1
|
Quesenberry PJ, Goldberg LR, Aliotta JM,
Dooner MS, Pereira MG, Wen S and Camussi G: Cellular phenotype and
extracellular vesicles: basic and clinical considerations. Stem
Cells Dev. 23:1429–1436. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ratajczak J, Wysoczynski M, Hayek F,
Janowska-Wieczorek A and Ratajczak MZ: Membrane-derived
microvesicles: important and underappreciated mediators of
cell-to-cell communication. Leukemia. 20:1487–1495. 2006.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Théry C, Ostrowski M and Segura E:
Membrane vesicles as conveyors of immune responses. Nat Rev
Immunol. 9:581–593. 2009. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Lee TH, D'Asti E, Magnus N, Al-Nedawi K,
Meehan B and Rak J: Microvesicles as mediators of intercellular
communication in cancer - the emerging science of cellular
'debris'. Semin Immunopathol. 33:455–467. 2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cocucci E, Racchetti G and Meldolesi J:
Shedding microvesicles: artefacts no more. Trends Cell Biol.
19:43–51. 2009. View Article : Google Scholar : PubMed/NCBI
|
6
|
Colombo M, Raposo G and Théry C:
Biogenesis, secretion, and intercellular interactions of exosomes
and other extracellular vesicles. Annu Rev Cell Dev Biol.
30:255–289. 2014. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gould SJ and Raposo G: As we wait: coping
with an imperfect nomenclature for extracellular vesicles. J
Extracell Vesicles. 2:Feb 15–2013.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chen X, Liang H, Zhang J, Zen K and Zhang
CY: Secreted microRNAs: a new form of intercellular communication.
Trends Cell Biol. 22:125–132. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang K, Zhang S, Weber J, Baxter D and
Galas DJ: Export of microRNAs and microRNA-protective protein by
mammalian cells. Nucleic Acids Res. 38:7248–7259. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gallo A, Tandon M, Alevizos I and Illei
GG: The majority of microRNAs detectable in serum and saliva is
concentrated in exosomes. PLoS One. 7:e306792012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Ratajczak J, Miekus K, Kucia M, Zhang J,
Reca R, Dvorak P and Ratajczak MZ: Embryonic stem cell-derived
microvesicles reprogram hematopoietic progenitors: evidence for
horizontal transfer of mRNA and protein delivery. Leukemia.
20:847–856. 2006. View Article : Google Scholar : PubMed/NCBI
|
12
|
Deregibus MC, Cantaluppi V, Calogero R, Lo
Iacono M, Tetta C, Biancone L, Bruno S, Bussolati B and Camussi G:
Endothelial progenitor cell derived microvesicles activate an
angiogenic program in endothelial cells by a horizontal transfer of
mRNA. Blood. 110:2440–2448. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Valadi H, Ekström K, Bossios A, Sjöstrand
M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol. 9:654–659. 2007. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Collino F, Deregibus MC, Bruno S, Sterpone
L, Aghemo G, Viltono L, Tetta C and Camussi G: Microvesicles
derived from adult human bone marrow and tissue specific
mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS
One. 5:e118032010. View Article : Google Scholar : PubMed/NCBI
|
15
|
Aliotta JM, Sanchez-Guijo FM, Dooner GJ,
Johnson KW, Dooner MS, Greer KA, Greer D, Pimentel J, Kolankiewicz
LM, Puente N, et al: Alteration of marrow cell gene expression,
protein production, and engraftment into lung by lung-derived
microvesicles: a novel mechanism for phenotype modulation. Stem
Cells. 25:2245–2256. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Gibbings D, Leblanc P, Jay F, Pontier D,
Michel F, Schwab Y, Alais S, Lagrange T and Voinnet O: Human prion
protein binds Argonaute and promotes accumulation of microRNA
effector complexes. Nat Struct Mol Biol. 19:517–524. S12012.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Laver JD, Li X, Ancevicius K, Westwood JT,
Smibert CA, Morris QD and Lipshitz HD: Genome-wide analysis of
Staufen-associated mRNAs identifies secondary structures that
confer target specificity. Nucleic Acids Res. 41:9438–9460. 2013.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Waris S, Wilce MC and Wilce JA: RNA
recognition and stress granule formation by TIA proteins. Int J Mol
Sci. 15:23377–23388. 2014. View Article : Google Scholar : PubMed/NCBI
|
19
|
Höck J and Meister G: The Argonaute
protein family. Genome Biol. 9(210)2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Herrera MB, Fonsato V, Bruno S, Grange C,
Gilbo N, Romagnoli R, Tetta C and Camussi G: Human liver stem cells
improve liver injury in a model of fulminant liver failure.
