Class: Enumerator::ArithmeticSequence

Inherits:
Enumerator show all
Defined in:
enumerator.c,
enumerator.c

Overview

Enumerator::ArithmeticSequence is a subclass of Enumerator, that is a representation of sequences of numbers with common difference. Instances of this class can be generated by the Range#step and Numeric#step methods.

The class can be used for slicing Array (see Array#slice) or custom collections.

Instance Method Summary collapse

Methods inherited from Enumerator

#+, #each_with_index, #each_with_object, #feed, #initialize, #initialize_copy, #next, #next_values, #peek, #peek_values, produce, product, #rewind, #with_index, #with_object

Methods included from Enumerable

#all?, #any?, #chain, #chunk, #chunk_while, #collect, #collect_concat, #compact, #count, #cycle, #detect, #drop, #drop_while, #each_cons, #each_entry, #each_slice, #each_with_index, #each_with_object, #entries, #filter, #filter_map, #find, #find_all, #find_index, #flat_map, #grep, #grep_v, #group_by, #include?, #inject, #lazy, #map, #max, #max_by, #member?, #min, #min_by, #minmax, #minmax_by, #none?, #one?, #partition, #reduce, #reject, #reverse_each, #select, #slice_after, #slice_before, #slice_when, #sort, #sort_by, #sum, #take, #take_while, #tally, #to_a, #to_h, #uniq, #zip

Constructor Details

This class inherits a constructor from Enumerator

Instance Method Details

#==(obj) ⇒ Boolean

Returns true only if obj is an Enumerator::ArithmeticSequence, has equivalent begin, end, step, and exclude_end? settings.

Returns:

  • (Boolean)


4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
# File 'enumerator.c', line 4260

static VALUE
arith_seq_eq(VALUE self, VALUE other)
{
    if (!RTEST(rb_obj_is_kind_of(other, rb_cArithSeq))) {
        return Qfalse;
    }

    if (!rb_equal(arith_seq_begin(self), arith_seq_begin(other))) {
        return Qfalse;
    }

    if (!rb_equal(arith_seq_end(self), arith_seq_end(other))) {
        return Qfalse;
    }

    if (!rb_equal(arith_seq_step(self), arith_seq_step(other))) {
        return Qfalse;
    }

    if (arith_seq_exclude_end_p(self) != arith_seq_exclude_end_p(other)) {
        return Qfalse;
    }

    return Qtrue;
}

#==(obj) ⇒ Boolean

Returns true only if obj is an Enumerator::ArithmeticSequence, has equivalent begin, end, step, and exclude_end? settings.

Returns:

  • (Boolean)


4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
# File 'enumerator.c', line 4260

static VALUE
arith_seq_eq(VALUE self, VALUE other)
{
    if (!RTEST(rb_obj_is_kind_of(other, rb_cArithSeq))) {
        return Qfalse;
    }

    if (!rb_equal(arith_seq_begin(self), arith_seq_begin(other))) {
        return Qfalse;
    }

    if (!rb_equal(arith_seq_end(self), arith_seq_end(other))) {
        return Qfalse;
    }

    if (!rb_equal(arith_seq_step(self), arith_seq_step(other))) {
        return Qfalse;
    }

    if (arith_seq_exclude_end_p(self) != arith_seq_exclude_end_p(other)) {
        return Qfalse;
    }

    return Qtrue;
}

#beginObject

#each {|i| ... } ⇒ Object #eachObject

Overloads:

  • #each {|i| ... } ⇒ Object

    Yields:

    • (i)


4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
# File 'enumerator.c', line 4328

static VALUE
arith_seq_each(VALUE self)
{
    VALUE c, e, s, len_1, last;
    int x;

    if (!rb_block_given_p()) return self;

    c = arith_seq_begin(self);
    e = arith_seq_end(self);
    s = arith_seq_step(self);
    x = arith_seq_exclude_end_p(self);

    if (!RB_TYPE_P(s, T_COMPLEX) && ruby_float_step(c, e, s, x, TRUE)) {
        return self;
    }

    if (NIL_P(e)) {
        while (1) {
            rb_yield(c);
            c = rb_int_plus(c, s);
        }

