Compare the Top Enterprise Embedding Models as of April 2025

What are Enterprise Embedding Models?

Embedding models, accessible via APIs, transform data such as text or images into numerical vector representations that capture semantic relationships. These vectors facilitate efficient similarity searches, clustering, and various AI-driven tasks by positioning related concepts closer together in a continuous space. By preserving contextual meaning, embedding models and embedding APIs help machines understand relationships between words, objects, or other entities. They play a crucial role in enhancing search relevance, recommendation systems, and natural language processing applications. Compare and read user reviews of the best Enterprise Embedding Models currently available using the table below. This list is updated regularly.

  • 1
    Vertex AI
    Embedding Models in Vertex AI are designed to convert high-dimensional data, such as text or images, into compact, fixed-size vectors that preserve essential features. These models are crucial for tasks like semantic search, recommendation systems, and natural language processing, where understanding the underlying relationships between data points is vital. By using embeddings, businesses can improve the accuracy and performance of machine learning models by capturing complex patterns in the data. New customers receive $300 in free credits, enabling them to explore the use of embedding models in their AI applications. With embedding models, businesses can enhance the effectiveness of their AI systems, improving results in areas such as search and personalization.
    Starting Price: Free ($300 in free credits)
    View Software
    Visit Website
  • 2
    OpenAI

    OpenAI

    OpenAI

    OpenAI’s mission is to ensure that artificial general intelligence (AGI)—by which we mean highly autonomous systems that outperform humans at most economically valuable work—benefits all of humanity. We will attempt to directly build safe and beneficial AGI, but will also consider our mission fulfilled if our work aids others to achieve this outcome. Apply our API to any language task — semantic search, summarization, sentiment analysis, content generation, translation, and more — with only a few examples or by specifying your task in English. One simple integration gives you access to our constantly-improving AI technology. Explore how you integrate with the API with these sample completions.
  • 3
    Mistral AI

    Mistral AI

    Mistral AI

    Mistral AI is a pioneering artificial intelligence startup specializing in open-source generative AI. The company offers a range of customizable, enterprise-grade AI solutions deployable across various platforms, including on-premises, cloud, edge, and devices. Flagship products include "Le Chat," a multilingual AI assistant designed to enhance productivity in both personal and professional contexts, and "La Plateforme," a developer platform that enables the creation and deployment of AI-powered applications. Committed to transparency and innovation, Mistral AI positions itself as a leading independent AI lab, contributing significantly to open-source AI and policy development.
    Starting Price: Free
  • 4
    Cohere

    Cohere

    Cohere AI

    Cohere is an enterprise AI platform that enables developers and businesses to build powerful language-based applications. Specializing in large language models (LLMs), Cohere provides solutions for text generation, summarization, and semantic search. Their model offerings include the Command family for high-performance language tasks and Aya Expanse for multilingual applications across 23 languages. Focused on security and customization, Cohere allows flexible deployment across major cloud providers, private cloud environments, or on-premises setups to meet diverse enterprise needs. The company collaborates with industry leaders like Oracle and Salesforce to integrate generative AI into business applications, improving automation and customer engagement. Additionally, Cohere For AI, their research lab, advances machine learning through open-source projects and a global research community.
    Starting Price: Free
  • 5
    Claude

    Claude

    Anthropic

    Claude is an artificial intelligence large language model that can process and generate human-like text. Anthropic is an AI safety and research company that’s working to build reliable, interpretable, and steerable AI systems. Large, general systems of today can have significant benefits, but can also be unpredictable, unreliable, and opaque: our goal is to make progress on these issues. For now, we’re primarily focused on research towards these goals; down the road, we foresee many opportunities for our work to create value commercially and for public benefit.
    Starting Price: Free
  • 6
    BERT

    BERT

    Google

    BERT is a large language model and a method of pre-training language representations. Pre-training refers to how BERT is first trained on a large source of text, such as Wikipedia. You can then apply the training results to other Natural Language Processing (NLP) tasks, such as question answering and sentiment analysis. With BERT and AI Platform Training, you can train a variety of NLP models in about 30 minutes.
    Starting Price: Free
  • 7
    spaCy

    spaCy

    spaCy

    spaCy is designed to help you do real work, build real products, or gather real insights. The library respects your time and tries to avoid wasting it. It's easy to install, and its API is simple and productive. spaCy excels at large-scale information extraction tasks. It's written from the ground up in carefully memory-managed Cython. If your application needs to process entire web dumps, spaCy is the library you want to be using. Since its release in 2015, spaCy has become an industry standard with a huge ecosystem. Choose from a variety of plugins, integrate with your machine learning stack, and build custom components and workflows. Components for named entity recognition, part-of-speech tagging, dependency parsing, sentence segmentation, text classification, lemmatization, morphological analysis, entity linking, and more. Easily extensible with custom components and attributes. Easy model packaging, deployment, and workflow management.
    Starting Price: Free
  • 8
    NLP Cloud

