US3479811A - Yarn and method of making the same - Google Patents
Yarn and method of making the same Download PDFInfo
- Publication number
- US3479811A US3479811A US686656A US3479811DA US3479811A US 3479811 A US3479811 A US 3479811A US 686656 A US686656 A US 686656A US 3479811D A US3479811D A US 3479811DA US 3479811 A US3479811 A US 3479811A
- Authority
- US
- United States
- Prior art keywords
- yarn
- microspheres
- weight percent
- weight
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title description 2
- 239000004005 microsphere Substances 0.000 description 35
- 229920000642 polymer Polymers 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- CRSOQBOWXPBRES-UHFFFAOYSA-N neopentane Chemical compound CC(C)(C)C CRSOQBOWXPBRES-UHFFFAOYSA-N 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 229920000103 Expandable microsphere Polymers 0.000 description 12
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 10
- 239000000853 adhesive Substances 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 238000000576 coating method Methods 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 239000011324 bead Substances 0.000 description 8
- 239000004744 fabric Substances 0.000 description 6
- 239000000835 fiber Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229920000742 Cotton Polymers 0.000 description 5
- 239000004677 Nylon Substances 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 229920001778 nylon Polymers 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 239000004416 thermosoftening plastic Substances 0.000 description 5
- 229920002125 Sokalan® Polymers 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 239000012065 filter cake Substances 0.000 description 4
- 239000004816 latex Substances 0.000 description 4
- 229920000126 latex Polymers 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000009941 weaving Methods 0.000 description 4
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000004584 polyacrylic acid Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 238000009958 sewing Methods 0.000 description 3
- 210000002268 wool Anatomy 0.000 description 3
- 239000002759 woven fabric Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001246 colloidal dispersion Methods 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000006194 liquid suspension Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 229920002994 synthetic fiber Polymers 0.000 description 2
- 239000012209 synthetic fiber Substances 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 244000198134 Agave sisalana Species 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 239000004604 Blowing Agent Substances 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- 241001459693 Dipterocarpus zeylanicus Species 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229920006186 water-soluble synthetic resin Polymers 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/22—Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
- D02G3/40—Yarns in which fibres are united by adhesives; Impregnated yarns or threads
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G1/00—Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/208—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based
- D03D15/217—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads cellulose-based natural from plants, e.g. cotton
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/233—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads protein-based, e.g. wool or silk
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/283—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/40—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
- D03D15/47—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads multicomponent, e.g. blended yarns or threads
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2201/00—Cellulose-based fibres, e.g. vegetable fibres
- D10B2201/01—Natural vegetable fibres
- D10B2201/02—Cotton
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2201/00—Cellulose-based fibres, e.g. vegetable fibres
- D10B2201/01—Natural vegetable fibres
- D10B2201/04—Linen
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2201/00—Cellulose-based fibres, e.g. vegetable fibres
- D10B2201/01—Natural vegetable fibres
- D10B2201/06—Jute
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2201/00—Cellulose-based fibres, e.g. vegetable fibres
- D10B2201/20—Cellulose-derived artificial fibres
- D10B2201/22—Cellulose-derived artificial fibres made from cellulose solutions
- D10B2201/24—Viscose
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2211/00—Protein-based fibres, e.g. animal fibres
- D10B2211/01—Natural animal fibres, e.g. keratin fibres
- D10B2211/04—Silk
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2321/00—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D10B2321/02—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
- D10B2321/022—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2321/00—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D10B2321/04—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons
- D10B2321/041—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons polyvinyl chloride or polyvinylidene chloride
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2321/00—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D10B2321/10—Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/02—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/04—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/04—Heat-responsive characteristics
- D10B2401/041—Heat-responsive characteristics thermoplastic; thermosetting
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/08—Physical properties foamed
Definitions
- This invention relates to treated yarn and a method, and more particularly relates to the incorporation of expandable microspheres into textile yarns.
- a yarn of a fibrous nature containing therein a plurality of synthetic resinous thermoplastic microspheres having a distinct and separate liquid phase therein, the microspheres being capable of expanding on heating to a diameter substantially greater than the original diameter of the microsphere.
- FIGURE 1 is a schematic enlarged representation of a yarn in accordance with the present invention.
- FIGURE 2 is a schematic cross-sectional representation of a fabricated article in accordance with the invention.
- FIGURE 3 is a schematic representation of a yarn having expanded microspheres therein.
- FIGURE 1 there is depicted a schematic representation of a yarn of a fibrous nature generally indicated by the reference numeral 10.
- the yarn 10 comprises a plurality of fibers or filaments 11 disposed in generally parallel adjacent relationship.
- the microspheres 12 consist of a synthetic resinous thermoplastic hollow spherical shell containing a distinct and separate liquid phase of a blowing agent therein.
- Such expandable microspheres are well known in the art and are set forth in Belgian Patent 641,711.
- FIGURE 2 there is represented a schematic sectional view of a fabric 20 prepared from yarn in accordance with the present invention.
- the fabric 20 comprises a first set of generally parallel yarns 21 and a second set of generally parallel yarns 22 disposed generally in angular relationship to the set 21 and interwoven therewith.
