Skip to content
Publicly Available Published by De Gruyter January 1, 2009

Calreticulin transacetylase (CRTAase): Identification of novel substrates and CRTAase-mediated modification of protein kinase C (PKC) activity in lymphocytes of asthmatic patients by polyphenolic acetates

  • Ruchika Gulati , Ajit Kumar , Seema Bansal , Yogesh K. Tyagi , Tapesh K. Tyagi , Prija Ponnan , Shashwat Malhotra , Sapan K. Jain , Usha Singh , Surendra K. Bansal , Hanumantharao G. Raj , Bilikere S. Dwarakanath , Nabo K. Chaudhury , Anjana Vij , Vannan K. Vijayan , Ramesh C. Rastogi and Virinder S. Parmar

Abstract

Earlier reports from our laboratory established the acetyl transferase function of calreticulin (CRT), enabling CRT to transfer acetyl groups from the acetoxy groups of polyphenolic acetates (PAs) to certain receptor proteins. We have in this paper documented the ability of CRT to catalyze the possible transfer of acetyl moiety from 7-acetamido-4-methylcoumarin (7-N-AMC) to the proteins, glutathione S-transferase (GST), and NADPH cytochrome c reductase, leading to the modification of their catalytic activities. 7-Acetoxy-4-methylthiocoumarin (7-AMTC) compared to 7-acetoxy-4-methylcoumarin (7-AMC) when used as a substrate for calreticulin transacetylase (CRTAase) yielded significantly higher catalytic activity. PM3-optimized geometries suggested that the availability of electrons on the sulfur atom of the thiocarbonyl group of the thiocoumarin may render the substrate binding more favorable to the active site of the enzyme as compared to its oxygen analog. Further CRTAase activity was characterized in the human blood lymphocytes. There was no appreciable difference in CRTAase activity of lymphocytes of asthmatic patients as compared to those of normal subjects. The results presented here highlight for the first time the irreversible inhibition of human blood lymphocytes protein kinase C (PKC) by 7,8-diacetoxy-4-methylcoumarin (DAMC) possibly by way of acetylation. The activity of PKC in lymphocytes of asthmatic patients was found to proportionally increase with the severity of the disease. When PA was incubated with lymphocytes of normal patients, PKC was inhibited marginally. On the other hand, lymphocyte PKC of severe asthmatic patients was inhibited drastically. Several PAs inhibited PKC of asthmatic patients in tune with their specificity to CRTAase. DAMC was found to exert maximum inhibitory action on PKC, while 7,8-dihydroxy-4-methylcoumarin (DHMC), the deacetylated product of DAMC, failed to inhibit PKC. These observations clearly describe DAMC as the novel irreversible inhibitor of PKC, and DAMC may be found useful in the control of inflammation and may serve as a potential drug candidate in the therapy of asthma.


Conference

International Symposium on Chemistry of Natural Products (ISCNP-25) and 5th International Conference on Biodiversity (ICOB-5), International Conference on Biodiversity, International Symposium on the Chemistry of Natural Products, ICOB, ISCNP, Biodiversity, Natural Products, 25th, Kyoto, Japan, 2006-07-23–2006-07-28


References

1. E. Middleton Jr., C. Kandaswami, T. C. Theoharides. Pharmacol. Rev. 52, 673 (2000).Search in Google Scholar

2. J. R. Vane. Nature (New Biol.) 231, 232 (1971).10.1038/newbio231232a0Search in Google Scholar

3. doi:10.1016/S0968-0896(98)00111-4, H. G. Raj, V. S. Parmar, S. C. Jain, S. Goel, A. Singh, K. Gupta, V. Rohil, Y. K. Tyagi, H. N. Jha, C. E. Olsen, J. Wengel. Bioorg. Med. Chem. 6, 1895 (1998).Search in Google Scholar

4. doi:10.1016/S0968-0896(98)00228-4, H. G. Raj, V. S. Parmar, S. C. Jain, S. Goel, A. Singh, Y. K. Tyagi, H. N. Jha, C. E. Olsen, J.Wengel. Bioorg. Med. Chem. 7, 369 (1999).Search in Google Scholar

5. H. G. Raj, E. Kohli, Y. K. Tyagi, V. S. Parmar, C. E. Olsen. FASEB J. 14 A, 1445 (2000).Search in Google Scholar

6. doi:10.1016/S0014-5793(02)03445-2, E. Kohli, M. Gaspari, H. G. Raj, V. S. Parmar, J. Vander Greef, G. Gupta, R. Kumari, A. K. Prasad, S. Goel, G. Pal, Y. K. Tyagi, S. C. Jain, N. Ahmad, A. C. Watterson, C. E. Olsen. FEBS Lett. 530, 139 (2002).Search in Google Scholar