    NLP Cloud

    NLP Cloud

    Fast and accurate AI models suited for production. Highly-available inference API leveraging the most advanced NVIDIA GPUs. We selected the best open-source natural language processing (NLP) models from the community and deployed them for you. Fine-tune your own models - including GPT-J - or upload your in-house custom models, and deploy them easily to production. Upload or Train/Fine-Tune your own AI models - including GPT-J - from your dashboard, and use them straight away in production without worrying about deployment considerations like RAM usage, high-availability, scalability... You can upload and deploy as many models as you want to production.
    Starting Price: $29 per month
  • 9
    Aquarium

    Aquarium

    Aquarium

    Aquarium's embedding technology surfaces the biggest problems in your model performance and finds the right data to solve them. Unlock the power of neural network embeddings without worrying about maintaining infrastructure or debugging embedding models. Automatically find the most critical patterns of model failures in your dataset. Understand the long tail of edge cases and triage which issues to solve first. Trawl through massive unlabeled datasets to find edge-case scenarios. Bootstrap new classes with a handful of examples using few-shot learning technology. The more data you have, the more value we offer. Aquarium reliably scales to datasets containing hundreds of millions of data points. Aquarium offers solutions engineering resources, customer success syncs, and user training to help customers get value. We also offer an anonymous mode for organizations who want to use Aquarium without exposing any sensitive data.
    Starting Price: $1,250 per month
  • 10
    Llama 3.1
    The open source AI model you can fine-tune, distill and deploy anywhere. Our latest instruction-tuned model is available in 8B, 70B and 405B versions. Using our open ecosystem, build faster with a selection of differentiated product offerings to support your use cases. Choose from real-time inference or batch inference services. Download model weights to further optimize cost per token. Adapt for your application, improve with synthetic data and deploy on-prem or in the cloud. Use Llama system components and extend the model using zero shot tool use and RAG to build agentic behaviors. Leverage 405B high quality data to improve specialized models for specific use cases.
    Starting Price: Free
  • 11
    Llama 3.2
    The open-source AI model you can fine-tune, distill and deploy anywhere is now available in more versions. Choose from 1B, 3B, 11B or 90B, or continue building with Llama 3.1. Llama 3.2 is a collection of large language models (LLMs) pretrained and fine-tuned in 1B and 3B sizes that are multilingual text only, and 11B and 90B sizes that take both text and image inputs and output text. Develop highly performative and efficient applications from our latest release. Use our 1B or 3B models for on device applications such as summarizing a discussion from your phone or calling on-device tools like calendar. Use our 11B or 90B models for image use cases such as transforming an existing image into something new or getting more information from an image of your surroundings.
    Starting Price: Free
  • 12
    Llama 3.3
    Llama 3.3 is the latest iteration in the Llama series of language models, developed to push the boundaries of AI-powered understanding and communication. With enhanced contextual reasoning, improved language generation, and advanced fine-tuning capabilities, Llama 3.3 is designed to deliver highly accurate, human-like responses across diverse applications. This version features a larger training dataset, refined algorithms for nuanced comprehension, and reduced biases compared to its predecessors. Llama 3.3 excels in tasks such as natural language understanding, creative writing, technical explanation, and multilingual communication, making it an indispensable tool for businesses, developers, and researchers. Its modular architecture allows for customizable deployment in specialized domains, ensuring versatility and performance at scale.
    Starting Price: Free
  • 13
    txtai

    txtai

    NeuML

    txtai is an all-in-one open source embeddings database designed for semantic search, large language model orchestration, and language model workflows. It unifies vector indexes (both sparse and dense), graph networks, and relational databases, providing a robust foundation for vector search and serving as a powerful knowledge source for LLM applications. With txtai, users can build autonomous agents, implement retrieval augmented generation processes, and develop multi-modal workflows. Key features include vector search with SQL support, object storage integration, topic modeling, graph analysis, and multimodal indexing capabilities. It supports the creation of embeddings for various data types, including text, documents, audio, images, and video. Additionally, txtai offers pipelines powered by language models that handle tasks such as LLM prompting, question-answering, labeling, transcription, translation, and summarization.
    Starting Price: Free
  • 14
    LexVec