- the dotted lines indicate the configuration of the yarns 21 and 22 after being subjected to heat sufiicient to cause the microspheres contained within the filaments to expand.
- FIGURE 3 there is depicted a portion of an expanded yarn 25 which has been removed from a fabric structure after expansion of the yarn.
- the yarn 25 has unexpanded or locking portions 26 and 27 arising from mechanical restraint during microspheres expansion.
- yarns may be employed in the practice of the present invention such as threads, cordage and the like prepared from cotton, silk, jute, sisal, hemp, linen and wool, as Well as synthetics such as vinylidene chloride polymer multifilament, nylon, polyacrylonitrile, polyethylene, terephthalate, polypropylene, polyvinyl chloride, viscose rayon and blends of natural fibers, synthetic fibers as well as blends of natural and synthetic fibers.
- synthetics such as vinylidene chloride polymer multifilament, nylon, polyacrylonitrile, polyethylene, terephthalate, polypropylene, polyvinyl chloride, viscose rayon and blends of natural fibers, synthetic fibers as well as blends of natural and synthetic fibers.
- the yarn define accessible void spaces between the fibers or filaments and be capable of expansion; that is, separation of the fibers or filaments sufiicient to admit microspheres into the interstitial spaces.
- Most yarns meet these requirements.
- a few yarns have been treated with a coating or bonding material or by heat treatment to a degree sufiicient to prevent such expansion.
- a wide variety of expandable microspheres are known and described in Belgian Patent 641,711. Generally, the particular nature of the microsphere is not critical.
- a heat expanding microsphere having a composition which permits expansion at a temperature appropriate to the yarn employed that is, one should not employ a microsphere which expands at a temperature above a temperature at which the strength or quality of the yarn or thread being treated is impaired such as by de-orientation, shrinkage, embrittlement or the like.
- microspheres to the yarn in combination with an adhesive material which promotes adhesion of the microspheres in the unexpanded form and subsequently in the expanded form to the surface of the fibers or filaments making up the yarn.
- adhesives or binders are well known and some are described in Belgian Patent 641,711. If, due to the particular nature of the yarn, an adhesive or binder is required, it is essential that one that is employed be inert to the expandable microspheres; that is, the binder must not destroy the structure of the microsphere.
- Typical binders or adhesives which are employed are synthetic resinous latexes or colloidal dispersions which are film forming at temperatures at which the microspheres initially start to expand to temperatures well below ambient temperatures.
- film forming synthetic resinous dispersions such as polymers of styrene and butadiene such as a polymer of 70 parts by weight styrene and 30 parts by weight butadiene, are eminently satisfactory for many purposes, as are film forming vinylidene chlo-' ride polymers in aqueous colloidal dispersion such as a polymer of 85 weight percent vinylidene chloride and 15 weight percent acrylonitrile; water-soluble synthetic resins such as polyacrylic acid; water or alcohol soluble resins such as hydroxypropyl methyl cellulose; thermosetting resins such as the epoxy resins and the like.
- an adhesive may be omitted particularly with sized synthetic resinous yarns which have outer surfaces coated with a resin which softens or becomes tacky at temperatures of about 100 to 125 C., such as a polymer of 72 weight percent ethylene and 28 weight percent acrylic acid.
- the expandable synthetic resinous microspheres may be incorporated within the yarn by a variety of techniques including immersion of the yarn in a liquid suspension of expandable microspheres.
- a tow of such yarns is impregnated by spraying, dipping, rolling, brushing or other conventional liquid-applying means.
- One particularly advantageous method of preparing a yarn impregnated with expandable microspheres is to pass the yarn to be coated through a bath and subsequently doctor the excess material therefrom by means of a perforated rubber diaphragm.
- a polymerization re actor equipped with an agitator is charged with 100 parts of deionized water and 15 parts of a 30 weight percent colloidal silica dispersion in water.
- the colloidal silica dispersion is 30 weight percent solids and available under the trade name of Ludox HS.
- To this mixture is added 2.5 parts of a 10 weight percent aqueous solution of a copolymer prepared from diethanol amine and adipic acid in equimolar proportions by carrying out a condensation: reaction to give a product having a viscosity of about 100 centipoises at 25 C.
- a solution containing 2.5 weight percent potassium dichromate is added.
- the pH of the aqueous solution is adjusted to 4 with hydrochloric acid.
- a methyl methacrylate and acrylonitrile mixture is utilized as the monomer in a proportion of 4:1, respectively.
- An oil phase mixture is prepared utilizing 100 parts of the foregoing monomer mixture and containing 35 weight percent neopentane and 0.1 part of benzoyl peroxide as a catalyst.
- the oil phase mixture is added to the water phase with violent agitation supplied by a blade rotating at a speed of about 10,000 revolutions per minute.
- the reactor is immediately sealed and a portion of the contents sampled to determine the particle size.
- the droplets appear to have diameters of from about 2 to about 10 microns.
- the reaction mixture is maintained at a temperature of about 80 C.
- the temperature is lowered and the reaction mixture has the appearance of a white, milky liquid similar to a chalkwhite milk.
- a portion of the mixture is filtered to remove the beads and the beads subsequently dried in an air oven at a temperature of about 30 C.