Hepatology. 57:311–319. 2013. View Article : Google Scholar
|
21
|
Herrera MB, Fonsato V, Gatti S, Deregibus
MC, Sordi A, Cantarella D, Calogero R, Bussolati B, Tetta C and
Camussi G: Human liver stem cell-derived microvesicles accelerate
hepatic regeneration in hepatectomized rats. J Cell Mol Med.
14:1605–1618. 2010. View Article : Google Scholar
|
22
|
Herrera MB, Bruno S, Buttiglieri S, Tetta
C, Gatti S, Deregibus MC, Bussolati B and Camussi G: Isolation and
characterization of a stem cell population from adult human liver.
Stem Cells. 24:2840–2850. 2006. View Article : Google Scholar : PubMed/NCBI
|
23
|
Fonsato V, Collino F, Herrera MB,
Cavallari C, Deregibus MC, Cisterna B, Bruno S, Romagnoli R,
Salizzoni M, Tetta C and Camussi G: Human liver stem cell-derived
microvesicles inhibit hepatoma growth in SCID mice by delivering
antitumor microRNAs. Stem cells. 30:1985–1998. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Martin-Serrano J, Yarovoy A,
Perez-Caballero D and Bieniasz PD: Divergent retroviral
late-budding domains recruit vacuolar protein sorting factors by
using alternative adaptor proteins. Proc Natl Acad Sci USA.
100:12414–12419. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Baietti MF, Zhang Z, Mortier E, Melchior
A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C,
Vermeiren E, et al: Syndecan-syntenin-ALIX regulates the biogenesis
of exosomes. Nat Cell Biol. 14:677–685. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Roucourt B, Meeussen S, Bao J, Zimmermann
P and David G: Heparanase activates the syndecan-syntenin-ALIX
exosome pathway. Cell Res. 25:412–428. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ghossoub R, Lembo F, Rubio A, Gaillard CB,
Bouchet J, Vitale N, Slavík J, Machala M and Zimmermann P:
Syntenin-ALIX exosome biogenesis and budding into multivesicular
bodies are controlled by ARF6 and PLD2. Nat Commun. 5(3477)2014.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Missotten M, Nichols A, Rieger K and
Sadoul R: Alix, a novel mouse protein undergoing calcium-dependent
interaction with the apoptosis-linked-gene 2 (ALG-2) protein. Cell
Death Differ. 6:124–129. 1999. View Article : Google Scholar : PubMed/NCBI
|
29
|
Odorizzi G, Katzmann DJ, Babst M, Audhya A
and Emr SD: Bro1 is an endosome-associated protein that functions
in the MVB pathway in Saccharomyces cerevisiae. J Cell Sci.
116:1893–1903. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Schmidt MH, Hoeller D, Yu J, Furnari FB,
Cavenee WK, Dikic I and Bögler O: Alix/AIP1 antagonizes epidermal
growth factor receptor downregulation by the Cbl-SETA/CIN85
complex. Mol Cell Biol. 24:8981–8993. 2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Strack B, Calistri A, Craig S, Popova E
and Göttlinger HG: AIP1/ALIX is a binding partner for HIV-1 p6 and
EIAV p9 functioning in virus budding. Cell. 114:689–699. 2003.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Sette P, Dussupt V and Bouamr F:
Identification of the HIV-1 NC binding interface in Alix Bro1
reveals a role for RNA. J Virol. 86:11608–11615. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Morita E, Sandrin V, Chung HY, Morham SG,
Gygi SP, Rodesch CK and Sundquist WI: Human ESCRT and ALIX proteins
interact with proteins of the midbody and function in cytokinesis.
EMBO J. 26:4215–4227. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Dragovic RA, Gardiner C, Brooks AS,
Tannetta DS, Ferguson DJ, Hole P, Carr B, Redman CW, Harris AL,
Dobson PJ, et al: Sizing and phenotyping of cellular vesicles using
Nanoparticle Tracking Analysis. Nanomedicine. 7:780–788. 2011.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Lopatina T, Bruno S, Tetta C, Kalinina N,
Porta M and Camussi G: Platelet-derived growth factor regulates the
secretion of extracellular vesicles by adipose mesenchymal stem
cells and enhances their angiogenic potential. Cell Commun Signal.
