Compare the Top Machine Learning Software for Startups as of April 2025

What is Machine Learning Software for Startups?

Machine learning software enables developers and data scientists to build, train, and deploy models that can learn from data and make predictions or decisions without being explicitly programmed. These tools provide frameworks and algorithms for tasks such as classification, regression, clustering, and natural language processing. They often come with features like data preprocessing, model evaluation, and hyperparameter tuning, which help optimize the performance of machine learning models. With the ability to analyze large datasets and uncover patterns, machine learning software is widely used in industries like healthcare, finance, marketing, and autonomous systems. Overall, this software empowers organizations to leverage data for smarter decision-making and automation. Compare and read user reviews of the best Machine Learning software for Startups currently available using the table below. This list is updated regularly.

  • 1
    Vertex AI
    Machine Learning in Vertex AI allows businesses to harness the power of data-driven models to make intelligent decisions and automate processes. With a wide range of algorithms, tools, and models, businesses can address diverse challenges such as forecasting, classification, and anomaly detection. Vertex AI makes it easy for companies to create, train, and deploy machine learning models at scale. New customers receive $300 in free credits to explore machine learning features and test models for their unique use cases. By integrating machine learning into their workflows, businesses can unlock the full potential of their data and drive better outcomes.
    Starting Price: Free ($300 in free credits)
    View Software
    Visit Website
  • 2
    Google AI Studio
    Machine learning in Google AI Studio is at the heart of many of its AI-powered tools and features. The platform allows developers to create and train machine learning models that can recognize patterns, make predictions, and optimize processes based on data. Google AI Studio offers a user-friendly interface for training, testing, and deploying machine learning models, making it easier to integrate machine learning into business applications. With a range of pre-built models and training options, businesses can leverage machine learning to solve a variety of problems, from demand forecasting to image recognition.
    Starting Price: Free
    View Software
    Visit Website
  • 3
    Alpa

    Alpa

    Alpa

    Alpa aims to automate large-scale distributed training and serving with just a few lines of code. Alpa was initially developed by folks in the Sky Lab, UC Berkeley. Some advanced techniques used in Alpa have been written in a paper published in OSDI'2022. Alpa community is growing with new contributors from Google. A language model is a probability distribution over sequences of words. It predicts the next word based on all the previous words. It is useful for a variety of AI applications, such the auto-completion in your email or chatbot service. For more information, check out the language model wikipedia page. GPT-3 is very large language model, with 175 billion parameters, that uses deep learning to produce human-like text. Many researchers and news articles described GPT-3 as "one of the most interesting and important AI systems ever produced". GPT-3 is gradually being used as a backbone in the latest NLP research and applications.
    Starting Price: Free
  • 4
    LUIS

    LUIS

    Microsoft

    Language Understanding (LUIS): A machine learning-based service to build natural language into apps, bots, and IoT devices. Quickly create enterprise-ready, custom models that continuously improve. Add natural language to your apps. Designed to identify valuable information in conversations, LUIS interprets user goals (intents) and distills valuable information from sentences (entities), for a high quality, nuanced language model. LUIS integrates seamlessly with the Azure Bot Service, making it easy to create a sophisticated bot. Powerful developer tools are combined with customizable pre-built apps and entity dictionaries, such as Calendar, Music, and Devices, so you can build and deploy a solution more quickly. Dictionaries are mined from the collective knowledge of the web and supply billions of entries, helping your model to correctly identify valuable information from user conversations. Active learning is used to continuously improve the quality of the models.
  • 5
    Eternity AI

    Eternity AI

    Eternity AI

    Eternity AI is building an HTLM-7B, a machine learning model that knows what the internet is and how to access it to generate responses. Humans don't make decisions based on 2-year-old data. For a model to think like a human, it needs to get access to real-time knowledge and everything about how humans behave. Members of our team have previously published white papers and articles on topics related to on-chain vulnerability coordination, GPT database retrieval, decentralized dispute resolution, etc.
  • 6
    Adept

    Adept

    Adept

    Adept is an ML research and product lab building general intelligence by enabling humans and computers to work together creatively. Designed and trained specifically for taking actions on computers in response to your natural language commands. ACT-1 is our first step towards a foundation model that can use every software tool, API and website that exists. Adept is building an entirely new way to get things done. It takes your goals, in plain language, and turns them into actions on the software you use every day. We believe that AI systems should be built with users at the center — where machines work together with people in the driver's seat, discovering new solutions, enabling more informed decisions, and giving us more time for the work we love.
  • Previous
  • You're on page 1
  • Next