MicroRNAs play a role in chondrogenesis and osteoarthritis (Review)
- Authors:
- Chuanlong Wu
- Bo Tian
- Xinhua Qu
- Fengxiang Liu
- Tingting Tang
- An Qin
- Zhenan Zhu
- Kerong Dai
-
Affiliations: Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China - Published online on: April 15, 2014 https://doi.org/10.3892/ijmm.2014.1743
- Pages: 13-23
This article is mentioned in:
Abstract
Iannone F and Lapadula G: The pathophysiology of osteoarthritis. Aging Clin Exp Res. 15:364–372. 2003. View Article : Google Scholar | |
Mortellaro CM: Pathophysiology of osteoarthritis. Vet Res Commun. 27(Suppl 1): S75–S78. 2003. View Article : Google Scholar | |
Martel-Pelletier J: Pathophysiology of osteoarthritis. Osteoarthritis Cartilage. 12(Suppl A): S31–S33. 2004. View Article : Google Scholar | |
Mandelbaum B and Waddell D: Etiology and pathophysiology of osteoarthritis. Orthopedics. 28(Suppl 2): s207–s214. 2005.PubMed/NCBI | |
Felson DT, Lawrence RC, Dieppe PA, et al: Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med. 133:635–646. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lawrence RC, Felson DT, Helmick CG, et al: Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 58:26–35. 2008. View Article : Google Scholar | |
Naumann A, Dennis JE, Awadallah A, et al: Immunochemical and mechanical characterization of cartilage subtypes in rabbit. J Histochem Cytochem. 50:1049–1058. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wong M and Carter DR: Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone. 33:1–13. 2003. View Article : Google Scholar : PubMed/NCBI | |
Burgeson RE, Hebda PA, Morris NP and Hollister DW: Human cartilage collagens. Comparison of cartilage collagens with human type V collagen. J Biol Chem. 257:7852–7856. 1982.PubMed/NCBI | |
Eyre D: Collagen of articular cartilage. Arthritis Res. 4:30–35. 2002. View Article : Google Scholar | |
Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M and Laverty S: Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res. 391:S26–S33. 2001. View Article : Google Scholar : PubMed/NCBI | |
Knudson CB and Knudson W: Cartilage proteoglycans. Semin Cell Dev Biol. 12:69–78. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cawston TE and Wilson AJ: Understanding the role of tissue degrading enzymes and their inhibitors in development and disease. Best Pract Res Clin Rheumatol. 20:983–1002. 2006. View Article : Google Scholar : PubMed/NCBI | |
Plaas A, Osborn B, Yoshihara Y, et al: Aggrecanolysis in human osteoarthritis: confocal localization and biochemical characterization of ADAMTS5-hyaluronan complexes in articular cartilages. Osteoarthritis Cartilage. 15:719–734. 2007. View Article : Google Scholar | |
Wu W, Billinghurst RC, Pidoux I, et al: Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis Rheum. 46:2087–2094. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cordes KR and Srivastava D: MicroRNA regulation of cardiovascular development. Circ Res. 104:724–732. 2009. View Article : Google Scholar : PubMed/NCBI | |
Fabian MR, Sonenberg N and Filipowicz W: Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 79:351–379. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu N and Olson EN: MicroRNA regulatory networks in cardiovascular development. Dev Cell. 18:510–525. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wang DZ: MicroRNAs in cardiac development and remodeling. Pediatr Cardiol. 31:357–362. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y and Srivastava D: A developmental view of microRNA function. Trends Biochem Sci. 32:189–197. 2007. View Article : Google Scholar : PubMed/NCBI | |
Farh KK, Grimson A, Jan C, et al: The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science. 310:1817–1821. 2005. View Article : Google Scholar : PubMed/NCBI | |
Calin GA and Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chendrimada TP, Gregory RI, Kumaraswamy E, et al: TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 436:740–744. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Ahn C, Han J, et al: The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gregory RI, Yan KP, Amuthan G, et al: The Microprocessor complex mediates the genesis of microRNAs. Nature. 432:235–240. 2004. View Article : Google Scholar : PubMed/NCBI | |
Denli AM, Tops BB, Plasterk RH, Ketting RF and Hannon GJ: Processing of primary microRNAs by the Microprocessor complex. Nature. 432:231–235. 2004. View Article : Google Scholar : PubMed/NCBI | |