- a portion of the dried beads are heated in an air oven at a temperature of 150 C. for about 3 minutes. Upon heating, the beads show a marked increase in volume.
- Microscpoic examination of the beads prior to foaming indicates beads having diameters of from about 2 to about 10 microns and having dispersed therein a distinct spherical zone which appears to contain liquid and a small Vapor space.
- the beads which have been heated are examined micro scopically and are found to have diameters of from about 2 to times the diamter of the original bead and a relatively thin, transparent wall and a gaseous center, i.e., a monocell.
- the remaining portion of the chalk-White material is filtered to provide a wet'filter cake containing about 29.6 Weight percent expandable microspheres.
- a coating mixture is prepared by admixing 81.1 parts by weight of a polymer latex of 60 weight percent styrene and 40 weight percent butadiene which is 49.3 weight percent solids, 2.7 parts by weight of a 25 weight percent aqueous solution of sodium dodecyl diphenyl oxide disulfonate, 207 parts by weight of water and 16.2 parts by weight of a 5 weight percent aqueous solution of a thickening agent commercially available under the trade designation of Acrysol GS.
- the coating solution is then applied to a plurality of yarns by immersing the yarns and doctoring olf excess coating material by drawing through an opening formed by perforating a thin rubber diaphragm with a needle.
- the coated yarn is air-dried at a temperature of about 60 C. Portions of the thread are subsequently formed by heating in an air oven at 135 C.
- the yarns employed and the results are as follows:
- YARN 1 A No. 40 cotton thread is coated with a dry coating weight of 0.0846 gram per 10 feet and after expansion increases to about twice its original diameter.
- YARN 2 A No. 50 cotton thread is coated with a dry coating weight of 0.0534 gram per 10 feet and after expansion increases to about twice its original diameter.
- YARN 3 A sized silk thread manufactured by Belding and Corticelli is coated with a dry coating weight of 0.1336 gram per 10 feet and after expansion increases to about 50 percent of its original diameter with a substantial increase in thickness.
- YARN 4 A nylon thread designated as Coats and Clark Taslan textured nylon thread is coated with a dry coating weight of 0.042 gram per 10 feet and after expansion of the microspheres shows localized areas of individual fibers curled and standing out from the body of the thread.
- YARN 5 Coats and Clark No. 333 wool yarn requires a dry coating weight of 0.0289 gram per 10 feet and on expansion increases its diameter about 2.5 times.
- foamable microsphere coating compositions are prepared as follows:
- COMPOSITION A 106.6 parts by weight of expandable microspheres having a polymer shell which is a polymer of weight percent vinylidene chloride and 20 weight percent acrylo nitrile containing 35 weight percent neopentane based on the combined weight of polymer and neopentane, the filter cake containing 25 weight percent Water, parts by weight of water, 40 parts by weight of a 60-40 copolymer of styrene and butadiene latex, 50 Weight percent solids, 78.3 parts by weight of a 5 weight percent solution of the sodium salt of polyacrylic acid.
- COMPOSITION C Ninety parts by weight of a wet filter cake of expandable microspheres having a polymer shell of 60 weight percent styrene and 40 weight percent acrylonitrile copolymer containing 35 weight percent neopentane based on the combined weight of the polymer and neopentane and 25 parts by weight water, 103 parts by weight water, 60.4 parts by weight of an aqueous latex, 50 percent solids of a polymer of 85 weight percent vinyl chloride, weight percent butyl acrylate and 5 weight percent acylic acid, 10 parts by weight of a 10 weight percent solution of hydroxyethyl cellulose.
- COMPOSITION D Ninety-four parts by weight of a wet filter cake of expandable microspheres having a polymer shell of 80 weight percent methyl methacrylate and weight percent methyl acrylate and weight percent neopentane based on the combined weight of the neopentane and the copolymer and 25 weight percent water, 100 parts by weight water, parts by weight of a weight percent solids latex of a polymer of weight percent styrene and 40 weight percent butadiene, 78.3 parts by weight of a 5 Weight percent aqueous solution of the sodium salt of polyacrylic acid.
- compositions A, B, C, and D Similar beneficial and advantageous results are obtained when cotton, silk, wool and nylon threads are coated With compositions A, B, C, and D.
- Use of coated or impregnated threads prepared in accordance with the present invention is susceptible of being embodied with 1y heated to a temperature sufficient to cause expansion, substantially eliminates the need for knotting or tying of the thread at either end thereof, as after heating the thread to cause expansion, it is difiicult to remove the thread from a woven fabric. Similar advantages are achieved when expandable thread of the present invention is employed for attaching buttons. Fabric woven from the expandable yarns prepared in accordance with the present invention and heat treated to expand the microspheres provides a dense-appearing fabric much tighter than original weave and with significant antiravelling properties.
- a method of providing a bulked yarn of a fibrous nature comprising providing a yarn
- microspheres comprising a synthetic thermoplastic resinous wall and a distinct and separate liquid phase of a volatile expanding agent which is a non-solvent for the resinous wall, subsequently disposing said microspheres within the yarn in a desired location,
- microspheres are disposed within the yarn by dispersion from a liquid suspension of microspheres.
