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Abstract

The physics potential of massive liquid argon TPCs in the low-energy regime
is still to be fully reaped because few-hits events encode information that can
hardly be exploited by conventional classification algorithms. Machine learning
(ML) techniques give their best in these types of classification problems. In this
paper, we evaluate their performance against conventional (deterministic) algo-
rithms. We demonstrate that both Convolutional Neural Networks (CNN) and
Transformer-Encoder methods outperform deterministic algorithms in one of the
most challenging classification problems of low-energy physics (single- versus
double-beta events). We discuss the advantages and pitfalls of Transformer-
Encoder methods versus CNN and employ these methods to optimize the detector
parameters, with an emphasis on the DUNE Phase II detectors (“Module of
Opportunity”).
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1 Introduction

Liquid argon detectors play a prominent role in neutrino physics and - thanks to
experiments like DUNE [1, 2] and DarkSide [3, 4] - will be one of the technologies of
choice for the next generation of accelerator neutrino experiments and direct search
of dark matter. Such prominence is grounded on scalability. DUNE, in particular, has
brought the liquid argon TPC technique (LArTPC) to an unprecedented scale after the
development of cryostats that do not need to be evacuated to reach the required purity
in TPCs [5]. In turn, this finding allowed the use of commercial membrane cryostats
for the DUNE modules [6-8]. Similarly, DarkSide is commissioning high-throughput
facilities for depleted underground argon extraction, purification, and distillation [9,
10].

In the last few years and, notably, in the course of the 2021 Snowmass process,
several collaborations have formed to fill the gap between LArTPC for beam neutri-
nos and detectors for rare event searches [11-16]. The first and second DUNE modules
were engineered to achieve maximum performance for the observation of GeV-scale
neutrinos but a wealth of DUNE physics resides in the observation of MeV events.
Some of these channels are being actively pursued by DUNE because the event thresh-
old F is located at E > 10 MeV. They are supernova neutrinos, sub-GeV atmospheric
neutrinos, and the neutrinos originating from the sun from helium-proton fusion (”hep
neutrinos”) [17, 18]. Other channels are currently outside the DUNE scope but may be
addressed by the DUNE Phase IT modules (third and fourth modules). Recent stud-
ies conducted in the framework of the Module of Opportunity (MoO) R&D effort [19]
indicate that a module with improved radiopurity, light collection efficiency, and gran-
ularity can access a rich physics portfolio: enhance the sensitivity to solar neutrinos
produced by the 8B branch of the pp-chain, perform neutrinoless double-beta decay
searches, boosted dark matter, and the direct detection of WIMP-like dark matter
candidates [14, 20, 21].

The possibility of making DUNE the most sensitive neutrinoless double-beta decay
experiment in the world is still speculative because of the need for a large *6Xe mass
to be dissolved in liquid argon with a few-percent concentration. Moreover, this search
is hindered by the presence of radioactive isotopes of argon. Still, results on small
prototypes that were doped at the level of 2% are very encouraging [22]. Further, the
ProtoDUNE-SP detector at CERN (700 tons of high-purity liquid argon) was doped
in 2021 with ~ 100 ppm and recorded no instability or performance deterioration
[23]. The DUNE second module will be doped with (non-enriched) xenon even if the
concentration of the double-beta decay isotope *6Xe and the detector radiopurity and
granularity cannot address the 136Xe —136 Ba* 2e~ channel (Q-value: ~ 2.458 MeV)
in a competitive manner. Several collaborations are addressing these challenges, which
require high-throughput facilities for the extraction of underground argon depleted in



both 3°Ar and “?Ar [13] or the development of dedicated systems for the distillation
of atmospheric argon to remove *2Ar [24].

At the time of writing, the main obstacle toward large-mass LArTPCs in the few-
MeV energy range is scalability. Charge readout in LArTPCs is carried out by wires or
pixels, with pixels having been demonstrated to outperform the more traditional wire-
based readout [25, 26]. Given the density of liquid argon, a few-MeV event will range
out in ~ 1 cm and will produce just a few hits in the LArTPC. Bringing this number
to a level comparable with supernova neutrinos would require a miniaturization of the
charge readout system down to the diffusion scale (~ 1 mm) that is either impossible
with wires or too expensive with pixels. In addition, the large increase in the number
of readout channels impacts front-end electronics, data rate, and trigger complexity,
and makes such a miniaturization approach cost-ineffective.

