Module: tfp.experimental.auto_batching.allocation_strategy
Stay organized with collections
Save and categorize content based on your preferences.
Live variable analysis.
A variable is "dead" at some point if the compiler can find a proof that no
future instruction will read the value before that value is overwritten; "live"
otherwise.
This module implements a liveness analysis for the IR defined in
instructions.py.
Functions
optimize(...)
: Optimizes a Program
's variable allocation strategy.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-11-21 UTC.
[null,null,["Last updated 2023-11-21 UTC."],[],[],null,["# Module: tfp.experimental.auto_batching.allocation_strategy\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/probability/blob/v0.23.0/tensorflow_probability/python/experimental/auto_batching/allocation_strategy.py) |\n\nLive variable analysis.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tfp.experimental.auto_batching.frontend.allocation_strategy`](https://www.tensorflow.org/probability/api_docs/python/tfp/experimental/auto_batching/allocation_strategy)\n\n\u003cbr /\u003e\n\nA variable is \"dead\" at some point if the compiler can find a proof that no\nfuture instruction will read the value before that value is overwritten; \"live\"\notherwise.\n\nThis module implements a liveness analysis for the IR defined in\ninstructions.py.\n\nFunctions\n---------\n\n[`optimize(...)`](../../../tfp/experimental/auto_batching/allocation_strategy/optimize): Optimizes a `Program`'s variable allocation strategy."]]