        return self;
    }

    if (rb_equal(s, INT2FIX(0))) {
        while (1) {
            rb_yield(c);
        }

        return self;
    }

    len_1 = num_idiv(num_minus(e, c), s);
    last = num_plus(c, num_mul(s, len_1));
    if (x && rb_equal(last, e)) {
        last = num_minus(last, s);
    }

    if (rb_num_negative_int_p(s)) {
        while (NUM_GE(c, last)) {
            rb_yield(c);
            c = num_plus(c, s);
        }
    }
    else {
        while (NUM_GE(last, c)) {
            rb_yield(c);
            c = num_plus(c, s);
        }
    }

    return self;
}

#endObject

#==(obj) ⇒ Boolean

Returns true only if obj is an Enumerator::ArithmeticSequence, has equivalent begin, end, step, and exclude_end? settings.

Returns:

  • (Boolean)


4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
# File 'enumerator.c', line 4260

static VALUE
arith_seq_eq(VALUE self, VALUE other)
{
    if (!RTEST(rb_obj_is_kind_of(other, rb_cArithSeq))) {
        return Qfalse;
    }

    if (!rb_equal(arith_seq_begin(self), arith_seq_begin(other))) {
        return Qfalse;
    }

    if (!rb_equal(arith_seq_end(self), arith_seq_end(other))) {
        return Qfalse;
    }

    if (!rb_equal(arith_seq_step(self), arith_seq_step(other))) {
        return Qfalse;
    }

    if (arith_seq_exclude_end_p(self) != arith_seq_exclude_end_p(other)) {
        return Qfalse;
    }

    return Qtrue;
}

#exclude_end?Boolean

Returns:

  • (Boolean)

#firstNumeric? #first(n) ⇒ Array

Returns the first number in this arithmetic sequence, or an array of the first n elements.

Overloads:



3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
# File 'enumerator.c', line 3901

static VALUE
arith_seq_first(int argc, VALUE *argv, VALUE self)
{
    VALUE b, e, s, ary;
    long n;
    int x;

    rb_check_arity(argc, 0, 1);

    b = arith_seq_begin(self);
    e = arith_seq_end(self);
    s = arith_seq_step(self);
    if (argc == 0) {
        if (NIL_P(b)) {
            return Qnil;
        }
        if (!NIL_P(e)) {
            VALUE zero = INT2FIX(0);
            int r = rb_cmpint(rb_num_coerce_cmp(s, zero, idCmp), s, zero);
            if (r > 0 && RTEST(rb_funcall(b, '>', 1, e))) {
                return Qnil;
            }
            if (r < 0 && RTEST(rb_funcall(b, '<', 1, e))) {
                return Qnil;
            }
        }
        return b;
    }

    // TODO: the following code should be extracted as arith_seq_take

    n = NUM2LONG(argv[0]);
    if (n < 0) {
        rb_raise(rb_eArgError, "attempt to take negative size");
    }
    if (n == 0) {
        return rb_ary_new_capa(0);
    }

    x = arith_seq_exclude_end_p(self);

    if (FIXNUM_P(b) && NIL_P(e) && FIXNUM_P(s)) {
        long i = FIX2LONG(b), unit = FIX2LONG(s);
        ary = rb_ary_new_capa(n);
        while (n > 0 && FIXABLE(i)) {
            rb_ary_push(ary, LONG2FIX(i));
            i += unit;  // FIXABLE + FIXABLE never overflow;
            --n;
        }
        if (n > 0) {
            b = LONG2NUM(i);
            while (n > 0) {
                rb_ary_push(ary, b);
                b = rb_big_plus(b, s);
                --n;
            }
        }
        return ary;
    }
    else if (FIXNUM_P(b) && FIXNUM_P(e) && FIXNUM_P(s)) {
        long i = FIX2LONG(b);
        long end = FIX2LONG(e);
        long unit = FIX2LONG(s);
        long len;

        if (unit >= 0) {
            if (!x) end += 1;

            len = end - i;
            if (len < 0) len = 0;
            ary = rb_ary_new_capa((n < len) ? n : len);
            while (n > 0 && i < end) {
                rb_ary_push(ary, LONG2FIX(i));
                if (i + unit < i) break;
                i += unit;
                --n;
            }
        }
        else {
            if (!x) end -= 1;