Small EM and Olson EN: Pervasive roles of microRNAs in cardiovascular biology. Nature. 469:336–342. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ghayor C, Chadjichristos C, Herrouin JF, et al: Sp3 represses the Sp1-mediated transactivation of the human COL2A1 gene in primary and de-differentiated chondrocytes. J Biol Chem. 276:36881–36895. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Kang Y, Zhang H, et al: Expression of microRNAs during chondrogenesis of human adipose-derived stem cells. Osteoarthritis Cartilage. 20:1638–1646. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cancedda R, Descalzi Cancedda F and Castagnola P: Chondrocyte differentiation. Int Rev Cytol. 159:265–358. 1995. View Article : Google Scholar : PubMed/NCBI | |
Yang B, Guo H, Zhang Y, Chen L, Ying D and Dong S: MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS One. 6:e216792011. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Sanchez A, Dudek KA and Murphy CL: Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145). J Biol Chem. 287:916–924. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ning G, Liu X, Dai M, Meng A and Wang Q: MicroRNA-92a upholds Bmp signaling by targeting noggin3 during pharyngeal cartilage formation. Dev Cell. 24:283–295. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ohgawara T, Kubota S, Kawaki H, et al: Regulation of chondrocytic phenotype by micro RNA 18a: involvement of Ccn2/Ctgf as a major target gene. FEBS Lett. 583:1006–1010. 2009. View Article : Google Scholar : PubMed/NCBI | |
Soullier S, Jay P, Poulat F, Vanacker JM, Berta P and Laudet V: Diversification pattern of the HMG and SOX family members during evolution. J Mol Evol. 48:517–527. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wright E, Hargrave MR, Christiansen J, et al: The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nat Genet. 9:15–20. 1995. View Article : Google Scholar : PubMed/NCBI | |
Bi W, Deng JM, Zhang Z, Behringer RR and de Crombrugghe B: Sox9 is required for cartilage formation. Nat Genet. 22:85–89. 1999. View Article : Google Scholar | |
Ikeda T, Kawaguchi H, Kamekura S, et al: Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation. J Bone Miner Metab. 23:337–340. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bell DM, Leung KK, Wheatley SC, et al: SOX9 directly regulates the type-II collagen gene. Nat Genet. 16:174–178. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Jimenez SA and Stokes DG: Regulation of human COL9A1 gene expression. Activation of the proximal promoter region by SOX9. J Biol Chem. 278:117–123. 2003. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Li H, Tanaka K, Tsumaki N and Yamada Y: Identification of an enhancer sequence within the first intron required for cartilage-specific transcription of the alpha2(XI) collagen gene. J Biol Chem. 275:12712–12718. 2000. View Article : Google Scholar : PubMed/NCBI | |
Sekiya I, Tsuji K, Koopman P, et al: SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J Biol Chem. 275:10738–10744. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tew SR, Li Y, Pothacharoen P, Tweats LM, Hawkins RE and Hardingham TE: Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes. Osteoarthritis Cartilage. 13:80–89. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cucchiarini M, Thurn T, Weimer A, Kohn D, Terwilliger EF and Madry H: Restoration of the extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factor SOX9. Arthritis Rheum. 56:158–167. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dai L, Zhang X, Hu X, Zhou C and Ao Y: Silencing of microRNA-101 prevents IL-1beta-induced extracellular matrix degradation in chondrocytes. Arthritis Res Ther. 14:R2682012. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Kang Y, Liao WM and Yu L: MiR-194 regulates chondrogenic differentiation of human adipose-derived stem cells by targeting Sox5. PLoS One. 7:e318612012. View Article : Google Scholar : PubMed/NCBI | |
Parvizi J, Zmistowski B, Berbari EF, et al: New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society. Clin Orthop Relat Res. 469:2992–2994. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hatakeyama Y, Nguyen J, Wang X, Nuckolls GH and Shum L: Smad signaling in mesenchymal and chondroprogenitor cells. J Bone Joint Surg Am. 85-A(Suppl 3): S13–S18. 2003.PubMed/NCBI | |
Pan Q, Yu Y, Chen Q, et al: Sox9, a key transcription factor of bone morphogenetic protein-2-induced chondrogenesis, is activated through BMP pathway and a CCAAT box in the proximal promoter. J Cell Physiol. 217:228–241. 2008. View Article : Google Scholar : PubMed/NCBI | |
Denker AE, Nicoll SB and Tuan RS: Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-beta 1. Differentiation. 59:25–34. 1995. View Article : Google Scholar : PubMed/NCBI | |