- the method of claim 1 including the step of intertwining the yarn with a plurality of yarns prior to the expansion thereof.
- An improved textile yarn of a generally parallel fibrous nature the yarn containing dispersed therethrough a plurality of synthetic resinous thermoplastic microspheres having a distinct and separate liquid phase therein, the microspheres being capable of expanding on heating to a diameter substantially greater than the original diameter of the microspheres and thereby bulking the yarn.
- the yarn of claim 8 including an adhesive binding the microspheres to the yarn.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Botany (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Description
Nov. 25, 1969 H. A. WALTERS 3,479,811
YARN AND METHOD OF MAKING THE SAME Filed Nov. 29, 1967 INVENTOR. Hora/0 4. W0 fleas nited States Patent 3,479,811 YARN AND METHOD 0r MAKING THE SAME Harold A. Walters, Beaverton, Mich, assignor to The Dow Chemical Company, Midland, Mich, a corporation of Delaware Filed Nov. 29, 1967, Ser. No. 686,656 Int. Cl. D02g 3/22, 3/36; 132% 7/20 US. Cl. 57-153 12 Claims ABSTRACT OF THE DISCLOSURE Expandable microspheres are incorporated in a thread or yarn, subsequently heated to expand the microspheres and bulk the yarn. Bulking of the yarn after weaving or sewing provides tightly woven fabric or locked-in sewing thread.
This invention relates to treated yarn and a method, and more particularly relates to the incorporation of expandable microspheres into textile yarns.
The bulking of yarns has been accomplished by various means. Fabrics have been impregnated with expanded and expandable microspheres. However, such impregnation is usually carried out after the weaving or other intertwining process has been completed. Oftentimes, it IS desirable that the yarns expand after being formed or incorporated into an article to provide what appears to be a tighter weave or otherwise secure and/ or interlock the yarn with its adjacent neighbors.
It would be advantageous if there were available a method and yarn which would form apparently relatively densely woven fabric without the necessity of weaving tightly.
It would also be beneficial if there were available a sewing thread which could be subsequently expanded after installation in a desired location.
It would also be desirable if there were avialable an improved method for bulking yarn.
These benefits and other advantages in accordance with the present invention are achieved by providing a yarn of a fibrous nature, impregnating the yarn with a dispersion containing expandable synthetic resinous microspheres which comprise a synthetic thermoplastic resinous wall and a distinct and separate liquid phase of a volatile expanding agent, subsequently disposing said microspheres within the yarn in a desired location, heating the yarn to a temperature sufiicient to cause expansion of the microspheres, thereby causing bulking of the yarn.
Also contemplated within the scope of the present invention is a yarn of a fibrous nature containing therein a plurality of synthetic resinous thermoplastic microspheres having a distinct and separate liquid phase therein, the microspheres being capable of expanding on heating to a diameter substantially greater than the original diameter of the microsphere.
Further features and advantages of the present invention will become more apparent from the following specication when taken in connection with the drawing wherein:
FIGURE 1 is a schematic enlarged representation of a yarn in accordance with the present invention.
FIGURE 2 is a schematic cross-sectional representation of a fabricated article in accordance with the invention.
FIGURE 3 is a schematic representation of a yarn having expanded microspheres therein.
In FIGURE 1 there is depicted a schematic representation of a yarn of a fibrous nature generally indicated by the reference numeral 10. The yarn 10 comprises a plurality of fibers or filaments 11 disposed in generally parallel adjacent relationship. A plurality of expandable syn- 3,479,811 Patented Nov. 25, 1969 'ice thetic resinous microspheres 12 are disposed in interstitial spaces 13 between the adjacent filaments 11. The microspheres 12 consist of a synthetic resinous thermoplastic hollow spherical shell containing a distinct and separate liquid phase of a blowing agent therein. Such expandable microspheres are well known in the art and are set forth in Belgian Patent 641,711.
In FIGURE 2 there is represented a schematic sectional view of a fabric 20 prepared from yarn in accordance with the present invention. The fabric 20 comprises a first set of generally parallel yarns 21 and a second set of generally parallel yarns 22 disposed generally in angular relationship to the set 21 and interwoven therewith. The dotted lines indicate the configuration of the yarns 21 and 22 after being subjected to heat sufiicient to cause the microspheres contained within the filaments to expand.
In FIGURE 3 there is depicted a portion of an expanded yarn 25 which has been removed from a fabric structure after expansion of the yarn. The yarn 25 has unexpanded or locking portions 26 and 27 arising from mechanical restraint during microspheres expansion.
A wide variety of yarns may be employed in the practice of the present invention such as threads, cordage and the like prepared from cotton, silk, jute, sisal, hemp, linen and wool, as Well as synthetics such as vinylidene chloride polymer multifilament, nylon, polyacrylonitrile, polyethylene, terephthalate, polypropylene, polyvinyl chloride, viscose rayon and blends of natural fibers, synthetic fibers as well as blends of natural and synthetic fibers.