    LexVec

    Alexandre Salle

    LexVec is a word embedding model that achieves state-of-the-art results in multiple natural language processing tasks by factorizing the Positive Pointwise Mutual Information (PPMI) matrix using stochastic gradient descent. This approach assigns heavier penalties for errors on frequent co-occurrences while accounting for negative co-occurrences. Pre-trained vectors are available, including a common crawl dataset with 58 billion tokens and 2 million words in 300 dimensions, and an English Wikipedia 2015 + NewsCrawl dataset with 7 billion tokens and 368,999 words in 300 dimensions. Evaluations demonstrate that LexVec matches or outperforms other models like word2vec in terms of word similarity and analogy tasks. The implementation is open source under the MIT License and is available on GitHub.
    Starting Price: Free
  • 15
    GloVe

    GloVe

    Stanford NLP

    GloVe (Global Vectors for Word Representation) is an unsupervised learning algorithm developed by the Stanford NLP Group to obtain vector representations for words. It constructs word embeddings by analyzing global word-word co-occurrence statistics from a given corpus, resulting in vector spaces where the geometric relationships reflect semantic similarities and differences among words. A notable feature of GloVe is its ability to capture linear substructures within the word vector space, enabling vector arithmetic to express relationships. The model is trained on the non-zero entries of a global word-word co-occurrence matrix, which records how frequently pairs of words appear together in a corpus. This approach efficiently leverages statistical information by focusing on significant co-occurrences, leading to meaningful word representations. Pre-trained word vectors are available for various corpora, including Wikipedia 2014.
    Starting Price: Free
  • 16
    fastText

    fastText

    fastText

    fastText is an open source, free, and lightweight library developed by Facebook's AI Research (FAIR) lab for efficient learning of word representations and text classification. It supports both unsupervised learning of word vectors and supervised learning for text classification tasks. A key feature of fastText is its ability to capture subword information by representing words as bags of character n-grams, which enhances the handling of morphologically rich languages and out-of-vocabulary words. The library is optimized for performance and capable of training on large datasets quickly, and the resulting models can be reduced in size for deployment on mobile devices. Pre-trained word vectors are available for 157 languages, trained on Common Crawl and Wikipedia data, and can be downloaded for immediate use. fastText also offers aligned word vectors for 44 languages, facilitating cross-lingual natural language processing tasks.
    Starting Price: Free
  • 17
    Gensim

    Gensim

    Radim Řehůřek

    Gensim is a free, open source Python library designed for unsupervised topic modeling and natural language processing, focusing on large-scale semantic modeling. It enables the training of models like Word2Vec, FastText, Latent Semantic Analysis (LSA), and Latent Dirichlet Allocation (LDA), facilitating the representation of documents as semantic vectors and the discovery of semantically related documents. Gensim is optimized for performance with highly efficient implementations in Python and Cython, allowing it to process arbitrarily large corpora using data streaming and incremental algorithms without loading the entire dataset into RAM. It is platform-independent, running on Linux, Windows, and macOS, and is licensed under the GNU LGPL, promoting both personal and commercial use. The library is widely adopted, with thousands of companies utilizing it daily, over 2,600 academic citations, and more than 1 million downloads per week.
    Starting Price: Free
  • 18
    Azure OpenAI Service
    Apply advanced coding and language models to a variety of use cases. Leverage large-scale, generative AI models with deep understandings of language and code to enable new reasoning and comprehension capabilities for building cutting-edge applications. Apply these coding and language models to a variety of use cases, such as writing assistance, code generation, and reasoning over data. Detect and mitigate harmful use with built-in responsible AI and access enterprise-grade Azure security. Gain access to generative models that have been pretrained with trillions of words. Apply them to new scenarios including language, code, reasoning, inferencing, and comprehension. Customize generative models with labeled data for your specific scenario using a simple REST API. Fine-tune your model's hyperparameters to increase accuracy of outputs. Use the few-shot learning capability to provide the API with examples and achieve more relevant results.
    Starting Price: $0.0004 per 1000 tokens
  • 19
    Exa