Lin EA, Kong L, Bai XH, Luan Y and Liu CJ: miR-199a, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1. J Biol Chem. 284:11326–11335. 2009. View Article : Google Scholar : PubMed/NCBI | |
Liang ZJ, Zhuang H, Wang GX, et al: MiRNA-140 is a negative feedback regulator of MMP-13 in IL-1beta-stimulated human articular chondrocyte C28/I2 cells. Inflamm Res. 61:503–509. 2012. View Article : Google Scholar : PubMed/NCBI | |
Buechli ME, Lamarre J and Koch TG: MicroRNA-140 expression during chondrogenic differentiation of equine cord blood-derived mesenchymal stromal cells. Stem Cells Dev. 22:1288–1296. 2013. View Article : Google Scholar : PubMed/NCBI | |
Miyaki S, Nakasa T, Otsuki S, et al: MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 60:2723–2730. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nicolas FE, Pais H, Schwach F, et al: mRNA expression profiling reveals conserved and non-conserved miR-140 targets. RNA Biol. 8:607–615. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pais H, Nicolas FE, Soond SM, et al: Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level. RNA. 16:489–494. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nakamura Y, Inloes JB, Katagiri T and Kobayashi T: Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol. 31:3019–3028. 2011. View Article : Google Scholar : PubMed/NCBI | |
Song J, Kim D and Jin EJ: MicroRNA-488 suppresses cell migration through modulation of the focal adhesion activity during chondrogenic differentiation of chick limb mesenchymal cells. Cell Biol Int. 35:179–185. 2011. View Article : Google Scholar | |
Kim D, Song J, Kim S, Chun CH and Jin EJ: MicroRNA-34a regulates migration of chondroblast and IL-1beta-induced degeneration of chondrocytes by targeting EphA5. Biochem Biophys Res Commun. 415:551–557. 2011. View Article : Google Scholar | |
Abouheif MM, Nakasa T, Shibuya H, Niimoto T, Kongcharoensombat W and Ochi M: Silencing microRNA-34a inhibits chondrocyte apoptosis in a rat osteoarthritis model in vitro. Rheumatology (Oxford). 49:2054–2060. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim D, Song J and Jin EJ: MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2. J Biol Chem. 285:26900–26907. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dunn W, DuRaine G and Reddi AH: Profiling microRNA expression in bovine articular cartilage and implications for mechanotransduction. Arthritis Rheum. 60:2333–2339. 2009. View Article : Google Scholar : PubMed/NCBI | |
Magee C, Nurminskaya M, Faverman L, Galera P and Linsenmayer TF: SP3/SP1 transcription activity regulates specific expression of collagen type X in hypertrophic chondrocytes. J Biol Chem. 280:25331–25338. 2005. View Article : Google Scholar | |
Kavurma MM and Khachigian LM: Sp1 inhibits proliferation and induces apoptosis in vascular smooth muscle cells by repressing p21WAF1/Cip1 transcription and cyclin D1-Cdk4-p21WAF1/Cip1 complex formation. J Biol Chem. 278:32537–32543. 2003. View Article : Google Scholar : PubMed/NCBI | |
Deniaud E, Baguet J, Chalard R, et al: Overexpression of transcription factor Sp1 leads to gene expression perturbations and cell cycle inhibition. PLoS One. 4:e70352009. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Qin S, Yi C, et al: MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation. FEBS Lett. 585:2992–2997. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sumiyoshi K, Kubota S, Ohgawara T, et al: Identification of miR-1 as a micro RNA that supports late-stage differentiation of growth cartilage cells. Biochem Biophys Res Commun. 402:286–290. 2010. View Article : Google Scholar : PubMed/NCBI | |
Guan YJ, Yang X, Wei L and Chen Q: MiR-365: a mechanosensitive microRNA stimulates chondrocyte differentiation through targeting histone deacetylase 4. FASEB J. 25:4457–4466. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vega RB, Matsuda K, Oh J, et al: Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell. 119:555–566. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tuddenham L, Wheeler G, Ntounia-Fousara S, et al: The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 580:4214–4217. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nicolas FE, Pais H, Schwach F, et al: Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140. RNA. 14:2513–2520. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhong N, Sun J, Min Z, et al: MicroRNA-337 is associated with chondrogenesis through regulating TGFBR2 expression. Osteoarthritis Cartilage. 20:593–602. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ham O, Song BW, Lee SY, et al: The role of microRNA-23b in the differentiation of MSC into chondrocyte by targeting protein kinase A signaling. Biomaterials. 33:4500–4507. 2012. View Article : Google Scholar : PubMed/NCBI | |
