跳转到内容

瓦螨敏感卫生

维基百科,自由的百科全书
(重定向自VSH

瓦螨敏感卫生(Varroa sensitive hygiene,VSH)是蜜蜂抗击瓦螨的一种行为机制。最初称为抑制瓦螨繁殖( Suppressed mite reproduction,SMR[1][2]。具有VSH行为的蜂群能够检测并清除更多感染蜂螨的蜜蜂后代,从而有效降低瓦螨种群数量,使蜂群免受其危害。[3]

VSH行为的特征主要包括检测、开盖、清除感染蜂螨的幼虫及其身上寄生的蜂螨[2]

行为调控机制

[编辑]

VSH行为的触发受到多种因素的调控,包括瓦螨身上的化学线索、感染密度、巢房周围环境等。此外,蜂群的强弱、不同抗螨行为之间的互作也会影响VSH行为的触发。[2]

瓦螨身上的化学线索以及感染蜂螨幼虫或时释放的化合物是触发VSH行为的主要因素[4][5]。研究发现,特定化合物的混合物能够有效地触发VSH行为[6],而具有VSH行为的蜜蜂对相关化学物质显示出左右触角不对称的气味反应[7]

通过基因组测序等方法,研究人员发现多个基因在VSH行为中发挥重要作用[8]。这些基因的表达调控与蜜蜂对瓦螨的抵抗力密切相关[2]

抗螨蜜蜂遗传育种

[编辑]

抗性蜜蜂的培育是一项可持续的瓦螨防治措施[9]。通过遗传育种,可以培育出具有VSH特性的蜂群,从而增加蜜蜂对瓦螨的抵抗力[10]。这种育种工作需要合适的测试性状和育种计划的有效协调,以及田间条件测试的遗传力和实用性为出发点,结合当地实际情况进行综合考虑[11]

参考文献

[编辑]
  1. ^ Harbo, John R; Harris, Jeffrey W. Suppressed mite reproduction explained by the behaviour of adult bees. Journal of Apicultural Research. 2005-01, 44 (1): 21–23. doi:10.1080/00218839.2005.11101141. 
  2. ^ 2.0 2.1 2.2 2.3 张立富; 韩日畴, 李文峰. 蜜蜂瓦螨敏感卫生行为研究进展. 环境昆虫学报. 2023, 45 (3): 631–638 [2024-03-20]. 
  3. ^ Harbo, John R.; Harris, Jeffrey W. Responses to Varroa by honey bees with different levels of Varroa Sensitive Hygiene. Journal of Apicultural Research. 2009-01, 48 (3): 156–161. doi:10.3896/IBRA.1.48.3.02. 
  4. ^ Rosenkranz, Peter; Tewarson, Naresh C; Singh, Anirud; Engels, Wolf. Differential hygienic behaviour towards Varroa jacobsoni in capped worker brood of Apis cerana depends on alien scent adhering to the mites. Journal of Apicultural Research. 1993-01, 32 (2): 89–93. doi:10.1080/00218839.1993.11101292. 
  5. ^ Wagoner, KM; Spivak, M; Rueppell, O. Brood Affects Hygienic Behavior in the Honey Bee (Hymenoptera: Apidae).. Journal of economic entomology. 2018-12-14, 111 (6): 2520–2530. PMID 30212863. doi:10.1093/jee/toy266. 
  6. ^ Wagoner, K; Millar, JG; Keller, J; Bello, J; Waiker, P; Schal, C; Spivak, M; Rueppell, O. Hygiene-Eliciting Brood Semiochemicals as a Tool for Assaying Honey Bee (Hymenoptera: Apidae) Colony Resistance to Varroa (Mesostigmata: Varroidae).. Journal of insect science (Online). 2021-11-01, 21 (6). PMID 34723332. doi:10.1093/jisesa/ieab064. 
  7. ^ Mondet, F; Blanchard, S; Barthes, N; Beslay, D; Bordier, C; Costagliola, G; Hervé, MR; Lapeyre, B; Kim, SH; Basso, B; Mercer, AR; Le Conte, Y. Chemical detection triggers honey bee defense against a destructive parasitic threat.. Nature chemical biology. 2021-05, 17 (5): 524–530. PMID 33495646. doi:10.1038/s41589-020-00720-3. 
  8. ^ Le Conte, Y; Alaux, C; Martin, JF; Harbo, JR; Harris, JW; Dantec, C; Séverac, D; Cros-Arteil, S; Navajas, M. Social immunity in honeybees (Apis mellifera): transcriptome analysis of varroa-hygienic behaviour.. Insect molecular biology. 2011-06, 20 (3): 399–408. PMID 21435061. doi:10.1111/j.1365-2583.2011.01074.x. 
  9. ^ Guichard, M; Dietemann, V; Neuditschko, M; Dainat, B. Advances and perspectives in selecting resistance traits against the parasitic mite Varroa destructor in honey bees.. Genetics, selection, evolution : GSE. 2020-11-27, 52 (1): 71. PMID 33246402. doi:10.1186/s12711-020-00591-1. 
  10. ^ Harbo, JR; Harris, JW. Resistance to Varroa destructor (Mesostigmata: Varroidae) when mite-resistant queen honey bees (Hymenoptera: Apidae) were free-mated with unselected drones.. Journal of economic entomology. 2001-12, 94 (6): 1319–23. PMID 11777031. doi:10.1603/0022-0493-94.6.1319. 
  11. ^ Büchler, Ralph; Berg, Stefan; Le Conte, Yves. Breeding for resistance to Varroa destructor in Europe. Apidologie. 2010-05, 41 (3): 393–408. doi:10.1051/apido/2010011.