Machine learning (ML)-assisted algorithms have been proven to be the most
effective choice to extract information in low-granularity detectors. Machine learn-
ing techniques were successfully applied to GeV neutrinos in LArTPC [27-30] and at
lower energy in small-size devices [31, 32]. A wealth of novel techniques for supervised
and unsupervised machine learning already found applications in particle physics [33]
and they are particularly well suited to extract information when it is stored in vari-
ables that are non-trivially correlated, often surpassing the performances of non-ML
approaches tailored for the task at hand. Few-hits low-energy events are thus an ideal
target for these methods, which can compensate for the lack of detector granularity
and relieve the burden of designing and operating a large number of channels in a
cryogenic underground detector.

This paper addresses such a challenge by identifying a class of machine learn-
ing approaches that are suited for low-energy LArTPC. The physics benchmark we
employed in our study is the separation capability of one versus two electrons emerg-
ing from single and double-beta decay. We chose this benchmark because it represents
an important but challenging handle to suppress background events from radioactive
argon isotopes in any low-energy physics channel of LArTPCs. 5 versus 53 separation
is also useful to suppress *>K beta decay signals originating from “2Ar in the region-
of-interest (ROI) for the neutrinoless double-beta decay of 13Xe. After identifying
the optimal machine learning approaches, we show that these techniques relieve the
requirement to invest in pixel miniaturization thus reducing the cost and complexity
of the next-generation LArTPCs and of MoO.

The main feature of LArTPCs of relevance for this study and the benchmark chan-
nels are introduced in Sec.2. Sec.3 presents the feature extraction and classification
techniques for few-hits LArTPC events and the rationale of the different methods con-
sidered in this study. The performance of the methods against the benchmark channel
(8-B8 separation) is discussed in Sec.4. In this section, we also discuss the impact
on pixel miniaturization by comparing the overall effectiveness of deep learning algo-
rithms with respect to a system that does not employ ML-assisted (-3 separation
techniques. We draw our conclusions in Sec.5.



2 Few-MeV events in LArTPC

A liquid argon TPC is a cryogenic device that provides the full reconstruction of
neutrino interactions in a broad energy range. The detectors that have been developed
so far at large scale (> 100 tons) are mostly based on wire anodes. Here, the electrons
produced by ionization losses in LAr drift toward the anode driven by a constant
electric field of ~ 500 V/cm. The drift velocity at such a field amounts to 1.6 mm/us
and the electrons travel for several meters. In this paper, we will mostly consider
the electric field configuration of the first DUNE module (FD1-HD), where electrons
drift horizontally (”Horizontal Drift” - HD) between the cathode and the anode for
a maximum distance of 3.5 m. FD1-HD is a 65.8 m x 17.8 m x 18.9 m LArTPC
segmented in four drift volumes for a total (fiducial) mass of 17 (10) kton. Electron
recombination due to electronegative impurities has been addressed by decade-long
R&D. The purity of the argon achieved in a LArTPC is usually expressed in terms
of the electron lifetime 7. The lifetime is derived from the number of electrons that
crosses a drift length x = v4t and it is given by:

N(t):NOexp—E:Noexp—i (1)
T vqT

where Ny is the number of electrons (and ions) produced by a charged particle
in a given volume of the detector, x is the distance from the anode, vy is the drift
velocity and ¢ is the drift time, i.e. the time the electron travels in LAr before reaching
the anode. The electron lifetime thus characterizes the electron survival probability
against electronegative impurities. In 2014, ICARUS observed a record lifetime of
> 15 ms, corresponding to 20 parts per trillion (ppt) of Os-equivalent contamination
using a vacuum-tight cryostat [34]. More recently, the DUNE Collaboration reached
an even longer lifetime using a membrane cryostat. Data collected by the FD1-HD
demonstrator (ProtoDUNE-SP) indicate a lifetime > 30 ms over a maximum drift
length of 3.5 m [8]. Such a bold result boosted the DUNE ”Vertical Drift” concept
that will be employed for the second DUNE module (FD2-VD). FD2-VD is based
on a 10 kton LAr volume whose maximum drift length corresponds to 6 m. In the
following, we will test our classification algorithms in a drift volume equivalent to
one of the drift volumes of FD1-HD, properly accounting for electron losses due to
residual impurities. Thanks to the outstanding purity reached by ProtoDUNE-SP, we
anticipate that results hold for a drift length comparable with the maximum drift
length of FD2-VD, too.

