Best Data Virtualization Software

Compare the Top Data Virtualization Software as of April 2025

What is Data Virtualization Software?

Data virtualization tools allow IT teams to enable applications to view and access data while obscuring the location of the data, and other identifying aspects of the data. Data virtualization software enables the use of virtual data layers. Compare and read user reviews of the best Data Virtualization software currently available using the table below. This list is updated regularly.

  • 1
    Actifio

    Actifio

    Google

    Automate self-service provisioning and refresh of enterprise workloads, integrate with existing toolchain. High-performance data delivery and re-use for data scientists through a rich set of APIs and automation. Recover any data across any cloud from any point in time – at the same time – at scale, beyond legacy solutions. Minimize the business impact of ransomware / cyber attacks by recovering quickly with immutable backups. Unified platform to better protect, secure, retain, govern, or recover your data on-premises or in the cloud. Actifio’s patented software platform turns data silos into data pipelines. Virtual Data Pipeline (VDP) delivers full-stack data management — on-premises, hybrid or multi-cloud – from rich application integration, SLA-based orchestration, flexible data movement, and data immutability and security.
  • 2
    Delphix

    Delphix

    Perforce

    Delphix is the industry leader in DataOps and provides an intelligent data platform that accelerates digital transformation for leading companies around the world. The Delphix DataOps Platform supports a broad spectrum of systems, from mainframes to Oracle databases, ERP applications, and Kubernetes containers. Delphix supports a comprehensive range of data operations to enable modern CI/CD workflows and automates data compliance for privacy regulations, including GDPR, CCPA, and the New York Privacy Act. In addition, Delphix helps companies sync data from private to public clouds, accelerating cloud migrations, customer experience transformation, and the adoption of disruptive AI technologies. Automate data for fast, quality software releases, cloud adoption, and legacy modernization. Source data from mainframe to cloud-native apps across SaaS, private, and public clouds.
  • Previous
  • You're on page 1
  • Next