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1 Introduction

A wide class of problems exists, where it is necessary to assign certain values to
some group of variables that mutually satisfy to given constraints. Such a class of
the problems is known as Constrain Satisfaction Problems (CSP) [1]. For example,
among CSP there is a problem of schedule generating. The next CSP is known in
combinatorics: there are given both the set of elements S = a;,as, ...ay and the
set of its subsets Sq = 51,5, ...Sy. It is necessary to choose from each subset
S; i =1, M only one element different from others.

The most famous in the latter class is so-called N —queens problem: to allocate
N queens on an N x N chessboard, one on each row, so that no queen threatens
another.

As it’ll be shown below in the next section, the track-match problem of high
energy physics (HEP) can be also reduced to a CSP.

We consider CSP’s in the following general formulation [1]:
The set of variables X7, ...Xy is given. Each variablle X; can take only certain
values d;; from the finite domain

D; =dy, .. .dipg

A number of constraints is given explicitly as the prohibition of certain X; and
X} pairwise combinations C(X;, Xi). If, for instance (di3,das) € C(X1, X;) then it
can mean

)&’1 ?,\é d13, when X2 = d24

A CSP purpose is to assign values from D; to all variables X; 7 =1, N without
any transgression of C'(X;, Xi).

The main problem of CSP solving by a conventional search algorithm is the
enormous computer time consumption. In particular, N--queens problem can’t
be solved in reasonable time on serial computers already, when N > 97. A more
complicate example relates to the generating of the half-year activity schedule for the
satellite called ROSAT (Roentgeen Satellite). The solving of this problem by the
method based on mathematical optimisations required about 30 hours of a serial
computer. However, a new approach using a special type of an Artificial Neural
Networks (ANN) was succesfully applied to solve this problem on the same computer
in 1 minute [1]. This approach allows to solve the N —queens problem for N = 1024
in about 10 minutes.

Such encouraging results stimulated us to develope a new approach of an exter-
nal influence into a Hopfield ANN [2] dinamics in order to control its evolution in a
desirable way, mainly to avoid sticking into local minima of this ANN energy func-
tion. As the first relatively simple application of our approach we chose the solution
of the famous HEP track-match problem. This ANN application is considered in
this paper.



2 Binary adjusency matrix construction

The track-match problem arised originally as a part of the general problem of the
reconstruction of space trajectories of charged particles on the basis of their projec-
tions measured in several views [3]. At least two views are necessary to the autentive
space reconstruction, which is carried out by a set of physical and geometrical crit-
era testing for each pair of views their compatibility in space. However, if the event
multiplicity (the number of secondary tracks) are greater than 15, the combinatorics
of all pairs to be tested are so numerous that any conventional algorithm based on
the sequentional search would be too time consuming.

The analogous track-match problem arised in many HEP experiments, when it’s
necessary to identify the group of tracks with their continuations after intersecting
some "black box” (for example, magnet, see fig. 1).

—

fig. 1
In both examples track-matching procedure consists of two steps:

1. Each input track is tested to be appropriate to each output track by some
set of physical and geometrical tests . As the result one obtaines the list
of pairwise track combinations to be tested (for example, some track before
magnet with some one after).

Let us consider an example of two possible lists of track pairing:
list @)  (1,1)(1,2)(2,1)(2,2)(3,3)(4,4)(4,5)(5,4)(5,5)

for another event

list b) (1,1)(1,2)(1,3)(1,4)(2,1)(2,3)(3,1)(4,1)

where the first element in each pair is the track number before magnet and
the second element is the track number after magnet.

For the event with a large number of tracks the number of pairs in such lists
can be much greater than the event multiplicity because of the changes of
track ordering before- and after magnet and of errors of the track recognition.

9. The subset of one-to-one-correspondending pairs is extracted from the ob-
tained list in such a way that the number of pairs in this subset must be equal
to the number of the tracks of the event.



One can sec that for the list a) it is possible, for example (1,2)(2,1)(3, 3)(4.5)(5,4).
However, for the list b) it is impossible, as maximum number of the tracks with
one-to-one-correspondence is equal to 3, but the number of the tracks in the event
equals 4: (1.2)(2,3)(3.1) or (1,2)(2.3)(4.1).

Let us formulate this matter in terms of binary matrices called in graph theory
as adjucency or incidency matrices [4].

Consider the track numbers before magnet as the number of a matrix columns
and the track numbers after magnet as the matrix row numbers. If in the list of
pairs constructed on the first step of the track-match procedure there is a pair (i, j),
then we have to place 1 on the intersection of ¢ — th column and j — th row of
matrix. The other elements of the matrix are equal to 0. This binary matrix is in
one-to-one-correspondence to the list of pairs.

Therefore, the second step of the track-mateh procedure can be formulated as
follows: for cach row of the constructed adjucency matrix only one non-zero element
must be extracted so that all these elements are lyeng on different columns of tne
matrix.

On the chess language this problem can be formulated as follows: some number of
rooks are placed on a chesshoard without empty rows. One should remove some of
rooks leaving one on each row, so that no rook threatens another.

