Best AI/ML Model Training Platforms

Compare the Top AI/ML Model Training Platforms as of April 2025

What are AI/ML Model Training Platforms?

AI/ML model training platforms are software solutions designed to streamline the development, training, and deployment of machine learning and artificial intelligence models. These platforms provide tools and infrastructure for data preprocessing, model selection, hyperparameter tuning, and training in a variety of domains, such as natural language processing, computer vision, and predictive analytics. They often include features for distributed computing, enabling the use of multiple processors or cloud resources to speed up the training process. Additionally, model training platforms typically offer integrated monitoring and debugging tools to track model performance and adjust training strategies in real time. By simplifying the complex process of building AI models, these platforms enable faster development cycles and more accurate predictive models. Compare and read user reviews of the best AI/ML Model Training platforms currently available using the table below. This list is updated regularly.

  • 1
    Vertex AI
    Google Cloud's Vertex AI training platform simplifies and accelerates the process of developing machine learning models at scale. It offers both AutoML capabilities for users without extensive machine learning expertise and custom training options for advanced users. The platform supports a wide array of tools and frameworks, including TensorFlow, PyTorch, and custom containers, enabling flexibility in model development. Vertex AI integrates with other Google Cloud services like BigQuery, making it easy to handle large-scale data processing and model training. With powerful compute resources and automated tuning features, Vertex AI is ideal for businesses that need to develop and deploy high-performance AI models quickly and efficiently.
    Starting Price: Free ($300 in free credits)
    View Platform
    Visit Website
  • 2
    RunPod

    RunPod

    RunPod

    RunPod offers a cloud-based platform designed for running AI workloads, focusing on providing scalable, on-demand GPU resources to accelerate machine learning (ML) model training and inference. With its diverse selection of powerful GPUs like the NVIDIA A100, RTX 3090, and H100, RunPod supports a wide range of AI applications, from deep learning to data processing. The platform is designed to minimize startup time, providing near-instant access to GPU pods, and ensures scalability with autoscaling capabilities for real-time AI model deployment. RunPod also offers serverless functionality, job queuing, and real-time analytics, making it an ideal solution for businesses needing flexible, cost-effective GPU resources without the hassle of managing infrastructure.
    Starting Price: $0.40 per hour
    View Platform
    Visit Website
  • 3
    TensorFlow

    TensorFlow

    TensorFlow

    An end-to-end open source machine learning platform. TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications. Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging. Easily train and deploy models in the cloud, on-prem, in the browser, or on-device no matter what language you use. A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster. Build, deploy, and experiment easily with TensorFlow.
    Starting Price: Free
  • 4
    Roboflow

    Roboflow

    Roboflow

    Roboflow has everything you need to build and deploy computer vision models. Connect Roboflow at any step in your pipeline with APIs and SDKs, or use the end-to-end interface to automate the entire process from image to inference. Whether you’re in need of data labeling, model training, or model deployment, Roboflow gives you building blocks to bring custom computer vision solutions to your business.
    Starting Price: $250/month
  • 5
    V7 Darwin
    V7 Darwin is a powerful AI-driven platform for labeling and training data that streamlines the process of annotating images, videos, and other data types. By using AI-assisted tools, V7 Darwin enables faster, more accurate labeling for a variety of use cases such as machine learning model training, object detection, and medical imaging. The platform supports multiple types of annotations, including keypoints, bounding boxes, and segmentation masks. It integrates with various workflows through APIs, SDKs, and custom integrations, making it an ideal solution for businesses seeking high-quality data for their AI projects.
    Starting Price: $150
  • 6
    Flyte

    Flyte

    Union.ai

    The workflow automation platform for complex, mission-critical data and ML processes at scale. Flyte makes it easy to create concurrent, scalable, and maintainable workflows for machine learning and data processing. Flyte is used in production at Lyft, Spotify, Freenome, and others. At Lyft, Flyte has been serving production model training and data processing for over four years, becoming the de-facto platform for teams like pricing, locations, ETA, mapping, autonomous, and more. In fact, Flyte manages over 10,000 unique workflows at Lyft, totaling over 1,000,000 executions every month, 20 million tasks, and 40 million containers. Flyte has been battle-tested at Lyft, Spotify, Freenome, and others. It is entirely open-source with an Apache 2.0 license under the Linux Foundation with a cross-industry overseeing committee. Configuring machine learning and data workflows can get complex and error-prone with YAML.
    Starting Price: Free
  • 7
    neptune.ai

