Sari la conținut

Număr piramidal hexagonal

De la Wikipedia, enciclopedia liberă
Număr piramidal hexagonal
Nr. total de termeniInfinit
Subșir alNumere piramidale
Formula
Primii termeni1, 7, 22, 50, 95, 161, 252
Index OEIS

Un număr piramidal hexagonal este un număr figurativ care dă numărul de obiecte dintr-o piramidă cu o bază hexagonală.[1] Cel de al n-lea număr piramidal hexagonal este egal cu suma primelor n numere hexagonale.

Primele numere piramidale hexagonale sunt:[2][3]

1, 7, 22, 50, 95, 161, 252, 372, 525, 715, 946, 1222, 1547, 1925, 2360, 2856, 3417, 4047, 4750, 5530, 6391, 7337, 8372, 9500, 10725, 12051, 13482, 15022, 16675, 18445, 20336, 22352, 24497, 26775, 29190, 31746, 34447, 37297, 40300

Formula pentru al n-lea număr piramidal hexagonal este:[2][3]

Al n-lea număr piramidal hexagonal este suma dintre al n-lea număr piramidal pentagonal și al n–1-lea număr tetraedric.[2]

Funcția generatoare a numerelor piramidale pentagonale este:[1][2]

Șiruri înrudite cu numerele hexagonale piramidale

[modificare | modificare sursă]
  • Șirul numerelor hexagonale piramidale impare, primii 10 termeni fiind:[4]
1, 7, 95, 161, 525, 715, 1547, 1925, 3417, 4047
având pătratele:[5]
1, 49, 9025, 25921, 275625, 511225, 2393209, 3705625, 11675889, 16378209
  • Șirul numerelor pentagonale piramidale pare, primii 10 termeni fiind:[6]
22, 50, 252, 372, 946, 1222, 2360, 2856, 4750, 5530
având pătratele: [7]
484, 2500, 63504, 138384, 894916, 1493284, 5569600, 8156736, 22562500, 30580900
  1. ^ a b en Eric W. Weisstein, Hexagonal Pyramidal Number la MathWorld.
  2. ^ a b c d Șirul A002412 la Enciclopedia electronică a șirurilor de numere întregi (OEIS)
  3. ^ a b en Neil Sloane, Simon Plouffe, The Encyclopedia of Integer Sequences, San Diego, New York, Boston, London, Sydney, Tokyo, Toronto: Academic Press Inc., 1995, ISBN: 0-12-558630-2, M4374
  4. ^ Șirul A015225 la Enciclopedia electronică a șirurilor de numere întregi (OEIS)
  5. ^ Șirul A014801 la Enciclopedia electronică a șirurilor de numere întregi (OEIS)
  6. ^ Șirul A015226 la Enciclopedia electronică a șirurilor de numere întregi (OEIS)
  7. ^ Șirul A014800 la Enciclopedia electronică a șirurilor de numere întregi (OEIS)