跳转到内容

离子半径:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
无编辑摘要
Davidw017留言 | 贡献
translation
第9行: 第9行:
经过1976年对晶体数据的校对,一份修订版的离子半径数据被公布<ref name="Shannon">''Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides'' Shannon R.D. Acta Cryst. A32 751-767 (1976) {{doi|10.1107/S0567739476001551}}</ref>,而这份新数据比Pauling的原始数据更好。部分数据保留了Pauling所采用的''r''<sub>ion</sub>(O<sup>2−</sup>)&nbsp;= 140&nbsp;pm作为其他离子半径的基础,而另一部分数据则以''r''<sub>ion</sub>(O<sup>2−</sup>)&nbsp;= 126&nbsp;pm作为其他离子半径的基础。后者被认为更加接近离子晶体中准确的正负离子相对大小。
经过1976年对晶体数据的校对,一份修订版的离子半径数据被公布<ref name="Shannon">''Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides'' Shannon R.D. Acta Cryst. A32 751-767 (1976) {{doi|10.1107/S0567739476001551}}</ref>,而这份新数据比Pauling的原始数据更好。部分数据保留了Pauling所采用的''r''<sub>ion</sub>(O<sup>2−</sup>)&nbsp;= 140&nbsp;pm作为其他离子半径的基础,而另一部分数据则以''r''<sub>ion</sub>(O<sup>2−</sup>)&nbsp;= 126&nbsp;pm作为其他离子半径的基础。后者被认为更加接近离子晶体中准确的正负离子相对大小。


对于某一个给定的离子来说,它的离子半径并不是一定的,而是随[[配位数]]、[[自旋态]]和其它因素而发生变化。尽管如此,离子半径仍体现一定的周期性。与原子半径的变化情况相反,在一个周期中,离子半径通常随原子序数的增大而减小。离子的大小(对某个确定的离子)随配位数的增多而增大。另外,一个高自旋态的离子要比该离子在低自旋态时的半径要大。一个原子负离子态通常要比其对应的正离子态的半径要大,但某些[[碱金属]]的[[氟]]化物并不遵从如此规律。总体来说,离子半径随正电荷的增多而增多,随负电荷的增多而减少。
The ionic radius is not a fixed property of a given ion, but varies with [[coordination number]], [[spin states (d electrons)|spin state]] and other parameters. Nevertheless, ionic radius values are sufficiently [[Transferability|transferable]] to allow [[Periodicity|periodic trends]] to be recognized. As with other types of [[atomic radius]], ionic radii increase on descending a [[Periodic table group|group]]. Ionic size (for the same ion) also increases with increasing coordination number, and an ion in a [[spin states (d electrons)|high-spin]] state will be larger than the same ion in a [[low-spin]] state. Anions (negatively charged) are almost invariable larger than cations (positively charged), although the [[fluoride]]s of some [[alkali metal]]s are rare exceptions. In general, ionic radius decreases with increasing positive charge and increases with increasing negative charge.


{| class="wikitable" align=right width=200px
{| class="wikitable" align=right width=200px

2009年6月24日 (三) 14:48的版本

离子半径rion)是对晶格离子的大小的一种量度。离子半径以皮米(pm)或(Å)中的一种为单位(1Å=100pm)。通常,离子半径常在30pm(0.3Å)到200pm(2Å)之间。

离子半径的概念是由Goldschmidt和Linus Pauling在20世纪20年代分别独立提出,以总结由当时的新技术——X射线晶体学所产生的数据。Pauling所提出的方法更有影响力。X射线晶体学可以迅速给出一个晶胞的各边长度,但这一技术在大多数情况下并不能够分别两个不同的离子。例如,我们可以通过X射线晶体学得知氯化钠晶体晶胞的边长是564.02 pm,而这一长度是一个钠离子与一个氯离子中心间距离的两倍:

2[rion(Na+) + rion(Cl)] = 564.02 pm

然而,我们无法看出这一长度中钠离子半径和氯离子半径各自所占的比例。通过对多种不同化合物的比较和一定的直觉,Pauling将O2−的半径定为140 pm,并由此进一步计算其他离子的半径。[1]


经过1976年对晶体数据的校对,一份修订版的离子半径数据被公布[2],而这份新数据比Pauling的原始数据更好。部分数据保留了Pauling所采用的rion(O2−) = 140 pm作为其他离子半径的基础,而另一部分数据则以rion(O2−) = 126 pm作为其他离子半径的基础。后者被认为更加接近离子晶体中准确的正负离子相对大小。

对于某一个给定的离子来说,它的离子半径并不是一定的,而是随配位数自旋态和其它因素而发生变化。尽管如此,离子半径仍体现一定的周期性。与原子半径的变化情况相反,在一个周期中,离子半径通常随原子序数的增大而减小。离子的大小(对某个确定的离子)随配位数的增多而增大。另外,一个高自旋态的离子要比该离子在低自旋态时的半径要大。一个原子负离子态通常要比其对应的正离子态的半径要大,但某些碱金属化物并不遵从如此规律。总体来说,离子半径随正电荷的增多而增多,随负电荷的增多而减少。

X NaX AgX
F 464 492
Cl 564 555
Br 598 577
Unit cell parameters (in pm, equal to two M–X bond lengths) for sodium and silver halides. All compounds crystallize in the NaCl structure.