Unlike to N—queens allocation problem, this problem is not always soluable.
Besides, since rooks don’t threaten by diagonals like queens. the number of variants
of their allocations on a chessboard is much greater that leads to increasing search
attempts.

3 Controlled neural networks

It is clear that the problem formulated above belongs to the class of CSP. For
solving this problem let us construct a Hopfield's neural network (HNN) [2], i. e.
a system of mutually connected binary elements (neurons), which connections are
characterized by synaptic efficacies (weights). .

As Hopfield proved 2], if an HNN-weight matrix is symmetric with zero diagonal,
then the energy function of this neural net is decreasing for arbitrary HNN-dynamics
being attracted to one of local mininia.

Therefore, we have to define

® neurons

topology of their connections

weight function

e energy function

HNN dynamics rules



To deal with terms of incidency matrices invented in the provides section, let us
consider only non-zero elements of such a matrix. These elements Uy; can be chosen
as binary neurons with two possible states:

- Uy =1 (neuron is firing or active), if the rook is placed on the cross of i—th row
and j—th column;
— U;; = 0 (neuron is non-active), if one removes the rook from its place.

The HNN topology is simple: each neuron is connected with each other.

The weight function selection should guarantee that no rook threatens another
for their given dislocation, i. e. weights must support (=1) permitted connections
and punish (be strongly negative) connection indicating the threat between two
rooks. According to the general HNN requirements the diagonal elements of the
weight matrix must be equal to zero. Thus for an N * N matrix one has

0 if i=m & j=n

| _ 1 if iFm & j#n
Wx],mn - _4*N lf i:m & j#?l (1)
—4*N if i#Fm & j=n

The value of the local field generated by HNN in the neuron Ujj is determined by
the standard formula [2]

N
Iij - Z Wij,an[mn
This defines the easiest stepwise function of HNN dinamics. The state of each neuron
changes asynchronously
1 if ;>0
J— ' i 9
Y {0 of I; €0, 2)

where 8 is the chosen threshold constant.
The HNN energy function is defined also in the standard way [2]:

1 N N
E==52 2 WinUiUnn 3)

1,7 m,n

The solution of our problem is achieved if and only if the only one neuron is active on
each row of our matrix, while all these neurons are placed in its different columns.
Since the definitions (1)-(3) satisfy the conditions of Hopfield’s theorem [2], this
final HNN configuration giving the solution corresponds to the global minimum of
(1). In our particular case due to (1)-(3) the exact value of this global minimum
can be calculated explicitly as

SN (N 1) (1)

This remarkable fact should simplify very much the criterium of the exit from algo-
rithm of the global minimum search.



Our approach to design such an algorithm is based on the following concept
stimulated by [1], our previous works [5], [6] and ideas of the stochastic search

from [7], [8].

1. Decrease of the number of HNN degree of freedom by constraint applying
neurons with the maximum value of the local field.

2. Forced escape from the local minima of the energy function.
3. Stochastic steps of HNN evolution.

After many various attemts to develop an algorithm carried out these principles we
elaborated the following effective
procedure for CSP solving:

1. Set up to zero all neurons and threshould 6.
2. Select randomly a row of the matrix.

3. At this row look for neurons with the local field satisfied the conditions

I,'J' lf U,‘]'ZO & I,’j>0 (5)
‘L‘j‘ Zf U,'J'Zl & Ii]'SO

4. Between these neurons choose one with the maximum of the local field and
invert its value (set up to 0 if it was one and wvice versa).

5. Check whether all neurons on the current row are non-active (that correspond
to one of local minima). If it’s so, invert forcerly the first neuron from the
right or left of one chosen on the previous step (in a case, if only one neuron
in this row, invert it).

6. Repeat steps 2-5 until all rows of the matrix are checked.

7. Calculate the value of the energy function and if it isn’t equal to (4) (that
means we found a solution and can stop), repeat steps 3-7.

Remark. Since, in principle, our problem can have no solution, the total number of
steps in n. 7 must be restricted by an reasonable value (N * 200).

We named our new neural network the Controlled Neural Netwrk (CNN),
since its evolution is forcerly changed on steps 4, 5, 7 in order to escape from a local
minimum.




4 Results and Conclusion

The comparable study was accomplished to test the applicability of the CNN al-
gorithm for such a CSP as the track-match problem with a variety of incidency
matrices.

The CNN algorithm was compared with the conventional mathematical method
(CMM) based on the standard sequentional search algorithm. The problem solved
by both methods for V* N incidency matrices with different complicated structures
was to leave on each row a single element kecping all of them in different columns.

VAX — 8350 CPU times of this problem solution for different N are presented
in the table

N 30 15 13
CNN |10532s [026s [0.13s
CMM | 7.5 hours | 23.78 s 1 0.135 s

Table. Time of CSP solving by CNN and CMM.

As one can see, for N > 30 our CNN algorithm shows the very high prefomance,
while CMM application is not reasonable that confirms the fruitfulness of the CNN
concept formulated above.

The specific feature of the solved CSP is the possibility to calculate in advance
the exact value of the HNN energy function, which simplify considerably the pro-
posed CNN algorithm.

