CERN Accelerating science

CERN Document Server 2,051 records found  1 - 10nextend  jump to record: Search took 0.24 seconds. 
1.
A Secure and Trustworthy Network Architecture for Federated Learning Healthcare Applications / Boiano, Antonio (Milan, Polytech.) ; Di Gennaro, Marco (Milan, Polytech.) ; Barbieri, Luca (Milan, Polytech.) ; Carminati, Michele (Milan, Polytech.) ; Nicoli, Monica (Milan, Polytech.) ; Redondi, Alessandro (Milan, Polytech.) ; Savazzi, Stefano (IFN, Rome) ; Aillet, Albert Sund (CERN) ; Santos, Diogo Reis (CERN) ; Serio, Luigi (CERN)
Federated Learning (FL) has emerged as a promising approach for privacy-preserving machine learning, particularly in sensitive domains such as healthcare. [...]
arXiv:2404.11698.
- 6 p.
Fulltext
2.
A Carbon Tracking Model for Federated Learning: Impact of Quantization and Sparsification / Barbieri, Luca (Milan, Polytech.) ; Savazzi, Stefano ; Kianoush, Sanaz ; Nicoli, Monica (Milan, Polytech.) ; Serio, Luigi (CERN)
Federated Learning (FL) methods adopt efficient communication technologies to distribute machine learning tasks across edge devices, reducing the overhead in terms of data storage and computational complexity compared to centralized solutions. Rather than moving large data volumes from producers (sensors, machines) to energy-hungry data centers, raising environmental concerns due to resource demands, FL provides an alternative solution to mitigate the energy demands of several learning tasks while enabling new Artificial Intelligence of Things (AIoT) applications. [...]
arXiv:2310.08087.- 2023-11-06 - 6 p. - Published in : 10.1109/CAMAD59638.2023.10478391 Fulltext: PDF;
In : IEEE International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD 2023), Edinburgh, Scotland, 6-8 Nov 2023, pp.213-218
3.
Upgrade of ASACUSA's Antihydrogen Detector / Kraxberger, V. (Stefan Meyer Inst. Subatomare Phys.) ; Amsler, C. (Stefan Meyer Inst. Subatomare Phys.) ; Breuker, H. (Wako, RIKEN) ; Chesnevskaya, S. (Stefan Meyer Inst. Subatomare Phys.) ; Costantini, G. (Brescia U. ; INFN, Pavia) ; Ferragut, R. (Milan, Polytech. ; INFN, Milan ; Milan U.) ; Giammarchi, M. (INFN, Milan ; Milan U.) ; Gligorova, A. (Stefan Meyer Inst. Subatomare Phys.) ; Gosta, G. (Brescia U. ; INFN, Pavia) ; Higaki, H. (Hiroshima U.) et al.
The goal of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) CUSP experiment at CERN's Antiproton Decelerator is to measure the ground state hyperfine splitting of antihydrogen in order to test whether CPT invariance is broken. The ASACUSA hodoscope is a detector consisting of two layers of 32 plastic scintillator bars individually read out by two serially connected silicon photo multipliers (SiPMs) on each end. [...]
arXiv:2204.11572.- 2023-01-01 - 3 p. - Published in : Nucl. Instrum. Methods Phys. Res., A 1045 (2023) 167568 Fulltext: 2204.11572 - PDF; Publication - PDF;
In : Vienna Conference on Instrumentation (VCI 2022), Online, Austria, 21 - 25 Feb 2022
4.
Upgrade of the positron system of the ASACUSA-Cusp experiment / Lanz, A. (Stefan Meyer Inst. Subatomare Phys. ; Vienna U.) ; Amsler, C. (Stefan Meyer Inst. Subatomare Phys.) ; Breuker, H. (Wako, RIKEN) ; Bumbar, M. (Stefan Meyer Inst. Subatomare Phys.) ; Chesnevskaya, S. (Stefan Meyer Inst. Subatomare Phys.) ; Costantini, G. (Brescia U. ; INFN, Pavia) ; Ferragut, R. (Milan, Polytech.) ; Giammarchi, M. (INFN, Milan) ; Gligorova, A. (Stefan Meyer Inst. Subatomare Phys.) ; Gosta, G. (Brescia U. ; INFN, Pavia) et al.
The ASACUSA-Cusp collaboration has recently upgraded the positron system to improve the production of antihydrogen. [...]
arXiv:2307.06133.
- 10 p.
Fulltext
5.
Superintense Laser-driven Photon Activation Analysis / Mirani, F. (Milan Polytechnic) ; Calzolari, D. (CERN) ; Formenti, A. (Milan Polytechnic) ; Passoni, M. (Milan Polytechnic)
Laser-driven radiation sources are attracting increasing attention for several materials science applications. While laser-driven ions, electrons and neutrons have already been considered to carry out the elemental characterization of materials, the possibility to exploit high energy photons remains unexplored. [...]
arXiv:2104.07513.- 2021-08-19 - 13 p. - Published in : Commun. Phys. 4 (2021) 185 Fulltext: s42005-021-00685-2 - PDF; 2104.07513 - PDF;
6.

