Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 18, 2013

Evaluations of the CCFL and critical flow models in TRACE for PWR LBLOCA analysis

Eignung der TRACE-Modelle zur Berechnung der Gegenstrombegrenzung und der kritischen Strömung bei der Anwendung in LBLOCA-Berechnungen für das Kernkraftwerk Maanshan
  • J.-H. Yang , H.-T. Lin , J.-R. Wang and C. Shih
From the journal Kerntechnik

Abstract

This study aims to develop the Maanshan Pressurized Water Reactor (PWR) analysis model by using the TRACE (TRAC/RELAP Advanced Computational Engine) code. By analyzing the Large Break Loss of Coolant Accident (LBLOCA) sequence, the results are compared with the Maanshan Final Safety Analysis Report (FSAR) data. The critical flow and Counter Current Flow Limitation (CCFL) play an important role in the overall performance of TRACE LBLOCA prediction. Therefore, the sensitivity study on the discharge coefficients of critical flow model and CCFL modeling among different regions are also discussed. The current conclusions show that modeling CCFL in downcomer has more significant impact on the peak cladding temperature than modeling CCFL in hot-legs does. No CCFL phenomena occurred in the pressurizer surge line. The best value for the multipliers of critical flow model would be 0.5 and the TRACE could consistently predict the break flow rate in the LBLOCA analysis as shown in FSAR.

Kurzfassung

Für das Kernkraftwerk Maanshan vom Typ DWR wurde und werden Sicherheitsuntersuchungen mit dem Programm TRACE (TRAC/RELAP Advanced Computational Engine) durchgeführt. In diesem Beitrag werden Ergebnisse von Berechnungen grosser Brüche (LBLOCA) unter besonderer Berücksichtigung der Gegenstrombegrenzung (CCFL) und der kritischen Strömung vorgestellt. Die Ergebnisse dieser aktuellen Berechnungen werden mit den Daten aus dem Maanshan Sicherheitsbericht (FSAR) verglichen. Dabei zeigt sich, dass die Berücksichtigung von CCFL im Downcomer einen stärkeren Einfluss auf die maximale Hüllrohrtemperatur hat als die Berücksichtigung des CCFL in den heißen Strängen. In der Surge Line werden keine CCFL-Phänomene beobachtet.

References

1 Cheng, Y. H.; Shih, C.; Wang, J. R.; Lin, H. T.: Benchmark calculations of pressurizer model for maanshan nuclear power plant using TRACE code. In: Proceedings of the 16th International Conference on Nuclear Engineering (ICONE16), May 11–15, 2008, Orlando, Florida, USA, ICONE16-48603Search in Google Scholar

2 Wang, J. R.; Lin, H. T.; Cheng, Y. H.; Wang, W. C.; Shih, C.: TRACE modeling and its verification using Maanshan PWR start-up tests. Annals of Nuclear Energy36 (2009) 52753610.1016/j.anucene.2008.12.017Search in Google Scholar

3 Taiwan Power Company: Final safety analysis report of Maanshan nuclear power station Units 1 & 2. Taipower Report, 1982Search in Google Scholar

4 US Nuclear Regulatory Commission (USNRC): TRACE V5.0p2 User Manual, 2010Search in Google Scholar

5 Bordelon, F.M.; et al.: SATAN-VI Program: Comprehensive Space-Time Dependent Analysis of Loss of Coolant. WCAP-8302, June, 1974 (Proprietary) and WCAP-8306, June, 1974 (Non-Proprietary)Search in Google Scholar

6 Young, M.Y.; et al.: The 1981 Version of Westinghouse ECCS Evaluation Model Using the BASH Code. WCAP-10266-P-A Revision 2 (Proprietary) and WCAP-11524-A (Non-Proprietary), March 1987Search in Google Scholar

7 Bordelon, F. M.; Murphy, E. T.: Containment Pressure Analysis Code (COCO). WCAP-8327, June, 1974 (Proprietary) and WCAP-8326, June, 1974 (Non-Proprietary)Search in Google Scholar

8 Bordelon, F. M.; et al.: LOCTA-IV Program: Loss of Coolant Transient Analysis. WCAP-8301, June, 1974 (Proprietary) and WCAP-8305, June, 1974 (Non-Proprietary)10.2172/4281518Search in Google Scholar

9 Joe, H. C.; Barber, D.; Jiang, G.; Downar, T. J.: PARCS, A Multi-Dimensional Two-Group Reactor Kinetics Code Based on the Nonlinear Analytic Nodal Method. PU/NE-98-26, Sept. 1998Search in Google Scholar

10 di Marzo, M.; Bessette, D. E.: Effect of depressurization on reactor vessel inventory in the absence of ECCS injection. Nuclear Engineering and Design193 (1999) 19720510.1016/S0029-5493(99)00151-XSearch in Google Scholar

11 U. S. Nuclear Regulatory Commission (USNRC): TRACE V5.0 Assessment. Manual_AppendixC, 2007Search in Google Scholar

12 U.S. Nuclear Regulatory Commission: Compendium of ECCS Research for Realistic LOCA Analysis. Technical Report NUREG-1230, December 1988Search in Google Scholar

13 Burnell, J. W.: Flow of Boiling Water through Nozzles, Orifices and Pipes. Engineering (1947) 572576Search in Google Scholar

14 Ransom, V. H.; Trapp, J. A.: The RELAP5 Choked Flow Model and Application to a Large Scale Flow Test. in: ANS/ASME/NRC International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Saratoga Springs, New York (1980) pp. 799819Search in Google Scholar

15 Wongwises, S.: Two-phase countercurrent flow in a model of a pressurized water reactor hot leg. Nuclear Engineering and Design166 (1996) 12113310.1016/0029-5493(96)01272-1Search in Google Scholar

16 Wallis, G. B.: One Dimensional Two Phase Flow. McGraw-Hill Book Company, New York, 1969Search in Google Scholar

17 Kutateladze, S. S.: Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk8 (1951) 529Search in Google Scholar

18 Bankoff, S. G.; Tankin, R. S.; Yuen, M. C.; Hsieh, C. L.: Countercurrent Flow of Air/Water and Steam/Water through a Horizontal Perforated Plate. International Journal of Heat and Mass Transfer24 (1981) 1381139510.1016/0017-9310(81)90188-5Search in Google Scholar

Received: 2012-7-31
Published Online: 2013-05-18
Published in Print: 2012-12-01

© 2012, Carl Hanser Verlag, München

Downloaded on 18.11.2024 from https://www.degruyter.com/document/doi/10.3139/124.110289/html
Scroll to top button