            len = i - end;
            if (len < 0) len = 0;
            ary = rb_ary_new_capa((n < len) ? n : len);
            while (n > 0 && i > end) {
                rb_ary_push(ary, LONG2FIX(i));
                if (i + unit > i) break;
                i += unit;
                --n;
            }
        }
        return ary;
    }
    else if (RB_FLOAT_TYPE_P(b) || RB_FLOAT_TYPE_P(e) || RB_FLOAT_TYPE_P(s)) {
        /* generate values like ruby_float_step */

        double unit = NUM2DBL(s);
        double beg = NUM2DBL(b);
        double end = NIL_P(e) ? (unit < 0 ? -1 : 1)*HUGE_VAL : NUM2DBL(e);
        double len = ruby_float_step_size(beg, end, unit, x);
        long i;

        if (n > len)
            n = (long)len;

        if (isinf(unit)) {
            if (len > 0) {
                ary = rb_ary_new_capa(1);
                rb_ary_push(ary, DBL2NUM(beg));
            }
            else {
                ary = rb_ary_new_capa(0);
            }
        }
        else if (unit == 0) {
            VALUE val = DBL2NUM(beg);
            ary = rb_ary_new_capa(n);
            for (i = 0; i < len; ++i) {
                rb_ary_push(ary, val);
            }
        }
        else {
            ary = rb_ary_new_capa(n);
            for (i = 0; i < n; ++i) {
                double d = i*unit+beg;
                if (unit >= 0 ? end < d : d < end) d = end;
                rb_ary_push(ary, DBL2NUM(d));
            }
        }

        return ary;
    }

    return rb_call_super(argc, argv);
}

#hashInteger

Compute a hash-value for this arithmetic sequence. Two arithmetic sequences with same begin, end, step, and exclude_end? values will generate the same hash-value.

See also Object#hash.

Returns:



4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
# File 'enumerator.c', line 4296

static VALUE
arith_seq_hash(VALUE self)
{
    st_index_t hash;
    VALUE v;

    hash = rb_hash_start(arith_seq_exclude_end_p(self));
    v = rb_hash(arith_seq_begin(self));
    hash = rb_hash_uint(hash, NUM2LONG(v));
    v = rb_hash(arith_seq_end(self));
    hash = rb_hash_uint(hash, NUM2LONG(v));
    v = rb_hash(arith_seq_step(self));
    hash = rb_hash_uint(hash, NUM2LONG(v));
    hash = rb_hash_end(hash);

    return ST2FIX(hash);
}

#inspectString

Convert this arithmetic sequence to a printable form.

Returns:



4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
# File 'enumerator.c', line 4196

static VALUE
arith_seq_inspect(VALUE self)
{
    struct enumerator *e;
    VALUE eobj, str, eargs;
    int range_p;

    TypedData_Get_Struct(self, struct enumerator, &enumerator_data_type, e);

    eobj = rb_attr_get(self, id_receiver);
    if (NIL_P(eobj)) {
        eobj = e->obj;
    }

    range_p = RTEST(rb_obj_is_kind_of(eobj, rb_cRange));
    str = rb_sprintf("(%s%"PRIsVALUE"%s.", range_p ? "(" : "", eobj, range_p ? ")" : "");

    rb_str_buf_append(str, rb_id2str(e->meth));

    eargs = rb_attr_get(eobj, id_arguments);
    if (NIL_P(eargs)) {
        eargs = e->args;
    }
    if (eargs != Qfalse) {
        long argc = RARRAY_LEN(eargs);
        const VALUE *argv = RARRAY_CONST_PTR(eargs); /* WB: no new reference */

        if (argc > 0) {
            VALUE kwds = Qnil;

            rb_str_buf_cat2(str, "(");

            if (RB_TYPE_P(argv[argc-1], T_HASH)) {
                int all_key = TRUE;
                rb_hash_foreach(argv[argc-1], key_symbol_p, (VALUE)&all_key);
                if (all_key) kwds = argv[--argc];
            }

            while (argc--) {
                VALUE arg = *argv++;

                rb_str_append(str, rb_inspect(arg));
                rb_str_buf_cat2(str, ", ");
            }
            if (!NIL_P(kwds)) {
                rb_hash_foreach(kwds, kwd_append, str);
            }
            rb_str_set_len(str, RSTRING_LEN(str)-2); /* drop the last ", " */
            rb_str_buf_cat2(str, ")");
        }
    }

    rb_str_buf_cat2(str, ")");

    return str;
}

#lastNumeric? #last(n) ⇒ Array

Returns the last number in this arithmetic sequence, or an array of the last n elements.