12(26)2014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Deregibus MC, Buttiglieri S, Russo S,
Bussolati B and Camussi G: CD40-dependent activation of
phosphatidylinositol 3-kinase/Akt pathway mediates endothelial cell
survival and in vitro angiogenesis. J Biol Chem. 278:18008–18014.
2003. View Article : Google Scholar : PubMed/NCBI
|
37
|
Anderson P and Kedersha N: RNA granules. J
Cell Biol. 172:803–808. 2006. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lin J, Li J, Huang B, Liu J, Chen X, Chen
XM, Xu YM, Huang LF and Wang XZ: Exosomes: novel biomarkers for
clinical diagnosis. Scientific World Journal. 2015(657086)2015.
View Article : Google Scholar
|
39
|
Katoh M: Therapeutics targeting
angiogenesis: genetics and epigenetics, extracellular miRNAs and
signaling networks (Review). Int J Mol Med. 32:763–767.
2013.PubMed/NCBI
|
40
|
Chaput N and Théry C: Exosomes: Immune
properties and potential clinical implementations. Semin
Immunopathol. 33:419–440. 2011. View Article : Google Scholar
|
41
|
Milane L, Singh A, Mattheolabakis G,
Suresh M and Amiji MM: Exosome mediated communication within the
tumor micro-environment. J Control Release. 219:278–294. 2015.
View Article : Google Scholar : PubMed/NCBI
|
42
|
De Jong OG, Van Balkom BW, Schiffelers RM,
Bouten CV and Verhaar MC: Extracellular vesicles: potential roles
in regenerative medicine. Front Immunol. 5(608)2014. View Article : Google Scholar : PubMed/NCBI
|
43
|
Quesenberry PJ, Aliotta J, Deregibus MC
and Camussi G: Role of extracellular RNA-carrying vesicles in cell
differentiation and reprogramming. Stem Cell Res Ther. 6(153)2015.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhang Y, Wu XH, Luo CL, Zhang JM, He BC
and Chen G: Interleukin-12-anchored exosomes increase cytotoxicity
of T lymphocytes by reversing the JAK/STAT pathway impaired by
tumor-derived exosomes. Int J Mol Med. 25:695–700. 2010.PubMed/NCBI
|
45
|
Morita E: Differential requirements of
mammalian ESCRTs in multivesicular body formation, virus budding
and cell division. FEBS J. 279:1399–1406. 2012. View Article : Google Scholar : PubMed/NCBI
|
46
|
Roxrud I, Stenmark H and Malerød L: ESCRT
& Co. Biol Cell. 102:293–318. 2010. View Article : Google Scholar : PubMed/NCBI
|
47
|
Votteler J and Sundquist WI: Virus budding
and the ESCRT pathway. Cell Host Microbe. 14:232–241. 2013.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Pan S, Wang R, Zhou X, He G, Koomen J,
Kobayashi R, Sun L, Corvera J, Gallick GE and Kuang J: Involvement
of the conserved adaptor protein Alix in actin cytoskeleton
assembly. J Biol Chem. 281:34640–34650. 2006. View Article : Google Scholar : PubMed/NCBI
|
49
|
Shen B, Wu N, Yang JM and Gould SJ:
Protein targeting to exosomes/microvesicles by plasma membrane
anchors. J Biol Chem. 286:14383–14395. 2011. View Article : Google Scholar : PubMed/NCBI
|
50
|
Fang Y, Wu N, Gan X, Yan W, Morrell JC and
Gould SJ: Higher-order oligomerization targets plasma membrane
proteins and HIV gag to exosomes. PLoS Biol. 5:e1582007. View Article : Google Scholar : PubMed/NCBI
|
51
|
Booth AM, Fang Y, Fallon JK, Yang JM,
Hildreth JE and Gould SJ: Exosomes and HIV Gag bud from
endosome-like domains of the T cell plasma membrane. J Cell Biol.
172:923–935. 2006. View Article : Google Scholar : PubMed/NCBI
|
52
|
Li L, Zhu D, Huang L, Zhang J, Bian Z,
Chen X, Liu Y, Zhang CY and Zen K: Argonaute 2 complexes
selectively protect the circulating microRNAs in cell-secreted
microvesicles. PLoS One. 7:e469572012. View Article : Google Scholar : PubMed/NCBI
|