The readout of ionization electrons at the cathode is generally performed by a set
of wires that reconstruct the electron position in the anode plane, that is the plane
perpendicular to the drift direction. In FD1-HD, charge reconstruction is performed
by a set of 6 m x 2.3 m Anode Plane Assemblies (APAs). Each APA comprises four
wire planes and the spatial resolution is dominated by the spacing of the wires inside
the plane plus charge diffusion in LAr. FD1-HD employs 152 pum diameter copper-
beryllium wires and the wire spacing on each layer is about 4.7 mm, corresponding
to a spatial resolution of ~ 4.7 mm/y/12 = 1.36 mm. FD2-VD will replace the APA
wires with a pair of perforated PCBs, etched with readout strips. The collection strip
corresponds to the strip where electrons are stopped and collected and it has a width



of 5.1 mm. Induction strips crossed by the electrons before collection have a width
of 7.65 mm. As a consequence, the space resolution of FD2-VD is comparable with
FDI1-HD. A novel readout based on pixels (pixel width: 4 mm) is employed in the
DUNE near detector (NDLAr [35]) and is being considered for the third and fourth
DUNE far detector modules [15]. Unlike early LArTPCs, all DUNE modules will be
operated employing front-end electronics operated at liquid argon temperature (87 K)
because cold electronics boards located next to the readout element (wire, strip, or
pixel) offer unprecedented noise immunity. The cold electronics of FD1-HD operates
with noise well below 800e™ per channel [36], corresponding to an energy threshold of
< 50 keV. The front-end electronics for the pixelated system are under development
and performance is expected to be comparable to or better than FD1-HD.

During the development and assessment of the ML-assisted event classifiers pre-
sented in this paper, the performance was estimated as a function of the spatial
resolution and energy threshold within the range attainable by the technologies
mentioned above.

Low-energy (1-10 MeV) events in liquid argon are recorded as a set of hits associ-
ated with an energy deposit per hit. The number of hits depends on the granularity
of the LArTPC and, in particular, the size of the readout element (pixel or 2D hits
reconstructed by the signals on wires). For a candidate neutrinoless double-beta decay
of 136Xe (Q-value: 2.458 MeV) it never exceeds 20 hits even in the most aggres-
sive scenario (pixel size: 1 mm). Solar neutrinos offer a richer topology because the
charged current interaction on °Ar is accompanied by a de-excitation photon from
the v, “°Ar —%0 K* e~ reaction, while electron-neutrino scattering creates a single
electron-like track only.

The ML-assisted identification techniques discussed below have been ranked
against the most critical benchmark at the MeV scale: the identification of single versus
double electrons in a given region-of-interest (ROI) when no other energy deposits are
identified as a detached track (or hit) beyond the candidate electron track. The width
of the ROI is determined by the energy resolution of the LArTPC, which exploits the
total energy deposited estimated from the total collected charge and scintillation light.
As a consequence, this information is not used to test the electron hypothesis. Further,
we focused on backgrounds where the pulse-shape of the scintillation light cannot be
exploited to identify the nature of the observed particle. This is a powerful technique
in LAr for a — 8 and n/~ separation using the time profile of the scintillation light
[37]. Still, for 8 particles the identification can only rely on the hit topology and the
pattern of ionization (charge) losses per hit. This situation comprises the two most
critical backgrounds at the MeV scale, both originating from the radioactive isotopes
of natural argon: single beta decay of “2Ar and pile-up events from 3°Ar.

The presence of radioactive isotopes in natural argon is considered the most serious
drawback of LAr detectors in low-energy physics and, in particular, to search for rare
events like WIMP interactions, the occurrence of neutrinoless double-beta decay, and
electron-neutrino scattering. Moderate-size LArTPC can be filled with underground
argon, which is depleted from radioactive isotopes, but the use of underground argon
represents a challenge to the scalability of LArTPC to masses comparable with DUNE
[38]. In particular, 3®Ar has a quite high natural abundance and contributes to an



intrinsic activity of natural argon of 1.01 & 0.08 Bq/kg [39]. This beta emitter has
a lifetime of 269 y. Its Q-value (0.56 MeV) is immaterial for the physics processes
considered in this paper (1-10 MeV) except in the occurrence of pile-up (83 events).
The same consideration holds for *?Ar, which contributes with a modest activity (6 x
10~° Bq/kg) and a sub-MeV Q-value (lifetime: 32.9 y). Unfortunately, the daughter
isotope of 4?Ar (42K) is a beta emitter in secular equilibrium with *?Ar and has a Q-
value of 3.525 MeV. It thus represents the leading background to search for neutrinoless
double-beta decay in DUNE [21].

