Idi na sadržaj

Aminokiselina

S Wikipedije, slobodne enciklopedije
Datum izmjene: 23 novembar 2014 u 18:46; autor: Yahadzija (razgovor | doprinosi) ((review))
Fenilalanin je jedna od standardnih aminokiselina

Struktura

Aminokiseline su biološki važna organska jedinjenja kja sadrže amino (-NH2) i karboksilne kiseline (-COOH) funkcionalne grupe, zajedno sa zamjenskim lancima zkoji su specifični za svaku od njih. Ključni elementi aminokiselina su ugljik, vodik, kisik i azot, iako se ostali elementi nađu na bočnim pozicijama pojedinih aminokiselina. Poznato je oko 500 aminokiselina[1], a mogu se svrstati na mnogo načina. Svrstavaju se prema ključnoj funkcijskoj grupi, kao alfa (α-), beta (β-), gamma- (γ-) ili delta (δ-) ugljične aminokiseline. Druge kategorije se odnose na hemijsku polarizaciju, pH razinu, i tip grupa bočnih lanaca (alifatski, aciklični, aromatski, sadrže hidroksilne ili sumpor, itd). U strukturi proteina, po količini, aminokiseline čine drugu komponentu (voda je najveća) ljudskih mišića, ćelija i tkiva.[2] Izvan proteina, aminokiselina obavljaju ključne uloge u procesima kao što su neurotransmiterski transport i biosinteza.

Generička struktura jedne alfa aminokisline u njenom nejonizirajućem obliku
pKa) i nekim fiziološkim pokazateljima (fiziološki pH 7.4)

Aminokiseline imaju i amino i karboksilnu grupu priključenu na prvi atom ugljika (alfa-ugljik), koji ima poseban značaj. One su poznate kao 2-, alfa, ili α-amino kiseline (generičkih formula H2–NCHRCOOH u većini slučajeva [3], gdje je R supstituent poznat kao "zamjena bočnog lanca"),[4] a često je termin "aminokoselina" upotrebljavan da se na to specisično referirais. One uključuju 23 proteinotvorne ("protein-gradivne") aminokiseline,[5][6][7] koje se kombiniraju u peptidne lance ("polipeptide") za formiranje gradivnog bloka širokog spektra proteina.[8] Ovo su sve L-stereoizomeri ("ljevogirni" izomeri), a nekoliko D-stereoizomernih("desnogirnih") aminokiselina se javlja u bakterijskom omotaču i nekim antibioticima.[9] Dvadeset od proteinotvornih aminokiselina direktno kodiraju tripleti (kodoni) genetičkog koda i poznate su kao "standardne" aminokiseline. Ostale tri ("nestandardne" ili "ne-kanonske") su selenocistein (prisutan u mnogim ne-eukaryotima kao i u većini eukariota, ali nisu kodirane direktno sa DNK), pirolizin (nekih Archea i jednebakterija) i N-formilmetionine (koji je često početna aminokiselina proteina u bakterijama, mitohondrijama i hloroplastima). Pirrolizin i selenocistein su kodirani preko varijanti kodona; selenocistein je kodiran STOP kodonom i SECIS elementom.[10][11][12] Kombinacije kodona transfer RNK (tRNK) nisu nađene u prirodi što se također može koristiti za "proširenje" genetičkog koda i stvoriti mnoštvo proteina poznato kao aloproteini alloprotein s ugrađenim ne-proteinotvornim aminokiselinama.[13][14][15]

Biološka uloga

Mnogi važni proteinotvorne i druge aminokiseline također imaju kritične neproteinske uloge u organizmu. Na primjer, u ljudskom mozgu, glutamat (glutaminska kiselina) i gama-amino-buterna kiselina ("GABA", nestandardna gama-amino kiselina) su, respektivno, glavni neurotransmiteri.[16] hidroksiprolin (glavna komponenta vezivnog tkiva kolagena) je sintetiziran iz prolina; standardna amino kiseline glicin se koristi za sintezu porfirina u crvenim krvniim zrnacima; ne-standardni karnitin koristi se u transportu lipida.

