Average-case Analysis of the Assignment Problem with Independent Preferences

Average-case Analysis of the Assignment Problem with Independent Preferences

Yansong Gao, Jie Zhang

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence

The fundamental assignment problem is in search of welfare maximization mechanisms to allocate items to agents when the private preferences over indivisible items are provided by self-interested agents. The mainstream mechanism \textit{Random Priority} is asymptotically the best mechanism for this purpose, when comparing its welfare  to the optimal social welfare using the canonical \textit{worst-case approximation ratio}.  Surprisingly, the efficiency loss indicated by the worst-case ratio does not have a constant bound \cite{FFZ:14}.Recently, \cite{DBLP:conf/mfcs/DengG017} shows that when the agents' preferences are drawn from a uniform distribution, its \textit{average-case approximation ratio} is upper bounded by 3.718. They left it as an open question of whether a constant ratio holds for general scenarios. In this paper, we offer an affirmative answer to this question by showing that the ratio is bounded by $1/\mu$ when the preference values are independent and identically distributed random variables, where $\mu$ is the expectation of the value distribution. This upper bound improves the results in \cite{DBLP:conf/mfcs/DengG017} for the Uniform distribution as well. Moreover, under mild conditions, the ratio has a \textit{constant} bound for any independent  random values. En route to these results, we develop powerful tools to show the insights that for most valuation inputs, the efficiency loss is small.
Keywords:
Agent-based and Multi-agent Systems: Agent Theories and Models
Agent-based and Multi-agent Systems: Algorithmic Game Theory
Agent-based and Multi-agent Systems: Resource Allocation