ML-assisted identification algorithms are thus requested to separate single 8 from
double S events exploiting the hit information mentioned above within a given ROI.
For the sake of concreteness, we defined the true hypothesis considering the search for
neutrinoless double-beta decay in DUNE. The signal is, therefore, the occurrence of
two electrons with an energy deposit within an ROI centred at the Q-value of 36Xe.
The hypothesis is tested against a single electron, whose energy is located inside the
ROI. The comparison is performed among classification algorithms based on machine
learning and compared with deterministic algorithms as the blob method developed
by NEXT to address the same physics channel.

The performance of the classification techniques discussed in this paper is studied
using two samples of simulated events: one representing the background (3), consist-
ing of single electrons with energy equal to the 3%Xe Q-value, and a second made
of 136Xe neutrinoless double 3 decay events (33) generated with energy and angu-
lar correlations as in [40]. The primary particles (single or double electrons) are then
propagated inside a LAr volume using the Geant4 software package [41-43] and the
ionization energy loss simulated at each step is used to compute the number of ion-
ization electrons to be propagated to the anode. We account for electron diffusion
and recombination in liquid argon as described in Sec.4. For simplicity, we consider in
this work a pixel-based readout for it can highlight the impact of the system’s spatial
resolution on the classification performance more intuitively than a wire-based anode.

The pixel size and the lower limit on their threshold energy significantly affect the
quality of 8 and 33 events spatial reconstruction in a LArTPC. We accounted for these
experimental limitations by spatially downsampling the energy deposition profiles in
order to match a specific pixel size, removing the ones that don’t satisfy the energy
threshold requirement.

3 Classification models and feature extraction

In this study, we considered three methods for classifying 8 and 38 decays by using
three-dimensional tracking information extracted from a LArTPC. The first method
does not employ machine learning techniques and relies on a physics-informed extrac-
tion of highly discriminating features based on blob detection, i.e. energy depositions
in correspondence with the electron (or positron) trajectory endpoints. A variation
of this technique, which we will refer to as “blob method”, has already been applied
by the NEXT Collaboration [44] for the B-8f3 separation in a high-pressure *%Xe
gas TPC with satisfactory results for tracks of ~ 15 cm [45, 46]. The second and
third methods are Deep Learning architectures called Convolutional Neural Network



(CNN) [47] and Transformer-Encoder, a variant of the Transformer [48]. CNNs are
well-known models vastly applied in Computer Vision, while Transformers excel in
Natural Language Processing problems thanks to the mechanism of self-attention.
The NEXT Collaboration also developed CNN architectures [49] surpassing the blob
method for background rejection in the 3 analysis. In the present work, CNN and
Transformer solve the task of -4 binary classification with different feature process-
ing strategies: the CNN analyses hit positions and energies as a set of pictures, while
the Transformer treats hits energies and coordinates as sequences of correlated items.
Moreover, the CNN specialises in learning from local features (i.e. pixel structures in a
small neighbourhood) while the Transformer, due to its structure, captures both long
and short-range dependencies equally [50].

Within this framework, the blob method has been implemented to set a performance
benchmark in class separation with respect to the Deep Learning models, as well as
to investigate its limits at different granularities of the LArTPC charge readout. In
the following, we describe in more detail the characteristics of the blob method and
the Neural Network architectures employed in our analysis.

3.1 The blob method

Due to the inverse-square velocity dependence of the average ionization energy loss
per unit distance [51], ~ 1 MeV electrons release more of their energy when close to
their trajectory endpoint, forming a blob. This implies that the double-beta ionization
pattern will appear as a unique track in the LArTPC with two endpoint blobs, whereas
single-betas only feature one endpoint. We detected blob candidates by finding an
appropriate graph representation for each event and localizing the nodes corresponding
to the blob position using a Breadth-First Search (BFS) [52]. For a n-hits track, the
algorithm works as follows:

1. Assign every track hit to a graph node and connect every node pair corresponding
to adjacent hits with edges of unitary weights. Two hits are considered adjacent if
they share a surface, an edge or a vertex in the three-dimensional lattice.

