Best Real-Time Analytic Databases

Compare the Top Real-Time Analytic Databases as of April 2025

What are Real-Time Analytic Databases?

Real-time analytics databases are database systems that enable businesses to access and analyze data in near real-time. These systems allow companies to make decisions quickly based on up-to-date information, rather than relying on periodic reports from other databases. Real-time analytic databases typically have powerful processors capable of handling complex queries and vast amounts of data. They also support modern features such as distributed computing, automated data management, secure sharing of sensitive information, and elastic scalability. Such advanced capabilities help organizations gain deeper insights into their customers' behavior so they can take appropriate action swiftly. Compare and read user reviews of the best Real-Time Analytic Databases currently available using the table below. This list is updated regularly.

  • 1
    RaimaDB

    RaimaDB

    Raima

    RaimaDB is an embedded time series database for IoT and Edge devices that can run in-memory. It is an extremely powerful, lightweight and secure RDBMS. Field tested by over 20 000 developers worldwide and has more than 25 000 000 deployments. RaimaDB is a high-performance, cross-platform embedded database designed for mission-critical applications, particularly in the Internet of Things (IoT) and edge computing markets. It offers a small footprint, making it suitable for resource-constrained environments, and supports both in-memory and persistent storage configurations. RaimaDB provides developers with multiple data modeling options, including traditional relational models and direct relationships through network model sets. It ensures data integrity with ACID-compliant transactions and supports various indexing methods such as B+Tree, Hash Table, R-Tree, and AVL-Tree.
    Partner badge
    View Software
    Visit Website
  • 2
    SingleStore

    SingleStore

    SingleStore

    SingleStore (formerly MemSQL) is a distributed, highly-scalable SQL database that can run anywhere. We deliver maximum performance for transactional and analytical workloads with familiar relational models. SingleStore is a scalable SQL database that ingests data continuously to perform operational analytics for the front lines of your business. Ingest millions of events per second with ACID transactions while simultaneously analyzing billions of rows of data in relational SQL, JSON, geospatial, and full-text search formats. SingleStore delivers ultimate data ingestion performance at scale and supports built in batch loading and real time data pipelines. SingleStore lets you achieve ultra fast query response across both live and historical data using familiar ANSI SQL. Perform ad hoc analysis with business intelligence tools, run machine learning algorithms for real-time scoring, perform geoanalytic queries in real time.
    Starting Price: $0.69 per hour
  • 3
    DoubleCloud

    DoubleCloud

    DoubleCloud

    Save time & costs by streamlining data pipelines with zero-maintenance open source solutions. From ingestion to visualization, all are integrated, fully managed, and highly reliable, so your engineers will love working with data. You choose whether to use any of DoubleCloud’s managed open source services or leverage the full power of the platform, including data storage, orchestration, ELT, and real-time visualization. We provide leading open source services like ClickHouse, Kafka, and Airflow, with deployment on Amazon Web Services or Google Cloud. Our no-code ELT tool allows real-time data syncing between systems, fast, serverless, and seamlessly integrated with your existing infrastructure. With our managed open-source data visualization you can simply visualize your data in real time by building charts and dashboards. We’ve designed our platform to make the day-to-day life of engineers more convenient.
    Starting Price: $0.024 per 1 GB per month
  • 4
    Apache Druid
    Apache Druid is an open source distributed data store. Druid’s core design combines ideas from data warehouses, timeseries databases, and search systems to create a high performance real-time analytics database for a broad range of use cases. Druid merges key characteristics of each of the 3 systems into its ingestion layer, storage format, querying layer, and core architecture. Druid stores and compresses each column individually, and only needs to read the ones needed for a particular query, which supports fast scans, rankings, and groupBys. Druid creates inverted indexes for string values for fast search and filter. Out-of-the-box connectors for Apache Kafka, HDFS, AWS S3, stream processors, and more. Druid intelligently partitions data based on time and time-based queries are significantly faster than traditional databases. Scale up or down by just adding or removing servers, and Druid automatically rebalances. Fault-tolerant architecture routes around server failures.
  • Previous
  • You're on page 1
  • Next