However, the generality of the CNN concept allows to predict this algorithm can
be developed for more general applications, in particular, for the such an important

HEP problem as track finding [5], [6].
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lpunnMaeTcs OOANHCKA Ha npenpuHThl, coobuwenns O6begUHEHHOTO
UHCTUTYTA 9aepHbIX Heenenosannit u «Kparkue coobuienns OUSAN».

YcranoBaena cieAyHOLds CTOMMOCTb NOANHCKHY Ha 12 MecsueB HA H3AHMS
OUHH, Bratouast nepechisKy, MO OTAE/NAbHBIM TEMATHUECKUM KATErOPHUSIM:

Huaekc Tematuka Lena noanucku
Ha roa
1. DxkcnepuMenTasbhias GU3KMKA BLICOKHX IHEPTHH 915 p.
2. Teoperuueckas GU3UKa BBICOKHX IHEPTHI 2470 p.
3. OkcnepuMeHTa/IbHAs HEHTPOHHas (pU3KKa 365 p.
4. TeopeTnueckas PU3NKA HU3KUX IHEPIHH 735 p.
5. Maremaruka 460 p.
6. Slnepras CEKTPOCKOIMHS U PAAHOXHUMHUS 275 p.
7. On3uka TaXeNbIX HOHOB 185 p.
8. Kpuorenuka 185 p.
9. Yckopurenu 460 p.
10. ABToMaTH3auus 06paboOTKM IKCNEPUMEHTAIBHBIX JAHHBIX 560 p.
11. BhlUHC/INTEIbHAS MATEMATUKY U TEXHUKA 560 p.
12. Xumus 90 p.
13. Texnuka Ppu3nuecKoro 3kCHePpUMeEHTA 720 p.
14. UccnepoBaHus TBEPABIX TEJA M XUAKOCTEH SAEPHBIMU METOAAMH 460 p.
15. OxcnepumMeHTanbHas PUIUKA SAEPHBIX PEaKLUN
NpH HU3KUX IHEPIUSX 460 p.
16. Jo3uMeTpus U PU3HKA 3aLLUHUTHI 90 p.
17. Teopus KOHAEHCUPOBAHHOTO COCTOSHHUS 365 p.

18. Ucnonp3oBaHHe pe3yabTaToB
M MeTO10B PYHAAMEHTAIbHBIX PH3NYECKUX HCCNEAOBAHMI

B CMEXHBIX 00J1aCTAX HAYKH U TEXHHUKH 90 p.
19. Brnopusuka 185 p.
«Kparkue coobwenns OUSAU» (6 Bbinyckos) 560 p.

IMoanucka Moxet ObiTb 0GopMIEHA ¢ 0OOro Mecaua roga.
Mo Bcem BonpocaM oOPMIEHHS NOAMNUCKH ciieAyeT ofpaliaThcs B M3pa-
TeabckTuit otaea OUSIU no aapecy: 141980, r.Jly6ua, Mockosckoit obnacth



Barunau C.A., Ocockos I'.A. E10-93-415
IIpuMeHenue ynpaBageMoit HEHPOHHOH CETH
B ripobaeme track-match

B TepMHMHAX TAK HA3HBAEMOM MATPULE HHUMAESHTHOCTH c(POPMYIMpOBaHa
3a71a4a COOTBETCTBMS TPEKOB, OTHOCSIIASCS K npobjaeMam o6paboTKH AaHHKIX B
¢usnke BHCOKMX 3Heprui. JIas pemenns nogoOHKX 334a4 C OrpaHMYCHHASIMHA
paspabGoTaHa MCKyCCTBEHHAs HEMpOHHas ceTh xondmimosa tuna. Ha ocHose
MPENIOKEHHOM KOHUENUMH YIPABIIEMBIX HEHPOHHEIX CETEH CO3/IaH AJITOPUTM,
peanuayromuit 3¢dekTUBHBbIA TOMCK pemeHusd. [IpuBeeHn pe3yabTaThl BH-
UHC/IEHMH, MOKA3HBAIOMME 3HAUMTEIHOE [TPEBHIICHHE 10 CKOPOCTH IIPENJIO-
KEHHOI0 aJITOPHTMA TIO CPABHEHHUIO C OOBIYHBIMA METONAMH, OCHOBAHHHMH Ha
nocaenoBaTeIbHOM nepebope.

Pabora swinonsena B JIaGopaTopuu BHIUMCIUTEIBHON TEXHUKH M aBTOMA-
Tusauun OUSAU.

Coobenve O6beaMHERHOr0 MHCTHTYTA SHEPHBIX MCCaeaoBaHmit. Jly6Ha, 1993

Baginyan S.A., Ososkov G.A. E10-93-415
Controlled Neural Network Application
in Track-Match Problem

Track-match problem of HEP data handling is formulated in terms of
incidency matrices. The corresponding Hopfield neural network is developed to
solve this type of constraint satisfaction problems (CSP). A special concept of
the controlled neural network is proposed as a basis of an algorithm for the
effective CSP solution. Results of comparable calculations show the very high
performance of this algorithm against conventional search procedures.

The investigation has been performed at the Laboratory of Computing
Techniques and Automation, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 1993
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