    neptune.ai

    neptune.ai

    Neptune.ai is a machine learning operations (MLOps) platform designed to streamline the tracking, organizing, and sharing of experiments and model-building processes. It provides a comprehensive environment for data scientists and machine learning engineers to log, visualize, and compare model training runs, datasets, hyperparameters, and metrics in real-time. Neptune.ai integrates easily with popular machine learning libraries, enabling teams to efficiently manage both research and production workflows. With features that support collaboration, versioning, and experiment reproducibility, Neptune.ai enhances productivity and helps ensure that machine learning projects are transparent and well-documented across their lifecycle.
    Starting Price: $49 per month
  • 8
    Intel Tiber AI Cloud
    Intel® Tiber™ AI Cloud is a powerful platform designed to scale AI workloads with advanced computing resources. It offers specialized AI processors, such as the Intel Gaudi AI Processor and Max Series GPUs, to accelerate model training, inference, and deployment. Optimized for enterprise-level AI use cases, this cloud solution enables developers to build and fine-tune models with support for popular libraries like PyTorch. With flexible deployment options, secure private cloud solutions, and expert support, Intel Tiber™ ensures seamless integration, fast deployment, and enhanced model performance.
    Starting Price: Free
  • 9
    Chooch

    Chooch

    Chooch

    Chooch is an industry-leading, full lifecycle AI-powered computer vision platform that detects visuals, objects, and actions in video images and responds with pre-programmed actions using customizable alerts. It services the entire machine learning AI workflow from data augmentation tools, model training and hosting, edge device deployment, real-time inferencing, and smart analytics. This provides organizations with the ability to apply computer vision in the broadest variety of use cases from a single platform. Chooch AI Vision can be deployed quickly with ReadyNow models for the most common use cases like fall detection and workplace safety, face recognition, demographics, weapon detection, and more. Using existing cameras and edge infrastructure, models can be deployed to video streams detecting patterns and anomalies and witness real-time insights in seconds.
    Starting Price: Free
  • 10
    Gensim

    Gensim

    Radim Řehůřek

    Gensim is a free, open source Python library designed for unsupervised topic modeling and natural language processing, focusing on large-scale semantic modeling. It enables the training of models like Word2Vec, FastText, Latent Semantic Analysis (LSA), and Latent Dirichlet Allocation (LDA), facilitating the representation of documents as semantic vectors and the discovery of semantically related documents. Gensim is optimized for performance with highly efficient implementations in Python and Cython, allowing it to process arbitrarily large corpora using data streaming and incremental algorithms without loading the entire dataset into RAM. It is platform-independent, running on Linux, Windows, and macOS, and is licensed under the GNU LGPL, promoting both personal and commercial use. The library is widely adopted, with thousands of companies utilizing it daily, over 2,600 academic citations, and more than 1 million downloads per week.
    Starting Price: Free
  • 11
    Deepgram

    Deepgram

    Deepgram

    Deploy accurate speech recognition at scale while continuously improving model performance by labeling data and training from a single console. We deliver state-of-the-art speech recognition and understanding at scale. We do it by providing cutting-edge model training and data-labeling alongside flexible deployment options. Our platform recognizes multiple languages, accents, and words, dynamically tuning to the needs of your business with every training session. The fastest, most accurate, most reliable, most scalable speech transcription, with understanding — rebuilt just for enterprise. We’ve reinvented ASR with 100% deep learning that allows companies to continuously improve accuracy. Stop waiting for the big tech players to improve their software and forcing your developers to manually boost accuracy with keywords in every API call. Start training your speech model and reaping the benefits in weeks, not months or years.
    Starting Price: $0
  • 12
    Alibaba Cloud Machine Learning Platform for AI
    An end-to-end platform that provides various machine learning algorithms to meet your data mining and analysis requirements. Machine Learning Platform for AI provides end-to-end machine learning services, including data processing, feature engineering, model training, model prediction, and model evaluation. Machine learning platform for AI combines all of these services to make AI more accessible than ever. Machine Learning Platform for AI provides a visualized web interface allowing you to create experiments by dragging and dropping different components to the canvas. Machine learning modeling is a simple, step-by-step procedure, improving efficiencies and reducing costs when creating an experiment. Machine Learning Platform for AI provides more than one hundred algorithm components, covering such scenarios as regression, classification, clustering, text analysis, finance, and time series.
    Starting Price: $1.872 per hour
  • 13
    IBM Distributed AI APIs
    Distributed AI is a computing paradigm that bypasses the need to move vast amounts of data and provides the ability to analyze data at the source. Distributed AI APIs built by IBM Research is a set of RESTful web services with data and AI algorithms to support AI applications across hybrid cloud, distributed, and edge computing environments. Each Distributed AI API addresses the challenges in enabling AI in distributed and edge environments with APIs. The Distributed AI APIs do not focus on the basic requirements of creating and deploying AI pipelines, for example, model training and model serving. You would use your favorite open-source packages such as TensorFlow or PyTorch. Then, you can containerize your application, including the AI pipeline, and deploy these containers at the distributed locations. In many cases, it’s useful to use a container orchestrator such as Kubernetes or OpenShift operators to automate the deployment process.
  • 14
    Caffe