It is critical to the present invention that the yarn define accessible void spaces between the fibers or filaments and be capable of expansion; that is, separation of the fibers or filaments sufiicient to admit microspheres into the interstitial spaces. Most yarns meet these requirements. A few yarns have been treated with a coating or bonding material or by heat treatment to a degree sufiicient to prevent such expansion. A wide variety of expandable microspheres are known and described in Belgian Patent 641,711. Generally, the particular nature of the microsphere is not critical. However, it is generally desirable to select a heat expanding microsphere having a composition which permits expansion at a temperature appropriate to the yarn employed; that is, one should not employ a microsphere which expands at a temperature above a temperature at which the strength or quality of the yarn or thread being treated is impaired such as by de-orientation, shrinkage, embrittlement or the like.
Oftentimes it is desirable to apply the microspheres to the yarn in combination with an adhesive material which promotes adhesion of the microspheres in the unexpanded form and subsequently in the expanded form to the surface of the fibers or filaments making up the yarn. Such adhesives or binders are well known and some are described in Belgian Patent 641,711. If, due to the particular nature of the yarn, an adhesive or binder is required, it is essential that one that is employed be inert to the expandable microspheres; that is, the binder must not destroy the structure of the microsphere. Typical binders or adhesives which are employed are synthetic resinous latexes or colloidal dispersions which are film forming at temperatures at which the microspheres initially start to expand to temperatures well below ambient temperatures. The particular adhesive employed will depend on the yarn, the characteristics required in the finished yarn such as friction, stiffness and the like. Selection of such adhesives is well within the skill of the art. Film forming synthetic resinous dispersions, such as polymers of styrene and butadiene such as a polymer of 70 parts by weight styrene and 30 parts by weight butadiene, are eminently satisfactory for many purposes, as are film forming vinylidene chlo-' ride polymers in aqueous colloidal dispersion such as a polymer of 85 weight percent vinylidene chloride and 15 weight percent acrylonitrile; water-soluble synthetic resins such as polyacrylic acid; water or alcohol soluble resins such as hydroxypropyl methyl cellulose; thermosetting resins such as the epoxy resins and the like. Beneficially in many instances, the addition of an adhesive may be omitted particularly with sized synthetic resinous yarns which have outer surfaces coated with a resin which softens or becomes tacky at temperatures of about 100 to 125 C., such as a polymer of 72 weight percent ethylene and 28 weight percent acrylic acid.
Beneficially in the practice of the present invention, the expandable synthetic resinous microspheres may be incorporated Within the yarn by a variety of techniques including immersion of the yarn in a liquid suspension of expandable microspheres. Beneficially, a tow of such yarns is impregnated by spraying, dipping, rolling, brushing or other conventional liquid-applying means. One particularly advantageous method of preparing a yarn impregnated with expandable microspheres is to pass the yarn to be coated through a bath and subsequently doctor the excess material therefrom by means of a perforated rubber diaphragm.
By way of further illustration, a polymerization re actor equipped with an agitator is charged with 100 parts of deionized water and 15 parts of a 30 weight percent colloidal silica dispersion in water. The colloidal silica dispersion is 30 weight percent solids and available under the trade name of Ludox HS. To this mixture is added 2.5 parts of a 10 weight percent aqueous solution of a copolymer prepared from diethanol amine and adipic acid in equimolar proportions by carrying out a condensation: reaction to give a product having a viscosity of about 100 centipoises at 25 C. One part of a solution containing 2.5 weight percent potassium dichromate is added. The pH of the aqueous solution is adjusted to 4 with hydrochloric acid. A methyl methacrylate and acrylonitrile mixture is utilized as the monomer in a proportion of 4:1, respectively. An oil phase mixture is prepared utilizing 100 parts of the foregoing monomer mixture and containing 35 weight percent neopentane and 0.1 part of benzoyl peroxide as a catalyst. The oil phase mixture is added to the water phase with violent agitation supplied by a blade rotating at a speed of about 10,000 revolutions per minute. The reactor is immediately sealed and a portion of the contents sampled to determine the particle size. The droplets appear to have diameters of from about 2 to about 10 microns. After the initial dispersion, the reaction mixture is maintained at a temperature of about 80 C. for a period of 24 hours. At the end of this period, the temperature is lowered and the reaction mixture has the appearance of a white, milky liquid similar to a chalkwhite milk. A portion of the mixture is filtered to remove the beads and the beads subsequently dried in an air oven at a temperature of about 30 C. A portion of the dried beads are heated in an air oven at a temperature of 150 C. for about 3 minutes. Upon heating, the beads show a marked increase in volume. Microscpoic examination of the beads prior to foaming indicates beads having diameters of from about 2 to about 10 microns and having dispersed therein a distinct spherical zone which appears to contain liquid and a small Vapor space. The beads which have been heated are examined micro scopically and are found to have diameters of from about 2 to times the diamter of the original bead and a relatively thin, transparent wall and a gaseous center, i.e., a monocell. The remaining portion of the chalk-White material is filtered to provide a wet'filter cake containing about 29.6 Weight percent expandable microspheres. A coating mixture is prepared by admixing 81.1 parts by weight of a polymer latex of 60 weight percent styrene and 40 weight percent butadiene which is 49.3 weight percent solids, 2.7 parts by weight of a 25 weight percent aqueous solution of sodium dodecyl diphenyl oxide disulfonate, 207 parts by weight of water and 16.2 parts by weight of a 5 weight percent aqueous solution of a thickening agent commercially available under the trade designation of Acrysol GS. The coating solution is then applied to a plurality of yarns by immersing the yarns and doctoring olf excess coating material by drawing through an opening formed by perforating a thin rubber diaphragm with a needle. The coated yarn is air-dried at a temperature of about 60 C. Portions of the thread are subsequently formed by heating in an air oven at 135 C. The yarns employed and the results are as follows:
YARN 1 A No. 40 cotton thread is coated with a dry coating weight of 0.0846 gram per 10 feet and after expansion increases to about twice its original diameter.
