tfma.metrics.MaxRecall
Stay organized with collections
Save and categorize content based on your preferences.
Computes the max recall of the predictions with respect to the labels.
Inherits From: Recall
, Metric
tfma.metrics.MaxRecall(
top_k: Optional[int] = None,
class_id: Optional[int] = None,
name: Optional[str] = None,
**kwargs
)
The metric uses true positives and false negatives to compute recall by
dividing the true positives by the sum of true positives and false negatives.
Effectively the recall at threshold = epsilon(1.0e-12). It is equilvalent
to the recall defined in COCO metrics.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Args |
top_k
|
(Optional) Used with a multi-class model to specify that the top-k
values should be used to compute the confusion matrix. The net effect is
that the non-top-k values are set to -inf and the matrix is then
constructed from the average TP, FP, TN, FN across the classes. When
top_k is used, metrics_specs.binarize settings must not be present. Only
one of class_id or top_k should be configured. When top_k is set, the
default thresholds are [float('-inf')].
|
class_id
|
(Optional) Used with a multi-class model to specify which class
to compute the confusion matrix for. When class_id is used,
metrics_specs.binarize settings must not be present. Only one of
class_id or top_k should be configured.
|
name
|
(Optional) string name of the metric instance.
|
**kwargs
|
(Optional) Additional args to pass along to init (and eventually
on to _metric_computation and _metric_value)
|
Attributes |
compute_confidence_interval
|
Whether to compute confidence intervals for this metric.
Note that this may not completely remove the computational overhead
involved in computing a given metric. This is only respected by the
jackknife confidence interval method.
|
Methods
computations
View source
computations(
eval_config: Optional[tfma.EvalConfig
] = None,
schema: Optional[schema_pb2.Schema] = None,
model_names: Optional[List[str]] = None,
output_names: Optional[List[str]] = None,
sub_keys: Optional[List[Optional[SubKey]]] = None,
aggregation_type: Optional[AggregationType] = None,
class_weights: Optional[Dict[int, float]] = None,
example_weighted: bool = False,
query_key: Optional[str] = None
) -> tfma.metrics.MetricComputations
Creates computations associated with metric.
from_config
View source
@classmethod
from_config(
config: Dict[str, Any]
) -> 'Metric'
get_config
View source
get_config() -> Dict[str, Any]
Returns serializable config.
result
View source
result(
tp: float, tn: float, fp: float, fn: float
) -> float
Function for computing metric value from TP, TN, FP, FN values.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-04-26 UTC.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Missing the information I need","missingTheInformationINeed","thumb-down"],["Too complicated / too many steps","tooComplicatedTooManySteps","thumb-down"],["Out of date","outOfDate","thumb-down"],["Samples / code issue","samplesCodeIssue","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-04-26 UTC."],[],[],null,["# tfma.metrics.MaxRecall\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/model-analysis/blob/v0.46.0/tensorflow_model_analysis/metrics/confusion_matrix_metrics.py#L2340-L2384) |\n\nComputes the max recall of the predictions with respect to the labels.\n\nInherits From: [`Recall`](../../tfma/metrics/Recall), [`Metric`](../../tfma/metrics/Metric) \n\n tfma.metrics.MaxRecall(\n top_k: Optional[int] = None,\n class_id: Optional[int] = None,\n name: Optional[str] = None,\n **kwargs\n )\n\nThe metric uses true positives and false negatives to compute recall by\ndividing the true positives by the sum of true positives and false negatives.\n\nEffectively the recall at threshold = epsilon(1.0e-12). It is equilvalent\nto the recall defined in COCO metrics.\n\nIf `sample_weight` is `None`, weights default to 1.\nUse `sample_weight` of 0 to mask values.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `top_k` | (Optional) Used with a multi-class model to specify that the top-k values should be used to compute the confusion matrix. The net effect is that the non-top-k values are set to -inf and the matrix is then constructed from the average TP, FP, TN, FN across the classes. When top_k is used, metrics_specs.binarize settings must not be present. Only one of class_id or top_k should be configured. When top_k is set, the default thresholds are \\[float('-inf')\\]. |\n| `class_id` | (Optional) Used with a multi-class model to specify which class to compute the confusion matrix for. When class_id is used, metrics_specs.binarize settings must not be present. Only one of class_id or top_k should be configured. |\n| `name` | (Optional) string name of the metric instance. |\n| `**kwargs` | (Optional) Additional args to pass along to init (and eventually on to _metric_computation and _metric_value) |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `compute_confidence_interval` | Whether to compute confidence intervals for this metric. \u003cbr /\u003e Note that this may not completely remove the computational overhead involved in computing a given metric. This is only respected by the jackknife confidence interval method. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `computations`\n\n[View source](https://github.com/tensorflow/model-analysis/blob/v0.46.0/tensorflow_model_analysis/metrics/metric_types.py#L862-L888) \n\n computations(\n eval_config: Optional[../../tfma/EvalConfig] = None,\n schema: Optional[schema_pb2.Schema] = None,\n model_names: Optional[List[str]] = None,\n output_names: Optional[List[str]] = None,\n sub_keys: Optional[List[Optional[SubKey]]] = None,\n aggregation_type: Optional[AggregationType] = None,\n class_weights: Optional[Dict[int, float]] = None,\n example_weighted: bool = False,\n query_key: Optional[str] = None\n ) -\u003e ../../tfma/metrics/MetricComputations\n\nCreates computations associated with metric.\n\n### `from_config`\n\n[View source](https://github.com/tensorflow/model-analysis/blob/v0.46.0/tensorflow_model_analysis/metrics/metric_types.py#L842-L847) \n\n @classmethod\n from_config(\n config: Dict[str, Any]\n ) -\u003e 'Metric'\n\n### `get_config`\n\n[View source](https://github.com/tensorflow/model-analysis/blob/v0.46.0/tensorflow_model_analysis/metrics/confusion_matrix_metrics.py#L252-L262) \n\n get_config() -\u003e Dict[str, Any]\n\nReturns serializable config.\n\n### `result`\n\n[View source](https://github.com/tensorflow/model-analysis/blob/v0.46.0/tensorflow_model_analysis/metrics/confusion_matrix_metrics.py#L1354-L1356) \n\n result(\n tp: float, tn: float, fp: float, fn: float\n ) -\u003e float\n\nFunction for computing metric value from TP, TN, FP, FN values."]]