    Exa

    Exa.ai

    The Exa API retrieves the best content on the web using embeddings-based search. Exa understands meaning, giving results search engines can’t. Exa uses a novel link prediction transformer to predict links which match the meaning of a prompt. For queries that need semantic understanding, search with our SOTA web embeddings model over our custom index. For all other queries, we offer keyword-based search. Stop learning how to web scrape or parse HTML. Get the clean, full text of any page in our index, or intelligent embeddings-ranked highlights related to a query. Select any date range, include or exclude any domain, select a custom data vertical, or get up to 10 million results..
    Starting Price: $100 per month
  • 20
    E5 Text Embeddings
    E5 Text Embeddings, developed by Microsoft, are advanced models designed to convert textual data into meaningful vector representations, enhancing tasks like semantic search and information retrieval. These models are trained using weakly-supervised contrastive learning on a vast dataset of over one billion text pairs, enabling them to capture intricate semantic relationships across multiple languages. The E5 family includes models of varying sizes—small, base, and large—offering a balance between computational efficiency and embedding quality. Additionally, multilingual versions of these models have been fine-tuned to support diverse languages, ensuring broad applicability in global contexts. Comprehensive evaluations demonstrate that E5 models achieve performance on par with state-of-the-art, English-only models of similar sizes.
    Starting Price: Free
  • 21
    word2vec

    word2vec

    Google

    Word2Vec is a neural network-based technique for learning word embeddings, developed by researchers at Google. It transforms words into continuous vector representations in a multi-dimensional space, capturing semantic relationships based on context. Word2Vec uses two main architectures: Skip-gram, which predicts surrounding words given a target word, and Continuous Bag-of-Words (CBOW), which predicts a target word based on surrounding words. By training on large text corpora, Word2Vec generates word embeddings where similar words are positioned closely, enabling tasks like semantic similarity, analogy solving, and text clustering. The model was influential in advancing NLP by introducing efficient training techniques such as hierarchical softmax and negative sampling. Though newer embedding models like BERT and Transformer-based methods have surpassed it in complexity and performance, Word2Vec remains a foundational method in natural language processing and machine learning research.
    Starting Price: Free
  • 22
    voyage-3-large
    Voyage AI has unveiled voyage-3-large, a cutting-edge general-purpose and multilingual embedding model that leads across eight evaluated domains, including law, finance, and code, outperforming OpenAI-v3-large and Cohere-v3-English by averages of 9.74% and 20.71%, respectively. Enabled by Matryoshka learning and quantization-aware training, it supports embeddings of 2048, 1024, 512, and 256 dimensions, along with multiple quantization options such as 32-bit floating point, signed and unsigned 8-bit integer, and binary precision, significantly reducing vector database costs with minimal impact on retrieval quality. Notably, voyage-3-large offers a 32K-token context length, surpassing OpenAI's 8K and Cohere's 512 tokens. Evaluations across 100 datasets in diverse domains demonstrate its superior performance, with flexible precision and dimensionality options enabling substantial storage savings without compromising quality.
  • 23
    NVIDIA NeMo
    NVIDIA NeMo LLM is a service that provides a fast path to customizing and using large language models trained on several frameworks. Developers can deploy enterprise AI applications using NeMo LLM on private and public clouds. They can also experience Megatron 530B—one of the largest language models—through the cloud API or experiment via the LLM service. Customize your choice of various NVIDIA or community-developed models that work best for your AI applications. Within minutes to hours, get better responses by providing context for specific use cases using prompt learning techniques. Leverage the power of NVIDIA Megatron 530B, one of the largest language models, through the NeMo LLM Service or the cloud API. Take advantage of models for drug discovery, including in the cloud API and NVIDIA BioNeMo framework.
  • 24
    Jina AI

    Jina AI

    Jina AI

    Empower businesses and developers to create cutting-edge neural search, generative AI, and multimodal services using state-of-the-art LMOps, MLOps and cloud-native technologies. Multimodal data is everywhere: from simple tweets to photos on Instagram, short videos on TikTok, audio snippets, Zoom meeting records, PDFs with figures, 3D meshes in games. It is rich and powerful, but that power often hides behind different modalities and incompatible data formats. To enable high-level AI applications, one needs to solve search and create first. Neural Search uses AI to find what you need. A description of a sunrise can match a picture, or a photo of a rose can match a song. Generative AI/Creative AI uses AI to make what you need. It can create an image from a description, or write poems from a picture.
  • 25
    Neum AI