Devet proteinotvornih aminokiselina se nazivaju "esencijalne" za ljude, jer oni ne mogu biti stvoreni iz drugih jedinjenj pa se moraju uzeti u hrani. Druge mogu biti uslovno bitne (uvjetno esencijalne) za određene dobi ili zdravstvena stanja. Esentialne aminokiseline mogu se također razlikovati između vrsta. Na primjer, kod preživara, kao što su goveda određeni broj aminokiselina dobijaju putem mikroba u prvoj komori želuca.

Osobiti značaj aminokoseline imaju kao gradivne jedinice enzima, koji su regulatori procesa razvoja svih elemenata građe i funkcije organizama.[17][18][19]

Zbog svoje biološke važnosti, amino kiseline su važni u ishrani i najčešće se koriste kao dodatak ishrani i fertilizator u tehnologiji proizvodnje hrane. U industriji se uzimaju za proizvodnju lijekova, biorazgradljive plastike asimetrične katalize.

Pregled

  • Po hemijskom smislu, dakle, aminokiseline su jedinjenja koja sadrže amino grupu (-NH2) ili karboksilnu grupu (-COOH). Njihova glavna biološka uloga je izgradnja proteina, mada postoje i aminokiseline koje ne ulaze u sastav proteina i nazivaju se neproteinske aminokiseline (npr. ß-alanin, ornitin i citrulin). Sve aminokiseline koje grade proteine su α-aminokiseline pošto su amino i karboksilne grupe vezane za isti, α-atom ugljenika. Pored amino i karboksilne grupe, strukturu aminokiselina određuje i bočni lanac koji se naziva i ostatak i obilježava se sa R. R-grupe sadrže karakteristične osobine pojedinih aminokiselina, i mogu ih činiti alifatični ili aromatični bočni lanci koji mogu sadržati druge reaktivne grupe, mogu biti više ili manje polarne, hidrofilne ili hidrofobne itd. R-grupa predstavlja osnovu za sljedeću podjelu aminokiselina:
  1. Aminokiseline sa nepolarnim bočnim lancem (alanin, valin, leucin, izoleucin, prolin, fenilalanin, triptofan, metionin).
  2. Aminokiseline sa polarnim grupama u bočnom lancu (-ON, -ЅN, -SONH2). Ove grupe omogućuju formiranje vodoničnih veza koje su osnova za formiranje viših oblika organizacije aminokiselina u molekulima proteina (glicin, serin, treonin, cistein, tirozin, asparagin, glutamin).
  3. Aminokiseline sa negativno naelektrisanim bočnim lancima ili kisele aminokiseline (asparaginska i glutaminska kiselina).
  4. Aminokiseline sa pozitivno naelektrisanim bočnim lancima ili bazne aminokiseline (lizin, arginin, histidin).

Jedna od osnovnih podjela aminokiselina je i na desne i lijeve aminokiseline a odnosi se na položaj amino grupe u odnosu na ostatak lanca.

  • "Standardne" aminokiseline i njihova svojstva
Aminokislina 3. Slovo[20] 1. Slovo[20] Polarnost bočnog lanca[20] pH bočnog lanca (pH 7.4)[20] Hidropatski indeks[21] Apsorbancija λmax(nm)[22] ε at λmax (mM−1 cm−1)[22] MW(Molekulska masa)[23]
Alanin Ala A Nepolarno Neutralno 1.8 89
Arginin Arg R Bazno polarno Positivan −4.5 174
Asparagin Asn N Polarno Neutralno −3.5 132
Aspartinska kiselina Asp D Kiselo polarno Negativno −3.5 133
Cistein Cys C Nepolarno Neutralno 2.5 250 0.3 121
Glutaminska kiselina Glu E Kiselo polarno Negativno −3.5 147
Glutamin Gln Q Polarno Neutralno −3.5 146
Glicin Gly G Nepolarno Neutralno −0.4 75
Histidin His H Bazno polarno Pozitivno (10%)

