Browse free open source Python Command Line Tools and projects below. Use the toggles on the left to filter open source Python Command Line Tools by OS, license, language, programming language, and project status.

  • Simplify IT and security with a single endpoint management platform Icon
    Simplify IT and security with a single endpoint management platform

    Automate the hardest parts of IT

    NinjaOne automates the hardest parts of IT, delivering visibility, security, and control over all endpoints for more than 20,000 customers. The NinjaOne automated endpoint management platform is proven to increase productivity, reduce security risk, and lower costs for IT teams and managed service providers. The company seamlessly integrates with a wide range of IT and security technologies. NinjaOne is obsessed with customer success and provides free and unlimited onboarding, training, and support.
    Learn More
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Deep Daze

    Deep Daze

    Simple command line tool for text to image generation

    Simple command-line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network). In true deep learning fashion, more layers will yield better results. Default is at 16, but can be increased to 32 depending on your resources. Technique first devised and shared by Mario Klingemann, it allows you to prime the generator network with a starting image, before being steered towards the text. Simply specify the path to the image you wish to use, and optionally the number of initial training steps. We can also feed in an image as an optimization goal, instead of only priming the generator network. Deepdaze will then render its own interpretation of that image. The regular mode for texts only allows 77 tokens. If you want to visualize a full story/paragraph/song/poem, set create_story to True.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    Big Sleep

    Big Sleep

    A simple command line tool for text to image generation

    A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN. Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU. You will be able to have the GAN dream-up images using natural language with a one-line command in the terminal. User-made notebook with bug fixes and added features, like google drive integration. Images will be saved to wherever the command is invoked. If you have enough memory, you can also try using a bigger vision model released by OpenAI for improved generations. You can set the number of classes that you wish to restrict Big Sleep to use for the Big GAN with the --max-classes flag as follows (ex. 15 classes). This may lead to extra stability during training, at the cost of lost expressivity.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    GPT ChatterBot - experimental 23

    GPT ChatterBot - experimental 23

    GPT ChatterBot - experimental 23 (A ChatGPT app for PC )

    'GPT_ChatterBot' is a console (command-prompt) desktop application developed using python 3.6.8 and other add-on libaries. The experimental application uses api from OpenAI to create ChatGPT interaction on a PC Apps. Compatible only for windows OS.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Neural Networks Collection

    Neural Networks Collection

    Neural Networks Collection

    This project implements in C++ a bunch of known Neural Networks. So far the project implements: LVQ in several variants, SOM in several variants, Hopfield network and Perceptron. Other neural network types are planned, but not implemented yet. The project can run in two modes: command line tool and Python 7.2 extension. Currently, Python version appears more functional, as it allows easy interaction with algorithms developed by other people.
    Downloads: 0 This Week
    Last Update:
    See Project
  • MongoDB 8.0 on Atlas | Run anywhere Icon
    MongoDB 8.0 on Atlas | Run anywhere

    Now available in even more cloud regions across AWS, Azure, and Google Cloud.

    MongoDB 8.0 brings enhanced performance and flexibility to Atlas—with expanded availability across 125+ regions globally. Build modern apps anywhere your users are, with the power of a modern database behind you.
    Learn More
  • 5

    mwetoolkit

    THIS PROJECT MIGRATED TO https://gitlab.com/mwetoolkit/mwetoolkit3/

    THIS PROJECT MIGRATED TO https://gitlab.com/mwetoolkit/mwetoolkit3/ The Multiword Expressions toolkit aids in the automatic identification and extraction of multiword units in running text. These include idioms (kick the bucket), noun compounds (cable car), phrasal verbs (take off, give up), etc. Even though it focuses on multiword expresisons, the framework is quite complete and can also be useful in any corpus-based study in computational linguistics. The mwetoolkit can be applied to virtually any text collection, language, and MWE type. It is a command-line tool written mostly in Python. Its development started in 2010 as a PhD thesis but the project keeps active (see the SVN logs). Up-to-date documentation and details about the tool can be found on the mwetoolkit website: http://mwetoolkit.sourceforge.net/
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.