2. Perform a BFS search to find the shortest path length between each pair of nodes
in the graph i, j for 7, j = 1, ...n. Let D be the symmetric n X n matrix collecting
the pairwise path length.

3. Find the indices i'j" such that Dy jy > D;; Vi=1,..n A i<j<n.

4. Associate the track endpoints (i.e. the candidate blobs centres) to the positions of
hits 7" and j’.

5. Sum the energies of all hits within a blob radius r from each centre, as depicted
in Fig. 1, obtaining the new variables Ep; and Ejps, where by is the more energetic
blob candidate: Ep; > Fpo.

For B3 events, both candidates are expected to be true blobs, hence Fy; ~ Ejps. On the
contrary, for 8 decays Epy should be significantly smaller than Ej;. These two variables
allow for establishing a two-feature background rejection criterion. By leveraging the
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Fig. 1: Workflow of the blob detection algorithm. The three-dimensional profile recon-
structed at the LArTPC (top) is transposed into the corresponding graph. The red
nodes represent the track endpoints, i.e. the candidate blob position (bottom left).
We then integrate hit energies within a radius r = 2 mm from the endpoints pair to
determine Ej; and Eps (bottom right).

Neyman-Pearson lemma [53], we employ the likelihood ratio as the test statistics:

_ P(Ew, By | BB)
1= "P(By, Bz | B) @

where P(Ep1, Evye | 88) and P(Ep, Eye | 8) are the probability distributions for an
event with Ep1, Fpe under the 88 and 8 hypothesis, respectively. These probabilities
are unknown a priori and we performed a data-driven estimation by sampling the
Ey, Eys distributions in the training dataset. Fig. 2 shows an example of Ey; and Eyo

feature distributions for the 8 and S0 classes.
Despite its simplicity, the blob method has two drawbacks:

® part of the track information is lost, i.e. only hits near the endpoints deliver feature
information.
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Fig. 2: Blob candidate energy distributions for the f class (top) and the 88 class
(bottom). Ep; and Epp are extracted from the three-dimensional LArTPC event recon-
struction considering a pixel size of 1 x 1 x 1 mm?® and a hit energy threshold of 50
keV. As expected, the 88 distribution centroid appears closer to the bisector than the
B’s one, allowing for class separation.

e the BFS fails in determining blob positions if the track reconstructed by the
LArTPC presents many gaps, for example due to inefficiencies or trigger require-
ments, like setting a lower limit energy threshold for the hits, as described in
Sec.4.

In addition, this method cannot be generalized to background reduction for other
physics channels.

3.2 Convolutional Neural Network

The fundamental building block of CNNs is the convolutional layer, which is a set of
back-propagation learnable filters, i.e. tensors which perform a convolution operation
on a fixed-size input. Thanks to a stack of convolutional layers, a CNN is able to process
hierarchical features that are significant for the learning process [54]. In addition to
convolutional layers, CNNs typically include pooling layers, which downsample the
feature maps to reduce the computational training cost of the network and limit
overfitting. Fully connected layers are then added to the network’s end to map the
high-level features to the desired output.

In order to define a scalable CNN architecture for the task of track classification
in LArTPC when higher readout granularity rapidly increases the input dimension,
we embedded the hit energy content into a three-dimensional tensor according to
their position in cartesian coordinates, setting all the other entries to zero. We then
integrated along the orthogonal axis X, Y, Z to get the three planar views (YZ, XZ
and XY planes, respectively). At the cost of a dispensable loss of information, this
allows the CNN to support a wide range of readout resolutions with fixed architecture
and hyperparameters, with manageable computational costs and resources (only two-
dimensional filters are needed), despite employing a large training dataset, containing
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Fig. 3: Convolutional Neural Network scheme. A batch of LArTPC events split into
three planar views are fed to two independent stacks of convolutional, batch normal-
ization [55] and dropout [56] layers. The stack outputs merge into a single array, which
passes through a fully connected layer. The output layer is a single neuron with a
sigmoid activation function, which returns a [0, 1] bounded network predictive score.
Each convolutional step comprises 25 filters with [3 x 3] dimensions, and all hidden
layers are equipped with LeakyReLU activations [57]. Dropout layers were inserted to
prevent overfitting of the model.

about 2 x 10 events. In this physics application, we were also able to remove the pool-
ing layers, which compromise the performance for the low granularity configurations.
Fig. 3 illustrates a schematic representation of the CNN architecture we designed for
this study.