Neutralno (90%)

−3.2 211 5.9 155
Izoleucin Ile I Nepolarno Neutralno 4.5 131
Leucine Leu L Nepolarno Neutralno 3.8 131
Lizin Lys K Bazno polarno Pozitivno −3.9 146
Metionin Met M Nepolarno Neutralno 1.9 149
Fenilalanin Phe F Nepolarno Neutralno 2.8 257, 206, 188 0.2, 9.3, 60.0 165
Prolin Pro P Nepolarno Neutralno −1.6 115
Serin Ser S Polarno Neutralno −0.8 105
Treonin Thr T Polarno Neutralno −0.7 119
Triptofan Trp W Nepolarno neutral −0.9 280, 219 5.6, 47.0 204
Tirozin Tyr Y Polarno Neutralno −1.3 274, 222, 193 1.4, 8.0, 48.0 181
Valin Val V Nepolarno Neutralno 4.2 117

Dvije dodatne aminokiseline kod nekih vrsta su kodirane kodonima koji se obično interpretiraju kao stop kodoni:

21. i 22. Aminokoselina 3. Slovo 1. Slovo
Selenocistein Sec U
Pirolizin Pyl O

Pored specifičnih kodova za aminokiseline, držači njihovih mjesta koriste se u slučajevima u kojima se proteini sekvenciraju hemijski ili za kristalografske analize peptida ili proteina ne može konačno determinirati identitet ostataka (rezidua) rudnika identitet ostatka.

Dvosmislena minokiselina 3. Slovo 1. Slovo
Asparagin ili aspartinska kiselina Asx B
Glutamin ili glutaminska kiselina Glx Z
Leucin ili Izoleucin Xle J
Nespecifična ili nepoznata aminokiselina Xaa X

Unk je ponekad unjesto Xaa, ali je manje standardno. Osim toga, mnoge nestandardne aminokiseline imaju specifični kod. Na primjer, nekoliko peptidnih droga (lijekova), kao što su Bortezomib i MG132, su umjetno sintetizirani i zadržavali svoje zaštitićujuću grupe koje imaju specifične kodova. Bortezomib je Pyz - Phe-boroLeu, a MG132 je karboksibenzil Z-Leu-Leu-Leu-al. Za pomoć u analizi strukture proteina, raspoloživi su foto-reaktivne analogne aminokiseline. To uključuje fotoleucin (pLeu) i fotometionin ( 'pMet' ).[24]

Najvažnija hemijska reakcija aminokiselina je formiranje peptidne veze koja omogućava povezivanje dvije aminokiseline i stvaranje lanca aminokiselina (peptidi i proteini). Peptidna veza je veza između karboksilne grupe jedne aminokiseline i amino grupe druge aminokiseline, u kojoj se atom ugljenika vezuje za atom azota uz oslobađanje molekula vode.

U sastav čovjekovog organizma ulazi ukupno 20 aminokiselina. 10 od njih mogu da se izgrade u samom organizmu, dok je preostalih 10 neophodno unijeti kroz ishranu. Aminokiseline koje čovjekov organizam nije u stanju da napravi, a neophodne su za njegovo funkcionisanje se nazivaju esencijalne aminokiseline.