YARN 2 A No. 50 cotton thread is coated with a dry coating weight of 0.0534 gram per 10 feet and after expansion increases to about twice its original diameter.
YARN 3 A sized silk thread manufactured by Belding and Corticelli is coated with a dry coating weight of 0.1336 gram per 10 feet and after expansion increases to about 50 percent of its original diameter with a substantial increase in thickness.
YARN 4 A nylon thread designated as Coats and Clark Taslan textured nylon thread is coated with a dry coating weight of 0.042 gram per 10 feet and after expansion of the microspheres shows localized areas of individual fibers curled and standing out from the body of the thread.
YARN 5 Coats and Clark No. 333 wool yarn requires a dry coating weight of 0.0289 gram per 10 feet and on expansion increases its diameter about 2.5 times.
Other foamable microsphere coating compositions are prepared as follows:
COMPOSITION A 106.6 parts by weight of expandable microspheres having a polymer shell which is a polymer of weight percent vinylidene chloride and 20 weight percent acrylo nitrile containing 35 weight percent neopentane based on the combined weight of polymer and neopentane, the filter cake containing 25 weight percent Water, parts by weight of water, 40 parts by weight of a 60-40 copolymer of styrene and butadiene latex, 50 Weight percent solids, 78.3 parts by weight of a 5 weight percent solution of the sodium salt of polyacrylic acid.
COMPOSITION C Ninety parts by weight of a wet filter cake of expandable microspheres having a polymer shell of 60 weight percent styrene and 40 weight percent acrylonitrile copolymer containing 35 weight percent neopentane based on the combined weight of the polymer and neopentane and 25 parts by weight water, 103 parts by weight water, 60.4 parts by weight of an aqueous latex, 50 percent solids of a polymer of 85 weight percent vinyl chloride, weight percent butyl acrylate and 5 weight percent acylic acid, 10 parts by weight of a 10 weight percent solution of hydroxyethyl cellulose.
COMPOSITION D Ninety-four parts by weight of a wet filter cake of expandable microspheres having a polymer shell of 80 weight percent methyl methacrylate and weight percent methyl acrylate and weight percent neopentane based on the combined weight of the neopentane and the copolymer and 25 weight percent water, 100 parts by weight water, parts by weight of a weight percent solids latex of a polymer of weight percent styrene and 40 weight percent butadiene, 78.3 parts by weight of a 5 Weight percent aqueous solution of the sodium salt of polyacrylic acid.
Similar beneficial and advantageous results are obtained when cotton, silk, wool and nylon threads are coated With compositions A, B, C, and D. Use of coated or impregnated threads prepared in accordance with the present invention is susceptible of being embodied with 1y heated to a temperature sufficient to cause expansion, substantially eliminates the need for knotting or tying of the thread at either end thereof, as after heating the thread to cause expansion, it is difiicult to remove the thread from a woven fabric. Similar advantages are achieved when expandable thread of the present invention is employed for attaching buttons. Fabric woven from the expandable yarns prepared in accordance with the present invention and heat treated to expand the microspheres provides a dense-appearing fabric much tighter than original weave and with significant antiravelling properties.
As is apparent from the foregoing specification, the present invention is susceptible of being embodied with various alterations and modifications which may differ particularly from those that have been described in the preceding specification and description. For this reason, it is to be fully understood that all of the foregoing is intended to be merely illustrative and is not to be construed or interpreted as being restrictive or otherwise limiting of the present invention.
What is claimed is:
1. A method of providing a bulked yarn of a fibrous nature comprising providing a yarn,
impregnating the yarn with a dispersion containing synthetic resinous microspheres, the microspheres comprising a synthetic thermoplastic resinous wall and a distinct and separate liquid phase of a volatile expanding agent which is a non-solvent for the resinous wall, subsequently disposing said microspheres within the yarn in a desired location,
heating the yarn to a temperature sufiicient to cause expansion of the microspheres, thereby causing bulking of the yarn.
2. The method of claim 1 wherein the microspheres are disposed within the yarn by dispersion from a liquid suspension of microspheres.
3. The method of claim 2 including the step of incorporating an adhesive material within the microsphere dispersion.
4. The method of claim 3 including the step of removing the liquid of the dispersion from the yarn prior to heating of the yarn.
5. The method of claim 1 including the step of intertwining the yarn with a plurality of yarns prior to the expansion thereof.