    Neum AI

    Neum AI

    No one wants their AI to respond with out-of-date information to a customer. ‍Neum AI helps companies have accurate and up-to-date context in their AI applications. Use built-in connectors for data sources like Amazon S3 and Azure Blob Storage, vector stores like Pinecone and Weaviate to set up your data pipelines in minutes. Supercharge your data pipeline by transforming and embedding your data with built-in connectors for embedding models like OpenAI and Replicate, and serverless functions like Azure Functions and AWS Lambda. Leverage role-based access controls to make sure only the right people can access specific vectors. Bring your own embedding models, vector stores and sources. Ask us about how you can even run Neum AI in your own cloud.
  • 26
    Context Data

    Context Data

    Context Data

    Context Data is an enterprise data infrastructure built to accelerate the development of data pipelines for Generative AI applications. The platform automates the process of setting up internal data processing and transformation flows using an easy-to-use connectivity framework where developers and enterprises can quickly connect to all of their internal data sources, embedding models and vector database targets without having to set up expensive infrastructure or engineers. The platform also allows developers to schedule recurring data flows for refreshed and up-to-date data.
    Starting Price: $99 per month
  • 27
    Datos

    Datos

    Datos

    Datos is a global clickstream data provider focused on licensing anonymized, at-scale, privacy-compliant datasets to ensure its clients and partners are safe in an otherwise perilous marketplace. Datos offers access to the desktop and mobile browsing clickstream for tens of millions of users across the globe, packaged into clean, easy-to-understand data feeds. Datos' mission is to provide clickstream data built on trust and driven by tangible results. Major firms around the globe trust Datos to provide the data they need to stop operating blindly in an ever-changing digital landscape. Datos offers a range of products, including the Datos Activity Feed, which provides visibility into the full conversion funnel by tracking every page visit and understanding diverse user behaviors. The Datos Behavior Feed offers detailed data on user tendencies.
  • 28
    Meii AI

    Meii AI

    Meii AI

    Meii AI is a global leader in AI solutions, offering industry-trained Large Language Models that can be tuned accordingly with company-specific data and hosted privately or in your cloud. Our RAG ( Retrieval Augmented Generation ) based AI approach uses Embedded Model and Retrieval context ( Semantic Search ) while processing a conversational query to curate Insightful response that is specific for an Enterprise. Blended with our unique skills and decade long experience we had gained in Data Analytics solutions, we combine LLMs and ML Algorithms that offer great solutions for Mid level Enterprises. We are engineering a future that allows people, businesses, and governments to seamlessly leverage technology. With a vision to make AI accessible for everyone on the planet, our team is constantly breaking the barriers between machines and humans.
  • 29
    Universal Sentence Encoder
    The Universal Sentence Encoder (USE) encodes text into high-dimensional vectors that can be utilized for tasks such as text classification, semantic similarity, and clustering. It offers two model variants: one based on the Transformer architecture and another on Deep Averaging Network (DAN), allowing a balance between accuracy and computational efficiency. The Transformer-based model captures context-sensitive embeddings by processing the entire input sequence simultaneously, while the DAN-based model computes embeddings by averaging word embeddings, followed by a feedforward neural network. These embeddings facilitate efficient semantic similarity calculations and enhance performance on downstream tasks with minimal supervised training data. The USE is accessible via TensorFlow Hub, enabling seamless integration into various applications.
  • 30
    Voyage AI

    Voyage AI

    Voyage AI

    Voyage AI delivers state-of-the-art embedding and reranking models that supercharge intelligent retrieval for enterprises, driving forward retrieval-augmented generation and reliable LLM applications. Available through all major clouds and data platforms. SaaS and customer tenant deployment (in-VPC). Our solutions are designed to optimize the way businesses access and utilize information, making retrieval faster, more accurate, and scalable. Built by academic experts from Stanford, MIT, and UC Berkeley, alongside industry professionals from Google, Meta, Uber, and other leading companies, our team develops transformative AI solutions tailored to enterprise needs. We are committed to pushing the boundaries of AI innovation and delivering impactful technologies for businesses. Contact us for custom or on-premise deployments as well as model licensing. Easy to get started, pay as you go, with consumption-based pricing.
  • Previous
  • You're on page 1
  • 2
  • Next