    Caffe

    BAIR

    Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR) and by community contributors. Yangqing Jia created the project during his PhD at UC Berkeley. Caffe is released under the BSD 2-Clause license. Check out our web image classification demo! Expressive architecture encourages application and innovation. Models and optimization are defined by configuration without hard-coding. Switch between CPU and GPU by setting a single flag to train on a GPU machine then deploy to commodity clusters or mobile devices. Extensible code fosters active development. In Caffe’s first year, it has been forked by over 1,000 developers and had many significant changes contributed back. Thanks to these contributors the framework tracks the state-of-the-art in both code and models. Speed makes Caffe perfect for research experiments and industry deployment. Caffe can process over 60M images per day with a single NVIDIA K40 GPU.
  • 15
    SambaNova

    SambaNova

    SambaNova Systems

    SambaNova is the leading purpose-built AI system for generative and agentic AI implementations, from chips to models, that gives enterprises full control over their model and private data. We take the best models, optimize them for fast tokens and higher batch sizes, the largest inputs and enable customizations to deliver value with simplicity. The full suite includes the SambaNova DataScale system, the SambaStudio software, and the innovative SambaNova Composition of Experts (CoE) model architecture. These components combine into a powerful platform that delivers unparalleled performance, ease of use, accuracy, data privacy, and the ability to power every use case across the world's largest organizations. We give our customers the optionality to experience through the cloud or on-premise.
  • 16
    alwaysAI

    alwaysAI

    alwaysAI

    alwaysAI provides developers with a simple and flexible way to build, train, and deploy computer vision applications to a wide variety of IoT devices. Select from a catalog of deep learning models or upload your own. Use our flexible and customizable APIs to quickly enable core computer vision services. Quickly prototype, test and iterate with a variety of camera-enabled ARM-32, ARM-64 and x86 devices. Identify objects in an image by name or classification. Identify and count objects appearing in a real-time video feed. Follow the same object across a series of frames. Find faces or full bodies in a scene to count or track. Locate and define borders around separate objects. Separate key objects in an image from background visuals. Determine human body poses, fall detection, emotions. Use our model training toolkit to train an object detection model to identify virtually any object. Create a model tailored to your specific use-case.
  • 17
    MXNet

    MXNet

    The Apache Software Foundation

    A hybrid front-end seamlessly transitions between Gluon eager imperative mode and symbolic mode to provide both flexibility and speed. Scalable distributed training and performance optimization in research and production is enabled by the dual parameter server and Horovod support. Deep integration into Python and support for Scala, Julia, Clojure, Java, C++, R and Perl. A thriving ecosystem of tools and libraries extends MXNet and enables use-cases in computer vision, NLP, time series and more. Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), sponsored by the Apache Incubator. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision-making process have stabilized in a manner consistent with other successful ASF projects. Join the MXNet scientific community to contribute, learn, and get answers to your questions.
  • 18
    NVIDIA NeMo
    NVIDIA NeMo LLM is a service that provides a fast path to customizing and using large language models trained on several frameworks. Developers can deploy enterprise AI applications using NeMo LLM on private and public clouds. They can also experience Megatron 530B—one of the largest language models—through the cloud API or experiment via the LLM service. Customize your choice of various NVIDIA or community-developed models that work best for your AI applications. Within minutes to hours, get better responses by providing context for specific use cases using prompt learning techniques. Leverage the power of NVIDIA Megatron 530B, one of the largest language models, through the NeMo LLM Service or the cloud API. Take advantage of models for drug discovery, including in the cloud API and NVIDIA BioNeMo framework.
  • 19
    Nendo