KTTGROUP-PHO-TECH-2023-003
© 2023 CERN
TRUSTroke meeting at CERN
TRUSTroke (Trustworthy AI for Stroke Pathways impr [...]
29-09-2023
7.
Pulsed production of antihydrogen / Amsler, Claude (Stefan Meyer Inst. Subatomare Phys.) ; Antonello, Massimiliano (Insubria U., Como ; INFN, Milan) ; Belov, Alexander (Moscow, INR) ; Bonomi, Germano (U. Brescia ; INFN, Pavia) ; Brusa, Roberto Sennen (Trento U. ; TIFPA-INFN, Trento) ; Caccia, Massimo (Insubria U., Como ; INFN, Milan) ; Camper, Antoine (CERN) ; Caravita, Ruggero (TIFPA-INFN, Trento ; CERN) ; Castelli, Fabrizio (INFN, Milan ; Milan U.) ; Cheinet, Patrick (LAC, Orsay) et al.
Antihydrogen atoms with K or sub-K temperature are a powerful tool to precisely probe the validity of fundamental physics laws and the design of highly sensitive experiments needs antihydrogen with controllable and well defined conditions. We present here experimental results on the production of antihydrogen in a pulsed mode in which the time when 90% of the atoms are produced is known with an uncertainty of ~250 ns. [...]
2021 - 11 p. - Published in : Commun. Phys. 4 (2021) 19 Fulltext: PDF;
8.
Assessment of few-hits machine learning classification algorithms for low-energy physics in liquid argon detectors / Moretti, Roberto (INFN, Milan Bicocca ; Milan Bicocca U.) ; Rossi, Marco (CERN ; Milan U. ; INFN, Milan) ; Biassoni, Matteo (INFN, Milan Bicocca) ; Giachero, Andrea (INFN, Milan Bicocca ; Milan Bicocca U.) ; Grossi, Michele (CERN) ; Guffanti, Daniele (INFN, Milan Bicocca ; Milan Bicocca U.) ; Labranca, Danilo (INFN, Milan Bicocca ; Milan Bicocca U.) ; Terranova, Francesco (INFN, Milan Bicocca ; Milan Bicocca U.) ; Vallecorsa, Sofia (CERN)
The physics potential of massive liquid argon TPCs in the low-energy regime is still to be fully reaped because few-hits events encode information that can hardly be exploited by conventional classification algorithms. Machine learning (ML) techniques give their best in these types of classification problems. [...]
arXiv:2305.09744.- 2024-08-13 - 12 p. - Published in : Eur. Phys. J. Plus 139 (2024) 723 Fulltext: 2305.09744 - PDF; document - PDF;
9.
Local field reconstruction from rotating coil measurements in particle accelerator magnets / Ion, Ion Gabriel (Darmstadt, Tech. U.) ; Liebsch, Melvin (CERN) ; Simona, Abele (Darmstadt, Tech. U. ; Milan, Polytech.) ; Loukrezis, Dimitrios (Darmstadt, Tech. U.) ; Petrone, Carlo (CERN) ; Russenschuck, Stephan (CERN) ; De Gersem, Herbert (Darmstadt, Tech. U.) ; Schöps, Sebastian (Darmstadt, Tech. U.)
In this paper a general approach to reconstruct three dimensional field solutions in particle accelerator magnets from distributed magnetic measurements is presented. To exploit the locality of the measurement operation a special discretization of the Laplace equation is used. [...]
arXiv:2106.15168.- 2021-09-21 - Published in : Nucl. Instrum. Methods Phys. Res., A 1011 (2021) 165580 Fulltext: PDF;
10.
Decentralized Federated Learning for Healthcare Networks: A Case Study on Tumor Segmentation / Camajori Tedeschini, Bernardo (Milan, Polytech.) ; Savazzi, Stefano (ISTP, Milan) ; Stoklasa, Roman (CERN) ; Barbieri, Luca (Milan, Polytech.) ; Stathopoulos, Ioannis (CERN) ; Nicoli, Monica (Milan, Polytech.) ; Serio, Luigi (CERN)
Smart healthcare relies on artificial intelligence (AI) functions for learning and analysis of patient data. Since large and diverse datasets for training of Machine Learning (ML) models can rarely be found in individual medical centers, classical centralized AI requires moving privacy-sensitive data from medical institutions to data centers that process the fused information. [...]
2022 - 16 p. - Published in : IEEE Access 10 (2022) 8693-8708 Fulltext: PDF;

Haven't found what you were looking for? Try your search on other servers:
recid:2903192 in Amazon
recid:2903192 in CERN EDMS
recid:2903192 in CERN Intranet
recid:2903192 in CiteSeer
recid:2903192 in Google Books
recid:2903192 in Google Scholar
recid:2903192 in Google Web
recid:2903192 in IEC
recid:2903192 in IHS
recid:2903192 in INSPIRE
recid:2903192 in ISO
recid:2903192 in KISS Books/Journals
recid:2903192 in KISS Preprints
recid:2903192 in NEBIS
recid:2903192 in SLAC Library Catalog