6. The method of claim 5 wherein the intertwining of the yarn is accomplished by weaving.
7. An improved textile yarn of a generally parallel fibrous nature, the yarn containing dispersed therethrough a plurality of synthetic resinous thermoplastic microspheres having a distinct and separate liquid phase therein, the microspheres being capable of expanding on heating to a diameter substantially greater than the original diameter of the microspheres and thereby bulking the yarn.
8. The filament of claim 7 intertwined with a plurality of like yarns.
9. The filament of claim 8 wherein the yarn is cotton.
10. The yarn of claim 8 wherein the yarn is silk.
11. The yarn of claim 8 wherein the yarn is nylon.
12. The yarn of claim 8 including an adhesive binding the microspheres to the yarn.
References Cited UNITED STATES PATENTS 2,744,291 5/1956 Stastny et al. 264-53 2,815,559 12/1957 Robinson 57164 XR 2,940,871 6/1960 Smith-Johannsen 117-138.8 3,100,926 8/1963 Richmond 28--75 3,154,604 10/1964 McMillan 264-53 XR 3,359,130 12/1967 Goldman 264-53 XR 3,372,215 3/1968 Muirhead et al. 264-53 MERVIN STEIN, Primary Examiner WERNER H. SCHROEDER, Assistant Examiner US. Cl. X.R.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US68665667A | 1967-11-29 | 1967-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3479811A true US3479811A (en) | 1969-11-25 |
Family
ID=24757192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US686656A Expired - Lifetime US3479811A (en) | 1967-11-29 | 1967-11-29 | Yarn and method of making the same |
Country Status (2)
Country | Link |
---|---|
US (1) | US3479811A (en) |
BE (1) | BE738475A (en) |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3936335A (en) * | 1972-01-27 | 1976-02-03 | Scientific Anglers, Inc. | Process for producing a buoyant fishing line |
US5205290A (en) * | 1991-04-05 | 1993-04-27 | Unger Evan C | Low density microspheres and their use as contrast agents for computed tomography |
US5277957A (en) * | 1991-09-09 | 1994-01-11 | Orcon Corporation | Film reinforced with yarn coated with hot melt adhesive |
US5334418A (en) * | 1991-11-15 | 1994-08-02 | Reeves Brothers, Inc. | Compressible fabric substrate |
US5364683A (en) * | 1992-02-14 | 1994-11-15 | Reeves Brothers, Inc. | Compressible printing blanket and method of making same |
US5441813A (en) * | 1990-02-16 | 1995-08-15 | Sumitomo Electric Industries, Ltd. | Communication line material |
EP0672883A1 (en) * | 1994-02-28 | 1995-09-20 | Niltar Trading S.A. | Antitrauma packet |
US5733572A (en) * | 1989-12-22 | 1998-03-31 | Imarx Pharmaceutical Corp. | Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles |
US5736121A (en) * | 1994-05-23 | 1998-04-07 | Imarx Pharmaceutical Corp. | Stabilized homogenous suspensions as computed tomography contrast agents |
US5769080A (en) * | 1989-12-22 | 1998-06-23 | Dupont Merck Pharmaceutical Company | Gas filled liposomes and stabilized gas bubbles and their use as ultrasonic contrast agents |
US5770222A (en) * | 1989-12-22 | 1998-06-23 | Imarx Pharmaceutical Corp. | Therapeutic drug delivery systems |
US5776429A (en) * | 1989-12-22 | 1998-07-07 | Imarx Pharmaceutical Corp. | Method of preparing gas-filled microspheres using a lyophilized lipids |
US5830430A (en) * | 1995-02-21 | 1998-11-03 | Imarx Pharmaceutical Corp. | Cationic lipids and the use thereof |
US5846517A (en) * | 1996-09-11 | 1998-12-08 | Imarx Pharmaceutical Corp. | Methods for diagnostic imaging using a renal contrast agent and a vasodilator |
US5853752A (en) * | 1989-12-22 | 1998-12-29 | Imarx Pharmaceutical Corp. | Methods of preparing gas and gaseous precursor-filled microspheres |
US5874062A (en) * | 1991-04-05 | 1999-02-23 | Imarx Pharmaceutical Corp. | Methods of computed tomography using perfluorocarbon gaseous filled microspheres as contrast agents |
US5922304A (en) * | 1989-12-22 | 1999-07-13 | Imarx Pharmaceutical Corp. | Gaseous precursor filled microspheres as magnetic resonance imaging contrast agents |
US5985246A (en) * | 1989-12-22 | 1999-11-16 | Imarx Pharmaceutical Corp. | Contrast agents for ultrasonic imaging and methods for preparing the same |
US5997898A (en) * | 1995-06-06 | 1999-12-07 | Imarx Pharmaceutical Corp. | Stabilized compositions of fluorinated amphiphiles for methods of therapeutic delivery |
US6028066A (en) * | 1997-05-06 | 2000-02-22 | Imarx Pharmaceutical Corp. | Prodrugs comprising fluorinated amphiphiles |