3.3 Transformer and self-attention

The attention mechanism is the core of Transformers [48], which allows the model to
adaptively focus on specific parts of the input sequence, i.e. hits that are supposed to
carry more information than others for the classification task. In particular, we refer
to the Scaled Dot-Product attention [48] shown in equation 4. Given an ensemble
of input sequences, the self-attention mechanism computes a set of query (Q), key
(K), and value (V) matrices for each input sequence via fully-connected layers. These
matrices are then used to compute a weighted sum of the values, where the weights are
determined by the similarity between the query and key matrices. More specifically,
the attention weights for a given query matrix are computed as a softmax function
[58] over the dot products of the query and key matrices. The resulting weights are
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then used to compute a weighted sum of the value matrices, resulting in a context
vector [59, 60] that captures the most relevant information for the query.

The self-attention mechanism is often used in a multi-head configuration, where
multiple sets of query, key, and value matrices are computed in parallel. The resulting
context vectors from each head are concatenated and passed through a linear layer,
which combines the information from the different heads.

Transformers typically use an encoder-decoder architecture, which consists of an
encoder network that processes the input sequence and a decoder network that gen-
erates an output sequence. The encoder and decoder both use stacked self-attention
layers followed by feedforward layers and are connected by means of an additional
attention layer that computes the context vector based on the encoded input sequence.

For binary classification tasks, the network’s output simply consists of a single
prediction value. For this reason, we employed a simplified architecture consisting only
of the encoding part of the Transformer, with a stack of feed-forward layers mapping
the encoded state to the output. In this architecture, only self-attention is needed.
Self-attention is computed by:

Attention(Q, K, V) = softmax (?;g) V. (3)

Q = K = V are matrices € R%mode1Xd  where dpoqe1 is the embedding size and d,
the sequence length. The Transformer-Encoder we developed for this work is depicted
in Fig. 4. The Transformer-Encoder takes as input the full three-dimensional infor-
mation. LArTPC events are thus treated as weighted point clouds in which every
point corresponds to a hit position in space and the weight is determined by the hit
energy. The hit energy and position are fed to the network as a unique array per
event with four entries per hit (XYZ coordinates and its energy E). Zero-padding is
required for every training batch in order to preserve dimensions through a forward-
backwards pass. Compared to the traditional CNN, this Transformer implementation
allows for more efficient memory management, with faster training at higher spatial
resolutions. This is due to the fact that CNN needs to store progressively larger and
sparser two-dimensional tensors and suffers from the increase in dimensionality. The
Transformer-Encoder might emerge as a potential rival to tailored approaches such as
sparse CNNs, which already overcome the memory issues of CNNs in the classification
of GeV-scale events in LArTPCs [29].

4 Dataset and results

Particle ionization losses in liquid argon produce a number of charge carriers (electrons
and ions) that is proportional to the deposited energy. The carriers drift across the
medium thanks to the TPC electric field. LArTPCs enable three-dimensional tracking
by recording the signal induced by ionization electrons as they approach the anode
plane. The quality of the event reconstruction depends on the granularity of the read-
out system, i.e. the anode wire pitch or pixel size, and the sampling rate of the induced
signal. The latter determines the space precision along the drift coordinate Z. Few-
MeV tracking is also sensitive to the minimum detectable charge by the front-end

11
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Fig. 4: Transformer-Encoder scheme. LArTPC events consist of a collection of hits
(h1 ha, ... hy), where n can change for different events. Every hit comes with four
variables (three space coordinates and the hit energy), and the input vector size is 4m,
where m is the largest hit number for the events in the batch. The encoder consists of
three stacks of multi-head attention layers and fully-connected layers followed by batch
normalization and dropout. Each multi-head step comprises four parallel self-attention
heads. The encoder output is mapped into the final prediction, i.e. a single-neuron layer
with a sigmoid activation function. All hidden layers are equipped with LeakyReL.U
activations.

electronics as discussed in Sec.2. This limitation corresponds to an energy threshold
of several tens of keV per hit.

In this work, we considered the same signal sampling rate as DUNE (2 MHz [1]),
which corresponds to ~ 1 mm spatial resolution in the drift direction for an electric
field of E = 500 kV/cm. We then trained the classification models introduced in Sec.3
by varying the pixel size w at different energy thresholds F;.