7. E. Kohli, M. Gaspari, H. G. Raj, V. S Parmar, S. K. Sharma, J. Vander Greef, R. Kumari, G.Gupta, Seema, P. Khurana, Y. K. Tyagi, A. C. Watterson, C. E. Olsen. Biochim. Biophys. Acta 1698, 55 (2004).10.1016/j.bbapap.2003.10.004Search in Google Scholar

8. P. Khurana, R. Kumari, P. Vohra, A. Kumar, Seema, G. Gupta, H. G. Raj, B. S. Dwarakanath, V.S. Parmar, D. Saluja, M. Bose, A. Vij, N. K. Chaudhary, J. S. Adhikari, Y. K. Tyagi, E. Kohli. Bioorg. Med. Chem. 14, 575 (2006).10.1016/j.bmc.2005.08.044Search in Google Scholar

9. H. G. Raj, Seema, R. Kumari, K. M. Muralidhar, B. S. Dwarkanath, R. C. Rastogi, A. K. Prasad, A. C. Watterson, V. S. Parmar. Pure Appl. Chem. 78, 985 (2006).10.1351/pac200678050985Search in Google Scholar

10. Seema, R. Kumari, G. Gupta, D. Saluja, A. Kumar, S. Goel, Y. K. Tyagi, R. Gulati, K. M. Muralidhar, B. S. Dwarkanath, R. C. Rastogi, V. S. Parmar, S. A. Patkar, H. G. Raj. Cell Biochem. Biophys. In press.Search in Google Scholar

11. doi:10.1042/0264-6021:3440281, M. Michalak, E. F. Corbett, N. Mesaeli, K. Nakamura, M. Opas. Biochem. J. 344, 281 (1999).Search in Google Scholar

12. doi:10.1016/S0968-0896(00)00328-X, H. G. Raj, E. Kohli, R. Goswami, S. Goel, R. C. Rastogi, S. C. Jain, J. Wengel, C. E. Olsen, V. S. Parmar. Bioorg. Med. Chem. 9, 1085 (2001).Search in Google Scholar

13. doi:10.1016/S0968-0896(02)00257-2, I. Singh, E. Kohli, H. G. Raj, K. Gyanda, S. K. Jain, Y. K. Tyagi, G. Gupta, R. Kumari, A. Kumar, G. Pal, A. K. Prasad, R. C. Rastogi, C. E. Olsen, S. C. Jain, V. S. Parmar. Bioorg. Med. Chem. 10, 4103 (2002).Search in Google Scholar

14. doi:10.1016/j.bmc.2005.04.023, A. Kumar, B. K. Singh, R. Tyagi, S. K. Jain, S. K. Sharma, A. K. Prasad, H. G. Raj, R. C. Rastogi, A. C. Watterson, V. S. Parmar. Bioorg. Med. Chem. 13, 4300 (2005).Search in Google Scholar

15. doi:10.1002/jcc.540070402, J. Baker. J. Comp. Chem. 7, 385 (1986).Search in Google Scholar

16. doi:10.1002/jcc.540100208, J. J. P. Stewart. J. Comp. Chem. 10, 209 (1989).Search in Google Scholar

17. doi:10.1042/0264-6021:3570593, W. K. Alderton, C. E. Cooper, R. G. Knowels. Biochem. J. 357, 593 (2001).Search in Google Scholar

18. doi:10.1183/09031936.97.10020308, S. K. Bansal, A. S. Jaiswal, A. Jha, S. K. Chabra. Eur. Respir. J. 10, 308 (1997).Search in Google Scholar

19. A. S. Jaiswal, U. K. Mishra, S. K. Bansal. Indian J. Biochem. Biophys. 33, 116 (1996).Search in Google Scholar

20. C. A. Kanashiro, R. Khalil. Clin. Exp. Pharamacol. Physiol. 25, 974 (1998).10.1111/j.1440-1681.1998.tb02170.xSearch in Google Scholar

21. doi:10.1016/0022-4804(89)90189-3, M. A. McMillen, H. A. Schaefer, J. D. MacArthur, T. A. Adrian, I. M. Modlin. J. Surg. Res. 46, 292 (1989).Search in Google Scholar

22. doi:10.1002/eji.1830231205, M. Szamel, F. Bartels, K. Resch. Eur. J. Immunol. 23, 3072 (1993).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2007-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.10.2024 from https://www.degruyter.com/document/doi/10.1351/pac200779040729/html
Scroll to top button