An "anomalous" ionic radius in a crystal is often a sign of significant covalent character in the bonding. No bond is completely ionic, and some supposedly "ionic" compounds, especially of the transition metals, are particularly covalent in character. This is illustrated by the unit cell parameters for sodium and silver halides in the table. On the basis of the fluorides, one would say that Ag+ is larger than Na+, but on the basis of the chlorides and bromides the opposite appears to be true.[3] This is because the greater covalent character of the bonds in AgCl and AgBr reduces the bond length and hence the apparent ionic radius of Ag+, an effect which is not present in the halides of the more electropositive sodium, nor in silver fluoride in which the fluoride ion is relatively unpolarizable.

Ionic radii 6 coordinate unless marked
(e.g +34). ls = low spin, hs= high spin. [2]
原子序数 元素名称 元素符号 离子半径pm
3 Li
+1 76
4 Be
+2 45
5 B
+3 27
6 C
+4 16
7 N
−34 146
+3 16
+5 13
8 O
−2 140
9 F
−1 133
+7 8
11 Na
+1 102
12 Mg
+2 72
13 Al
+3 53.5
14 Si
+4 40
15 P
+3 44
+5 38
16 S
−2 184
+4 37
+6 29
17 Cl
−1 181
+5 12
+7 27
19 K
+1 138
20 Ca
+2 100
21 Sc
+3 74.5
22 Ti
+2 86
+3 67
+4 60.5
23 V
+2 64
+4 58
+5 54
24 Cr
+2 73 ls
+2 80 hs
+3 61.5
+4 55
+5 49
+6 44
25 Mn
+2 67
+3 58 ls
+3 64.5 hs
+4 53
+54 33
+64 25.5
+7 46
26 Fe
+2 61 ls
+2 78 hs
+3 55 ls
+3 64.5 hs
+4 58.5
+64 25
27 Co
+2 65 ls
+2 74.5 hs
+3 54.5 ls
+3 61 hs
+4 53
28 Ni
+2 69
+3 56 ls
+3 60 hs
+4 48 ls
29 Cu
+1 77
+2 73
+3 54 ls
30 Zn
+2 74
31 Ga
+3 62
32 Ge
+2 73
+4 53
33 As
+3 58
+5 46
34 Se
−2 198
+4 50
+6 42
35 Br
−1 196
+34sq 59
+54 31
+7 39
37 Rb
+1 152
38 Sr
+2 118
39 Y
+3 90
40 Zr
+4 72
41 Nb
+3 72
+4 68
+5 64
42 Mo
+3 69
+4 65
+5 61
+6 59
43 Tc
+4 64.5
+5 60
+7 56
44 Ru
+3 68
+4 62
+5 56.5
+74 38
+84 36
45 Rh
+3 66.5
+4 60
+5 55
46 Pd
+12 59
+2 86
+3 76
+4 61.5
47 Ag
+1 115
+2 94
+3 75
48 Cd
+2 95
49 In
+3 80
50 Sn
+2 112[來源請求]
+4 69
51 Sb
+3 76
+5 60
52 Te
−2 221
+4 97
+6 56
53 I
−1 220
+5 95
+7 53
54 Xe
+8 48
55 Cs
+1 167
56 Ba
+2 135
57 La
+3 103.2
58 Ce
+3 102
+4 87
59 Pr
+3 99
+4 85
60 Nd
+28 129
+3 98.3
61 Pm
+3 97
62 Sm
+24 122
+3 95.8
63 Eu
+2 117
+3 94.7
64 Gd
+3 93.8
65 Tb
+3 92.3
+4 76
66 Dy
+2 107
+3 91.2
67 Ho
+3 90.1
68 Er
+3 89
69 Tm
+2 103
+3 88
70 Yb
+2 102
+3 86.8
71 Lu
+3 86.1
72 Hf
+4 71
73 Ta
+3 72
+4 68
+5 64
74 W
+4 66
+5 62
+6 60
75 Re
+4 63
+5 58
+6 55
+7 53
76 Os
+4 63
+5 57.5
+6 54.5
+7 52.5
+84 39
77 Ir
+3 68
+4 62.5
+5 57
78 Pt
+2 86
+4 62.5
+5 57
79 Au
+1 137
+3 85
+5 57
80 Hg
+1 119
+2 102
81 Tl
+1 150
+3 88.5
82 Pb
+2 119
+4 77.5
83 Bi
+3 103
+5 76
84 Po
+4 94
+6 67
85 At
+7 62
87 Fr
+1 180
88 Ra
+28 148
89 Ac
+3 112
90 Th
+4 94
91 Pa
+3 104
+4 90
+5 78
92 U
+3 102.5
+4 89
+5 78
+6 73
93 Np
+2 110
+3 101
+4 87
+5 75
+6 72
+7 71
94 Pu
+3 100
+4 86
+5 74
+6 71
95 Am
+28 126
+3 97.5
+4 85
96 Cm
+3 97
+4 85
97 Bk
+3 96
+4 83
98 Cf
+3 95
+4 82.1

See also

References

  1. ^ Pauling, L. (1960). The Nature of the Chemical Bond (3rd Edn.). Ithaca, NY: Cornell University Press.
  2. ^ 2.0 2.1 Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides Shannon R.D. Acta Cryst. A32 751-767 (1976) doi:10.1107/S0567739476001551
  3. ^ On the basis of conventional ionic radii, Ag+ (129 pm) is indeed larger than Na+ (116 pm)