture and inputs as the nets described above for the classification into signal and
background except from the output. Now the output layer consists of three neurons
and the net is trained to answer 1 0 0 (i.e. 1 for the first output neuron and 0 for the
other ones), 0 1 0 and 0 0 1 for the three background groups. Since the number of
signal events is much smaller than the number of background events and since the ZZ
background is rather similar to the signal it is better not to try to discriminate four
classes of input events. This net detects changes in the composition of the data fairly
well.

7.4 Choice of the optimal net and cut

The results of the systematics studies described above indicate that the NNs react
smoothly towards small systematic changes in the input. Some nets are less sensitive to
rather artificial changes, like uniform smearing and shifting, but they are in general less
efficient than the more sensitive nets. This is quite understandable, since the sensitivity
of the output for changes in the input is a drawback for systematic effects but necessary
for the classification task. The differences in statistical significance between unbiased
and biased test samples are smallest for high output-values where also the statistical
significance is optimal. Therefore the cut has to be applied at the output value with
the highest statistical significance.

The choice of the net has to take into account the statistical significance and the
set of input variables. Because some of the variables are easier to control than other
ones the final selection has to be based on a careful comparison of the Monte Carlo
data used for training and the measured data. Since the operation of LEP 200 is still
some years ahead this final step cannot be done yet.

8 Conclusions

Very simple NNs with about ten inputs and one hidden layer show very high perfor-
mance in the search for the Higgs boson at LEP 200. The most powerful input-variables
are selected by a new technique, mainly based on the partial derivatives of the state
of the output neuron with respect to the state of the input neurons. This method has



the advantage over others that the special features of a NN are properly taken into
account in the evaluation of the utility of an input variable.

The statistical significance of the NNs is more than 60% higher than that of standard
cuts for a Higgs mass of 70 GeV/c? and more than 30% higher for a Higgs mass of
90 GeV/c?. This means in terms of luminosity that the NN method needs 62% (42%)
less events to reach a statistical significance of 5 for a mass of 70 (90) GeV/c%. In
addition the nets are mass independent because they are trained for the whole mass-
range between 70 and 90 GeV/c?. Therefore and since the nets a quite small the
learning effort for extended searches is modest.

A detailed study of the sensitivity of the nets towards systematic effects in the input
data shows no significant difference between the NNs and standard cuts.

Neural nets offer also a fast and convenient way to estimate the potential of a
physics analysis since many variables can be used and the cuts are learned by the net
during training. After analysis of such a net and reduction of the variable set one-
dimensional cuts can easily by determined from the distributions of the input variables
of the accepted events.
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