    Nendo

    Nendo

    Nendo is the AI audio tool suite that allows you to effortlessly develop & use audio apps that amplify efficiency & creativity across all aspects of audio production. Time-consuming issues with machine learning and audio processing code are a thing of the past. AI is a transformative leap for audio production, amplifying efficiency and creativity in industries where audio is key. But building custom AI Audio solutions and operating them at scale is challenging. Nendo cloud empowers developers and businesses to seamlessly deploy Nendo applications, utilize premium AI audio models through APIs, and efficiently manage workloads at scale. From batch processing, model training, and inference to library management, and beyond - Nendo cloud is your solution.
  • 20
    Baidu AI Cloud Machine Learning (BML)
    Baidu AI Cloud Machine Learning (BML), an end-to-end machine learning platform designed for enterprises and AI developers, can accomplish one-stop data pre-processing, model training, and evaluation, and service deployments, among others. The Baidu AI Cloud AI development platform BML is an end-to-end AI development and deployment platform. Based on the BML, users can accomplish the one-stop data pre-processing, model training and evaluation, service deployment, and other works. The platform provides a high-performance cluster training environment, massive algorithm frameworks and model cases, as well as easy-to-operate prediction service tools. Thus, it allows users to focus on the model and algorithm and obtain excellent model and prediction results. The fully hosted interactive programming environment realizes the data processing and code debugging. The CPU instance supports users to install a third-party software library and customize the environment, ensuring flexibility.
  • 21
    JAX

    JAX

    JAX

    ​JAX is a Python library designed for high-performance numerical computing and machine learning research. It offers a NumPy-like API, facilitating seamless adoption for those familiar with NumPy. Key features of JAX include automatic differentiation, just-in-time compilation, vectorization, and parallelization, all optimized for execution on CPUs, GPUs, and TPUs. These capabilities enable efficient computation for complex mathematical functions and large-scale machine-learning models. JAX also integrates with various libraries within its ecosystem, such as Flax for neural networks and Optax for optimization tasks. Comprehensive documentation, including tutorials and user guides, is available to assist users in leveraging JAX's full potential. ​
  • 22
    Chainer

    Chainer

    Chainer

    A powerful, flexible, and intuitive framework for neural networks. Chainer supports CUDA computation. It only requires a few lines of code to leverage a GPU. It also runs on multiple GPUs with little effort. Chainer supports various network architectures including feed-forward nets, convnets, recurrent nets and recursive nets. It also supports per-batch architectures. Forward computation can include any control flow statements of Python without lacking the ability of backpropagation. It makes code intuitive and easy to debug. Comes with ChainerRLA, a library that implements various state-of-the-art deep reinforcement algorithms. Also, with ChainerCVA, a collection of tools to train and run neural networks for computer vision tasks. Chainer supports CUDA computation. It only requires a few lines of code to leverage a GPU. It also runs on multiple GPUs with little effort.
  • 23
    Apache Mahout

    Apache Mahout

    Apache Software Foundation

    Apache Mahout is a powerful, scalable, and versatile machine learning library designed for distributed data processing. It offers a comprehensive set of algorithms for various tasks, including classification, clustering, recommendation, and pattern mining. Built on top of the Apache Hadoop ecosystem, Mahout leverages MapReduce and Spark to enable data processing on large-scale datasets. Apache Mahout(TM) is a distributed linear algebra framework and mathematically expressive Scala DSL designed to let mathematicians, statisticians, and data scientists quickly implement their own algorithms. Apache Spark is the recommended out-of-the-box distributed back-end or can be extended to other distributed backends. Matrix computations are a fundamental part of many scientific and engineering applications, including machine learning, computer vision, and data analysis. Apache Mahout is designed to handle large-scale data processing by leveraging the power of Hadoop and Spark.
  • 24
    Baidu Qianfan
    One-stop enterprise-level large model platform, providing advanced generation AI production and application process development toolchain. Provides data labels, model training and evaluation, reasoning services, and application-integrated comprehensive functional services. Training and reasoning performance greatly improved. Perfect authentication and flow control safety mechanism, self-proclaimed content review and sensitive word filtering, multi-safety mechanism escort enterprise application. Extensive and mature practice landed, building the next generation of smart applications. Online quick test service effect, convenient smart cloud reasoning service. One-stop model customization, full process visualization operation. Large model of knowledge enhancement, unified paradigm to support multi-category downstream tasks. An advanced parallel strategy that supports large model training, compression, and deployment.
  • Previous
  • You're on page 1
  • Next