Reference

  1. ^ Wagner, Ingrid; Musso, Hans (November 1983). "New Naturally Occurring Amino Acids". Angew. Chem. Int. Ed. Engl. 22 (22): 816–828. doi:10.1002/anie.198308161.
  2. ^ Human nutrition in the developing world – United Nations Food and Agriculture Organization, ch.8
  3. ^ Proline je izuzetak od ove opće formule, koji nema NH2 grupu zbog ciklizacije od strane lanca i poznat je kao imino kiselina pa spada u kategoriju posebno strukturiranih aminokiselina
  4. ^ INTRODUCING AMINO ACIDS. chemguide.co.uk
  5. ^ "Amino acids". Peptides from A to Z: A Concise Encyclopedia. John Wiley & Sons. 2008. ISBN 9783527621170.
  6. ^ Pollegioni, Loredano; Servi, Stefano, ured. (2012). Unnatural Amino Acids. Humana Press. str. v. ISBN 978-1-61779-331-8.
  7. ^ Hertweck, Christian (2011). "Biosynthesis and Charging of Pyrrolysine, the 22nd Genetically Encoded Amino Acid". Angew. Chem. Int. Ed. 50: 9540–9541. doi:10.1002/anie.201103769.
  8. ^ {{cite web|url = http://publications.nigms.nih.gov/structlife/chapter1.html | title = The Structures of Life | publisher = National Institute of General Medical Sciences | accessdate = 20.
  9. ^ "Biochemical pathways: an atlas of biochemistry and molecular biology" – Michal, p.5
  10. ^ AI_YBlMC&pg=PA1&lpg=PA1&ots=WSsFhHJwDy&sig=jkSLFr7AK8iu6OhdX7KOc10eKRY&hl=en&sa=X&ei=gshLUOWZLIin0AXRm4GoBg Modeling Electrostatic Contributions to Protein Folding and Binding – Tjong, p.1 footnote
  11. ^ Frontiers in Drug Design and Discovery ed. Atta-Ur-Rahman & others, p.299
  12. ^ {{cite web | url = http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c | title = The Genetic Codes | author = Elzanowski A, Ostell J | authorlink = | date = 7 April 2008 | work = | publisher = National Center for Biotechnology Information (NCBI) | pages = | quote =
  13. ^ Xie J, Schultz PG (December 2005). "Adding amino acids to the genetic repertoire". Current Opinion in Chemical Biology. 9 (6): 548–54. doi:10.1016/j.cbpa.2005.10.011. PMID 16260173.
  14. ^ Wang Q, Parrish AR, Wang L (March 2009). "Expanding the genetic code for biological studies". Chem. Biol. 16 (3): 323–36. doi:10.1016/j.chembiol.2009.03.001. PMC 2696486. PMID 19318213.CS1 održavanje: više imena: authors list (link)
  15. ^ Simon M (2005). Emergent computation: emphasizing bioinformatics. New York: AIP Press/Springer Science+Business Media. str. 105–106. ISBN 0-387-22046-1.
  16. ^ Petroff OA (December 2002). "GABA and glutamate in the human brain". Neuroscientist. 8 (6): 562–573. doi:10.1177/1073858402238515. PMID 12467378.
  17. ^ Hadžiselimović R., Pojskić N. (2005): Uvod u humanu imunogenetiku. Institut za genetičko inženjerstvo i biotehnologiju (INGEB), Sarajevo, ISBN 9958-9344-3-4.
  18. ^ Kapur Pojskić L., Ed. (2014): Uvod u genetičko inženjerstvo i biotehnologiju, 2. izdanje. Institut za genetičko inženjerstvo i biotehnologiju (INGEB), Sarajevo, ISBN 978-9958-9344-8-3.
  19. ^ Bajrović K, Jevrić-Čaušević A., Ed. (2005): Uvod u genetičko inženjerstvo i biotehnologiju. Institut za genetičko inženjerstvo i biotehnologiju (INGEB), Sarajevo, ISBN 9958-9344-1-8.
  20. ^ a b c d Hausman, Robert E.; Cooper, Geoffrey M. (2004). The cell: a molecular approach. Washington, D.C: ASM Press. str. 51. ISBN 0-87893-214-3.CS1 održavanje: više imena: authors list (link)
  21. ^ Kyte J, Doolittle RF (May 1982). "A simple method for displaying the hydropathic character of a protein". Journal of Molecular Biology. 157 (1): 105–32. doi:10.1016/0022-2836(82)90515-0. PMID 7108955.
  22. ^ a b Freifelder, D. (1983). Physical Biochemistry (2nd izd.). W. H. Freeman and Company. ISBN 0-7167-1315-2.
  23. ^ http://bcs.whfreeman.com/lehninger6e/#824263__839438__
  24. ^ Šablon:Cite dnevnik.

Također pogledajte