Best Event Stream Processing Software

Compare the Top Event Stream Processing Software as of April 2025

What is Event Stream Processing Software?

Event stream processing software enables organizations to analyze and process data in real-time as it is generated, providing immediate insights and enabling quick decision-making. This software is designed to handle large volumes of streaming data, such as sensor data, transaction logs, social media feeds, or financial market data. Event stream processing software often includes features like real-time analytics, pattern detection, event filtering, and aggregation to identify trends or anomalies. It is widely used in applications such as fraud detection, predictive maintenance, supply chain management, and real-time analytics. Compare and read user reviews of the best Event Stream Processing software currently available using the table below. This list is updated regularly.

  • 1
    IBM StreamSets
    IBM® StreamSets enables users to create and manage smart streaming data pipelines through an intuitive graphical interface, facilitating seamless data integration across hybrid and multicloud environments. This is why leading global companies rely on IBM StreamSets to support millions of data pipelines for modern analytics, intelligent applications and hybrid integration. Decrease data staleness and enable real-time data at scale—handling millions of records of data, across thousands of pipelines within seconds. Insulate data pipelines from change and unexpected shifts with drag-and-drop, prebuilt processors designed to automatically identify and adapt to data drift. Create streaming pipelines to ingest structured, semistructured or unstructured data and deliver it to a wide range of destinations.
    Starting Price: $1000 per month
  • 2
    PubSub+ Platform
    Solace PubSub+ Platform helps enterprises design, deploy and manage event-driven systems across hybrid and multi-cloud and IoT environments so they can be more event-driven and operate in real-time. The PubSub+ Platform includes the powerful PubSub+ Event Brokers, event management capabilities with PubSub+ Event Portal, as well as monitoring and integration capabilities all available via a single cloud console. PubSub+ allows easy creation of an event mesh, an interconnected network of event brokers, allowing for seamless and dynamic data movement across highly distributed network environments. PubSub+ Event Brokers can be deployed as fully managed cloud services, self-managed software in private cloud or on-premises environments, or as turnkey hardware appliances for unparalleled performance and low TCO. PubSub+ Event Portal is a complimentary toolset for design and governance of event-driven systems including both Solace and Kafka-based event broker environments.
  • 3
    WarpStream

    WarpStream

    WarpStream

    WarpStream is an Apache Kafka-compatible data streaming platform built directly on top of object storage, with no inter-AZ networking costs, no disks to manage, and infinitely scalable, all within your VPC. WarpStream is deployed as a stateless and auto-scaling agent binary in your VPC with no local disks to manage. Agents stream data directly to and from object storage with no buffering on local disks and no data tiering. Create new “virtual clusters” in our control plane instantly. Support different environments, teams, or projects without managing any dedicated infrastructure. WarpStream is protocol compatible with Apache Kafka, so you can keep using all your favorite tools and software. No need to rewrite your application or use a proprietary SDK. Just change the URL in your favorite Kafka client library and start streaming. Never again have to choose between reliability and your budget.
    Starting Price: $2,987 per month
  • 4
    Lenses