Iliopoulos D, Malizos KN, Oikonomou P and Tsezou A: Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One. 3:e37402008. View Article : Google Scholar | |
Glasson SS, Askew R, Sheppard B, et al: Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature. 434:644–648. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stanton H, Rogerson FM, East CJ, et al: ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature. 434:648–652. 2005. View Article : Google Scholar : PubMed/NCBI | |
Miyaki S, Sato T, Inoue A, et al: MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 24:1173–1185. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Liu L, Xiao T and Guo W: Detection of the expression level of miR-140 using realtime fluorescent quantitative PCR in knee synovial fluid of osteoarthritis patients. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 37:1210–1214. 2012.(In Chinese). | |
Tardif G, Hum D, Pelletier JP, Duval N and Martel-Pelletier J: Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskelet Disord. 10:1482009. View Article : Google Scholar : PubMed/NCBI | |
Ukai T, Sato M, Akutsu H, Umezawa A and Mochida J: MicroRNA-199a-3p, microRNA-193b, and microRNA-320c are correlated to aging and regulate human cartilage metabolism. J Orthop Res. 30:1915–1922. 2012. View Article : Google Scholar : PubMed/NCBI | |
Matsukawa T, Sakai T, Yonezawa T, et al: MicroRNA-125b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes. Arthritis Res Ther. 15:R282013. View Article : Google Scholar : PubMed/NCBI | |
Xu N, Zhang L, Meisgen F, et al: MicroRNA-125b down-regulates matrix metallopeptidase 13 and inhibits cutaneous squamous cell carcinoma cell proliferation, migration, and invasion. J Biol Chem. 287:29899–29908. 2012. View Article : Google Scholar : PubMed/NCBI | |
Muramatsu F, Kidoya H, Naito H, Sakimoto S and Takakura N: microRNA-125b inhibits tube formation of blood vessels through translational suppression of VE-cadherin. Oncogene. 32:414–421. 2013. View Article : Google Scholar : PubMed/NCBI | |
Little CB, Barai A, Burkhardt D, et al: Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 60:3723–3733. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mapp PI and Walsh DA: Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol. 8:390–398. 2012. View Article : Google Scholar : PubMed/NCBI | |
Akhtar N, Rasheed Z, Ramamurthy S, Anbazhagan AN, Voss FR and Haqqi TM: MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 62:1361–1371. 2010. View Article : Google Scholar : PubMed/NCBI | |
Akhtar N and Haqqi TM: MicroRNA-199a* regulates the expression of cyclooxygenase-2 in human chondrocytes. Ann Rheum Dis. 71:1073–1080. 2012. | |
He L, He X, Lim LP, et al: A microRNA component of the p53 tumour suppressor network. Nature. 447:1130–1134. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chang TC, Wentzel EA, Kent OA, et al: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 26:745–752. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jones SW, Watkins G, Le Good N, et al: The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthritis Cartilage. 17:464–472. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yamasaki K, Nakasa T, Miyaki S, et al: Expression of MicroRNA-146a in osteoarthritis cartilage. Arthritis Rheum. 60:1035–1041. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li X, Gibson G, Kim JS, et al: MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis. Gene. 480:34–41. 2011. View Article : Google Scholar : PubMed/NCBI | |
Song J, Lee M, Kim D, Han J, Chun CH and Jin EJ: MicroRNA-181b regulates articular chondrocytes differentiation and cartilage integrity. Biochem Biophys Res Commun. 431:210–214. 2013. View Article : Google Scholar : PubMed/NCBI | |
Swingler TE, Wheeler G, Carmont V, et al: The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum. 64:1909–1919. 2012. View Article : Google Scholar : PubMed/NCBI | |
Dudek KA, Lafont JE, Martinez-Sanchez A and Murphy CL: Type II collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes. J Biol Chem. 285:24381–24387. 2010. View Article : Google Scholar | |
Steck E, Boeuf S, Gabler J, et al: Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions. J Mol Med (Berl). 90:1185–1195. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hu F, Zhu W and Wang L: MicroRNA-203 up-regulates nitric oxide expression in temporomandibular joint chondrocytes via targeting TRPV4. Arch Oral Biol. Nov 16–2012.(Epub ahead of print). View Article : Google Scholar |