The dataset consists of 2 x 10° events, equally split into the 3 and the 34 classes.
Event distances from the readout plane are uniformly distributed between 0 m and the
maximum drift length (3.5 m). Electron diffusion was taken into account by applying
longitudinal and transversal dispersions according to:

oy, = 2DLt (4)

or = /2Drt (5)

where Dy and Drp are longitudinal and transversal diffusion coefficients estimated
for liquid argon from empirical models [61] and ¢ is the drift time. We estimated a
maximum standard deviation of o7, ~ 1.7 mm and op & 2.3 mm, corresponding to an
event occurring at 3.5 m distance from the readout (maximum drift time). As noted
in Sec.2, we accounted for electron recombination by assuming an effective electron

12
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Fig. 5: Learning curves for the Convolutional Neural Network (left) and the
Transformer-Encoder (right), considering w = 1 mm and E; = 50 keV. The dashed
lines show the performance in the absence of dropout layers, while the solid lines
include the effect of dropout layers (inserted accordingly to Fig. 3 and 4), with a
dropout rate of 0.15 and 0.02 for the CNN and the Transfomer-Encoder, respectively.
We observe that in both cases the usage of dropout layers mitigates overfitting with-
out compromising the asymptotical validation accuracy.

lifetime of 7 = 30 ms. Note that recombination plays a marginal role in our study
since the maximum drift time (~ 2.2 ms) is much smaller than the electron lifetime.
This implies that the majority of electrons will reach the anode before undergoing
recombination.

For each training at a different pixel size and energy cutoff, we downsampled the
MC simulation track information by integrating the energy depositions into hits of
dimension w X w x 1 mm removing hits below the energy threshold. We trained each
model by randomly partitioning the dataset into 140000 events for training (70%),
30000 for validation (15%) and 30000 for testing (15%). To establish the model per-
formance, we chose the accuracy metric as the fraction of events correctly classified
by the model. For a balanced dataset, i.e. with the same number of samples for each
label, the accuracy value ranges between the rates of true 53 event acceptance and
the true 3 event rejection. The CNN and the Trasformer-Encoder training was car-
ried out with the Adam optimizer [62], a variant of the Stochastic Gradient Descent
(SGD), with an initial learning rate of 1073, The learning rate halves every 20 con-
secutive stall epochs, i.e. epochs in which the validation accuracy does not increase
with respect to the previous one. 50 epochs for the Transformer-Encoder and 40 for
the CNN ensure a stable convergence of the learning curves.

We note that in the case of no dropout layers, both models exhibit significant over-
fitting, approximatively after 15-20 epochs, especially at small pixel size (w). Including
dropout layers in our architecture is enough to minimise the occurrence of overfitting
to negligible levels. We also observe that a dropout rate of 0.15 is needed for the CNN,
while for the Transformer-Encoder, overfitting is prevented with a rate as small as
0.02. An example is shown in Fig. 5.
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Fig. 6: Accuracy of the Transformer-Encoder, the Convolutional Neural Network and
the blob method at different pixel sizes w with a 0.25 mm step applying a hit cutoff
energy of F; = 10 keV (a), 50 keV (b), 100 keV (c), 200 keV (d). The error bands
account for +2¢ statistical fluctuations.

Fig. 6 shows the classification accuracies of the blob method, the CNN, and the
Transformer-Encoder for the test set at different pixel sizes and energy threshold values
of 10, 50, 100, and 200 keV. It is important to notice that the average hit energy
content scales with its volume. Since we keep one dimension fixed (as we only vary
the pixel size and not the sampling frequency), the hit energies scale with w?. As a
consequence, the energy threshold has a bigger effect at low w.

Overall, the blob model is unable to reach Deep Learning-competitive performances
except for a handful of configurations with low-energy cutoffs and small pixel size (w
between 0.50 mm and 1.25 mm at 10 keV, w = 0.75 mm at 50 keV). As expected,
the blob model performs at its best when tracks are fine-grained and most of the hits
pass the energy threshold. The presence of gaps in the LArTPC track reconstruction
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severely affects the graph connections described in Sec. 3 and compromises the blob
candidate localization through the BFS algorithm. ML algorithms, instead, are much
more robust to gaps in traces, showing little to no accuracy losses where the blob
model fails.