    Lenses

    Lenses.io

    Enable everyone to discover and observe streaming data. Sharing, documenting and cataloging your data can increase productivity by up to 95%. Then from data, build apps for production use cases. Apply a data-centric security model to cover all the gaps of open source technology, and address data privacy. Provide secure and low-code data pipeline capabilities. Eliminate all darkness and offer unparalleled observability in data and apps. Unify your data mesh and data technologies and be confident with open source in production. Lenses is the highest rated product for real-time stream analytics according to independent third party reviews. With feedback from our community and thousands of engineering hours invested, we've built features that ensure you can focus on what drives value from your real time data. Deploy and run SQL-based real time applications over any Kafka Connect or Kubernetes infrastructure including AWS EKS.
    Starting Price: $49 per month
  • 5
    Amazon MSK
    Amazon Managed Streaming for Apache Kafka (Amazon MSK) is a fully managed service that makes it easy for you to build and run applications that use Apache Kafka to process streaming data. Apache Kafka is an open-source platform for building real-time streaming data pipelines and applications. With Amazon MSK, you can use native Apache Kafka APIs to populate data lakes, stream changes to and from databases, and power machine learning and analytics applications. Apache Kafka clusters are challenging to setup, scale, and manage in production. When you run Apache Kafka on your own, you need to provision servers, configure Apache Kafka manually, replace servers when they fail, orchestrate server patches and upgrades, architect the cluster for high availability, ensure data is durably stored and secured, setup monitoring and alarms, and carefully plan scaling events to support load changes.
    Starting Price: $0.0543 per hour
  • 6
    Oracle Cloud Infrastructure Streaming
    Streaming service is a real-time, serverless, Apache Kafka-compatible event streaming platform for developers and data scientists. Streaming is tightly integrated with Oracle Cloud Infrastructure (OCI), Database, GoldenGate, and Integration Cloud. The service also provides out-of-the-box integrations for hundreds of third-party products across categories such as DevOps, databases, big data, and SaaS applications. Data engineers can easily set up and operate big data pipelines. Oracle handles all infrastructure and platform management for event streaming, including provisioning, scaling, and security patching. With the help of consumer groups, Streaming can provide state management for thousands of consumers. This helps developers easily build applications at scale.
  • 7
    DeltaStream

    DeltaStream

    DeltaStream

    DeltaStream is a unified serverless stream processing platform that integrates with streaming storage services. Think about it as the compute layer on top of your streaming storage. It provides functionalities of streaming analytics(Stream processing) and streaming databases along with additional features to provide a complete platform to manage, process, secure and share streaming data. DeltaStream provides a SQL based interface where you can easily create stream processing applications such as streaming pipelines, materialized views, microservices and many more. It has a pluggable processing engine and currently uses Apache Flink as its primary stream processing engine. DeltaStream is more than just a query processing layer on top of Kafka or Kinesis. It brings relational database concepts to the data streaming world, including namespacing and role based access control enabling you to securely access, process and share your streaming data regardless of where they are stored.
  • 8
    Striim

    Striim

    Striim

    Data integration for your hybrid cloud. Modern, reliable data integration across your private and public cloud. All in real-time with change data capture and data streams. Built by the executive & technical team from GoldenGate Software, Striim brings decades of experience in mission-critical enterprise workloads. Striim scales out as a distributed platform in your environment or in the cloud. Scalability is fully configurable by your team. Striim is fully secure with HIPAA and GDPR compliance. Built ground up for modern enterprise workloads in the cloud or on-premise. Drag and drop to create data flows between your sources and targets. Process, enrich, and analyze your streaming data with real-time SQL queries.
  • 9
    Confluent