Overloads:



4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
# File 'enumerator.c', line 4127

static VALUE
arith_seq_last(int argc, VALUE *argv, VALUE self)
{
    VALUE b, e, s, len_1, len, last, nv, ary;
    int last_is_adjusted;
    long n;

    e = arith_seq_end(self);
    if (NIL_P(e)) {
        rb_raise(rb_eRangeError,
                 "cannot get the last element of endless arithmetic sequence");
    }

    b = arith_seq_begin(self);
    s = arith_seq_step(self);

    len_1 = num_idiv(num_minus(e, b), s);
    if (rb_num_negative_int_p(len_1)) {
        if (argc == 0) {
            return Qnil;
        }
        return rb_ary_new_capa(0);
    }

    last = num_plus(b, num_mul(s, len_1));
    if ((last_is_adjusted = arith_seq_exclude_end_p(self) && rb_equal(last, e))) {
        last = num_minus(last, s);
    }

    if (argc == 0) {
        return last;
    }

    if (last_is_adjusted) {
        len = len_1;
    }
    else {
        len = rb_int_plus(len_1, INT2FIX(1));
    }

    rb_scan_args(argc, argv, "1", &nv);
    if (!RB_INTEGER_TYPE_P(nv)) {
        nv = rb_to_int(nv);
    }
    if (RTEST(rb_int_gt(nv, len))) {
        nv = len;
    }
    n = NUM2LONG(nv);
    if (n < 0) {
        rb_raise(rb_eArgError, "negative array size");
    }

    ary = rb_ary_new_capa(n);
    b = rb_int_minus(last, rb_int_mul(s, nv));
    while (n) {
        b = rb_int_plus(b, s);
        rb_ary_push(ary, b);
        --n;
    }

    return ary;
}

#sizeNumeric?

Returns the number of elements in this arithmetic sequence if it is a finite sequence. Otherwise, returns nil.

Returns:



4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
# File 'enumerator.c', line 4391

static VALUE
arith_seq_size(VALUE self)
{
    VALUE b, e, s, len_1, len, last;
    int x;

    b = arith_seq_begin(self);
    e = arith_seq_end(self);
    s = arith_seq_step(self);
    x = arith_seq_exclude_end_p(self);

    if (RB_FLOAT_TYPE_P(b) || RB_FLOAT_TYPE_P(e) || RB_FLOAT_TYPE_P(s)) {
        double ee, n;

        if (NIL_P(e)) {
            if (rb_num_negative_int_p(s)) {
                ee = -HUGE_VAL;
            }
            else {
                ee = HUGE_VAL;
            }
        }
        else {
            ee = NUM2DBL(e);
        }

        n = ruby_float_step_size(NUM2DBL(b), ee, NUM2DBL(s), x);
        if (isinf(n)) return DBL2NUM(n);
        if (POSFIXABLE(n)) return LONG2FIX((long)n);
        return rb_dbl2big(n);
    }

    if (NIL_P(e)) {
        return DBL2NUM(HUGE_VAL);
    }

    if (!rb_obj_is_kind_of(s, rb_cNumeric)) {
        s = rb_to_int(s);
    }

    if (rb_equal(s, INT2FIX(0))) {
        return DBL2NUM(HUGE_VAL);
    }

    len_1 = rb_int_idiv(rb_int_minus(e, b), s);
    if (rb_num_negative_int_p(len_1)) {
        return INT2FIX(0);
    }

    last = rb_int_plus(b, rb_int_mul(s, len_1));
    if (x && rb_equal(last, e)) {
        len = len_1;
    }
    else {
        len = rb_int_plus(len_1, INT2FIX(1));
    }

    return len;
}

#stepObject