Transformer-Encoder and CNN present a similar trend, especially at intermediate
to high pixel sizes. Their behaviour differentiates at the 1-2% level at w < 2.5 mm for
E; =10 keV and E; = 100 keV (CNN outperforms here) and w < 1.5 mm for Ey = 50
keV and E; = 200 (Transformer-Encoder performs better). This trend is justified by
the fact that more information is available when the number of hits increases and the
effectiveness of the Transformer-Encoder learning method results in slightly better
accuracy. We expect to gain further improvements in the classification accuracy for
both models at small w, employing a larger training dataset and ad hoc architecture
and hyperparameter optimization for each individual (w, E}) configuration. For larger
values of w, the analysis approaches the one-dimensional limit, as the time-axis alone
carries most of the information, narrowing the improvement margin.

The results also emphasize how the accuracy dependence on w flattens as Ej
increases. For F; = 200 keV, reducing w from w = 7.5 mm to w = 0.5 mm — a sub-
stantial increase of the LArTPC complexity and cost — the rate of correctly classified
events improves by just 10%, going from 60% to 70%.

Fig. 7 shows the Receiver Operating Characteristic (ROC) curves for each of the
classification models and the corresponding Area Under Curve (AUC) evaluation met-
ric [63], providing more complete information on two significant granularity-threshold
combinations (w = 5 mm, E; = 200 keV and w = 1 mm, E; = 50 keV) in terms
of tradeoffs between signal and background acceptances. The first one (Fig.7a) corre-
sponds to a regime comparable to the ones expected for FD1 HD and FD2 VD module,
while the second one (Fig.7b) to an optimal, yet achievable configuration (see Sec.2).
In the first scenario, the ML techniques exhibit an overall superior performance with
respect to the blob method. However, when setting a working point with high 83
selection efficiency (resulting, in turn, in a lower background rejection rate), all three
models demonstrate comparable capabilities. Such a working point is the typical choice
when searching for rare events in the presence of a dominant background, as would
be the OvB3 process. Conversely, in the lower-resolution, high-threshold scenario, the
ML models consistently outperform the blob method across all working points.

Machine learning techniques offer additional insight with respect to classic algo-
rithms when detector optimization studies are considered. Both the CNN and
Transformer-based classification algorithms point toward the prominence of readout
electronics over granularity for sufficiently small values of w. This is an important
finding since the increase of granularity in large-volume LArTPC is a major technical
challenge. Such an increase does not represent a viable option for w < 1 mm due to
the increase in the number of channels and the data throughput, while a reduction of
E; at the level of a few tens of keV is well within reach of current technologies.

At E, = 100 keV and lower, the improvement in accuracy achievable by lowering
w is prominent and drives the accuracy metric of the 5 vs 83 classification.
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Fig. 7: ROC curves on a test dataset for Transformer-Encoder, CNN and blob models,
displaying the tradeoff between the True Positive Ratio, defined as the fraction of
correctly classified 8 events over the totality of them, and the False Positive Rate
which corresponds to the fraction of 8 events erroneously classified as 55. The two
panels refer to different resolution-threshold conditions.

5 Conclusions

In this paper, we discussed the performance of two major classes of machine learning
algorithms for the identification of low-energy events in liquid argon and compared
these findings with the performance of conventional techniques. In particular, we
focused our attention on the most challenging classification problem, the discrimina-
tion of single 3 versus 8 events. We thus used as a benchmark the blob deterministic
method developed by the NEXT Collaboration for the identification of neutrinoless
double-beta decay modified to operate in a LArTPC. Both classes of machine learning
algorithms - Convolutional Neural Networks and Transformer-Encoder - outperforms
the blob algorithm. The CNN and transformer performance are comparable in most
of the detector parameter space (see Fig. 6). Overfitting is mitigated in both cases
by a dropout layer and is negligible even for small values of the pixel size w. Still,
the Transformer-Encoder is more memory-efficient and robust against overfitting even
with a dropout rate as small as 0.02. ML-assisted techniques are particularly effective
for detector optimization studies since the redefinition of conventional algorithms in a
broad detector parameter phase space is very cumbersome. The CNN and Transformer-
based classification algorithms point toward the prominence of readout electronics
over granularity for sufficiently small values of w. This is an important finding since
the increase of granularity in large-volume LArTPC is a major technical challenge,
while a reduction of E; at the level of a few tens of keV is well within reach of current
technologies.
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