    Confluent

    Confluent

    Infinite retention for Apache Kafka® with Confluent. Be infrastructure-enabled, not infrastructure-restricted Legacy technologies require you to choose between being real-time or highly-scalable. Event streaming enables you to innovate and win - by being both real-time and highly-scalable. Ever wonder how your rideshare app analyzes massive amounts of data from multiple sources to calculate real-time ETA? Ever wonder how your credit card company analyzes millions of credit card transactions across the globe and sends fraud notifications in real-time? The answer is event streaming. Move to microservices. Enable your hybrid strategy through a persistent bridge to cloud. Break down silos to demonstrate compliance. Gain real-time, persistent event transport. The list is endless.
  • 10
    SAS Event Stream Processing
    Streaming data from operations, transactions, sensors and IoT devices is valuable – when it's well-understood. Event stream processing from SAS includes streaming data quality and analytics – and a vast array of SAS and open source machine learning and high-frequency analytics for connecting, deciphering, cleansing and understanding streaming data – in one solution. No matter how fast your data moves, how much data you have, or how many data sources you’re pulling from, it’s all under your control via a single, intuitive interface. You can define patterns and address scenarios from all aspects of your business, giving you the power to stay agile and tackle issues as they arise.
  • 11
    Azure Event Hubs
    Event Hubs is a fully managed, real-time data ingestion service that’s simple, trusted, and scalable. Stream millions of events per second from any source to build dynamic data pipelines and immediately respond to business challenges. Keep processing data during emergencies using the geo-disaster recovery and geo-replication features. Integrate seamlessly with other Azure services to unlock valuable insights. Allow existing Apache Kafka clients and applications to talk to Event Hubs without any code changes—you get a managed Kafka experience without having to manage your own clusters. Experience real-time data ingestion and microbatching on the same stream. Focus on drawing insights from your data instead of managing infrastructure. Build real-time big data pipelines and respond to business challenges right away.
    Starting Price: $0.03 per hour
  • 12
    Amazon Kinesis
    Easily collect, process, and analyze video and data streams in real time. Amazon Kinesis makes it easy to collect, process, and analyze real-time, streaming data so you can get timely insights and react quickly to new information. Amazon Kinesis offers key capabilities to cost-effectively process streaming data at any scale, along with the flexibility to choose the tools that best suit the requirements of your application. With Amazon Kinesis, you can ingest real-time data such as video, audio, application logs, website clickstreams, and IoT telemetry data for machine learning, analytics, and other applications. Amazon Kinesis enables you to process and analyze data as it arrives and respond instantly instead of having to wait until all your data is collected before the processing can begin. Amazon Kinesis enables you to ingest, buffer, and process streaming data in real-time, so you can derive insights in seconds or minutes instead of hours or days.
  • 13
    Google Cloud Dataflow
    Unified stream and batch data processing that's serverless, fast, and cost-effective. Fully managed data processing service. Automated provisioning and management of processing resources. Horizontal autoscaling of worker resources to maximize resource utilization. OSS community-driven innovation with Apache Beam SDK. Reliable and consistent exactly-once processing. Streaming data analytics with speed. Dataflow enables fast, simplified streaming data pipeline development with lower data latency. Allow teams to focus on programming instead of managing server clusters as Dataflow’s serverless approach removes operational overhead from data engineering workloads. Allow teams to focus on programming instead of managing server clusters as Dataflow’s serverless approach removes operational overhead from data engineering workloads. Dataflow automates provisioning and management of processing resources to minimize latency and maximize utilization.
  • 14
    Informatica Data Engineering Streaming
    AI-powered Informatica Data Engineering Streaming enables data engineers to ingest, process, and analyze real-time streaming data for actionable insights. Advanced serverless deployment option​ with integrated metering dashboard cuts admin overhead. Rapidly build intelligent data pipelines with CLAIRE®-powered automation, including automatic change data capture (CDC). Ingest thousands of databases and millions of files, and streaming events. Efficiently ingest databases, files, and streaming data for real-time data replication and streaming analytics. Find and inventory all data assets throughout your organization. Intelligently discover and prepare trusted data for advanced analytics and AI/ML projects.
  • 15
    Axual

    Axual

    Axual

    Axual is Kafka-as-a-Service for DevOps teams. Empower your team to unlock insights and drive decisions with our intuitive Kafka platform. Axual offers the ultimate solution for enterprises looking to seamlessly integrate data streaming into their core IT infrastructure. Our all-in-one Kafka platform is designed to eliminate the need for extensive technical knowledge or skills, and provides a ready-made solution that delivers all the benefits of event streaming without the hassle. The Axual Platform is a all-in-one solution, designed to help you simplify and enhance the deployment, management, and utilization of real-time data streaming with Apache Kafka. By providing an array of features that cater to the diverse needs of modern enterprises, the Axual Platform enables organizations to harness the full potential of data streaming while minimizing complexity and operational overhead.
  • 16
    Cloudera DataFlow
    Cloudera DataFlow for the Public Cloud (CDF-PC) is a cloud-native universal data distribution service powered by Apache NiFi ​​that lets developers connect to any data source anywhere with any structure, process it, and deliver to any destination. CDF-PC offers a flow-based low-code development paradigm that aligns best with how developers design, develop, and test data distribution pipelines. With over 400+ connectors and processors across the ecosystem of hybrid cloud services—including data lakes, lakehouses, cloud warehouses, and on-premises sources—CDF-PC provides indiscriminate data distribution. These data distribution flows can then be version-controlled into a catalog where operators can self-serve deployments to different runtimes.
  • Previous
  • You're on page 1
  • Next