US6033645A (en) * | 1996-06-19 | 2000-03-07 | Unger; Evan C. | Methods for diagnostic imaging by regulating the administration rate of a contrast agent |
US6039557A (en) * | 1989-12-22 | 2000-03-21 | Imarx Pharmaceutical Corp. | Apparatus for making gas-filled vesicles of optimal size |
US6071567A (en) * | 1992-03-25 | 2000-06-06 | Reeves Brothers, Inc. | Formation of compressible ply containing high melting point thermoplastic microspheres and printing blankets comprising same |
US6071494A (en) * | 1996-09-11 | 2000-06-06 | Imarx Pharmaceutical Corp. | Methods for diagnostic imaging using a contrast agent and a renal vasodilator |
US6088613A (en) * | 1989-12-22 | 2000-07-11 | Imarx Pharmaceutical Corp. | Method of magnetic resonance focused surgical and therapeutic ultrasound |
US6120751A (en) * | 1997-03-21 | 2000-09-19 | Imarx Pharmaceutical Corp. | Charged lipids and uses for the same |
US6123923A (en) * | 1997-12-18 | 2000-09-26 | Imarx Pharmaceutical Corp. | Optoacoustic contrast agents and methods for their use |
US6139819A (en) * | 1995-06-07 | 2000-10-31 | Imarx Pharmaceutical Corp. | Targeted contrast agents for diagnostic and therapeutic use |
US6143276A (en) * | 1997-03-21 | 2000-11-07 | Imarx Pharmaceutical Corp. | Methods for delivering bioactive agents to regions of elevated temperatures |
US6146657A (en) * | 1989-12-22 | 2000-11-14 | Imarx Pharmaceutical Corp. | Gas-filled lipid spheres for use in diagnostic and therapeutic applications |
US6231834B1 (en) | 1995-06-07 | 2001-05-15 | Imarx Pharmaceutical Corp. | Methods for ultrasound imaging involving the use of a contrast agent and multiple images and processing of same |
US6248274B1 (en) | 1999-09-21 | 2001-06-19 | Playtex Products, Inc. | Method of manufacturing a catamenial/tampon device |
US6414139B1 (en) | 1996-09-03 | 2002-07-02 | Imarx Therapeutics, Inc. | Silicon amphiphilic compounds and the use thereof |
US6416740B1 (en) | 1997-05-13 | 2002-07-09 | Bristol-Myers Squibb Medical Imaging, Inc. | Acoustically active drug delivery systems |
DE10104585A1 (en) * | 2001-02-01 | 2002-08-14 | Verseidag Indutex Gmbh | Protection element against ballistic effects |
US6443898B1 (en) | 1989-12-22 | 2002-09-03 | Imarx Pharmaceutical Corp. | Therapeutic delivery systems |
US6521211B1 (en) | 1995-06-07 | 2003-02-18 | Bristol-Myers Squibb Medical Imaging, Inc. | Methods of imaging and treatment with targeted compositions |
US6537246B1 (en) | 1997-06-18 | 2003-03-25 | Imarx Therapeutics, Inc. | Oxygen delivery agents and uses for the same |
US6548047B1 (en) | 1997-09-15 | 2003-04-15 | Bristol-Myers Squibb Medical Imaging, Inc. | Thermal preactivation of gaseous precursor filled compositions |
US6551576B1 (en) | 1989-12-22 | 2003-04-22 | Bristol-Myers Squibb Medical Imaging, Inc. | Container with multi-phase composition for use in diagnostic and therapeutic applications |
US6635205B2 (en) | 1999-09-21 | 2003-10-21 | Playtex Products, Inc. | Method of manufacturing a catamenial/tampon device |
US6638767B2 (en) | 1996-05-01 | 2003-10-28 | Imarx Pharmaceutical Corporation | Methods for delivering compounds into a cell |
US6688226B2 (en) | 2000-10-03 | 2004-02-10 | Erminio Rossini, S.P.A. | Sleeve for blanket cylinder of an indirect or offset printing machine and method of making said sleeve |
US6743779B1 (en) | 1994-11-29 | 2004-06-01 | Imarx Pharmaceutical Corp. | Methods for delivering compounds into a cell |
EP1423568A4 (en) * | 2001-08-01 | 2004-10-20 | Coating Innovations Pty Ltd | Alternative to viscose flocking |
US20050262646A1 (en) * | 2004-05-28 | 2005-12-01 | Mathias Berlinger | Process for depositing microcapsules into multifilament yarn and the products produced |
US20060063452A1 (en) * | 2003-06-27 | 2006-03-23 | Moore Steven C | Adhesive coated sewing thread |
US7078015B2 (en) | 1989-12-22 | 2006-07-18 | Imarx Therapeutics, Inc. | Ultrasound imaging and treatment |
US7083572B2 (en) | 1993-11-30 | 2006-08-01 | Bristol-Myers Squibb Medical Imaging, Inc. | Therapeutic delivery systems |
US20070088114A1 (en) * | 2005-10-18 | 2007-04-19 | Blue Membranes Gmbh | Thermoset particles and methods for production thereof |
US20080213611A1 (en) * | 2007-01-19 | 2008-09-04 | Cinvention Ag | Porous, non-degradable implant made by powder molding |
US7452551B1 (en) | 2000-10-30 | 2008-11-18 | Imarx Therapeutics, Inc. | Targeted compositions for diagnostic and therapeutic use |
US7780875B2 (en) | 2005-01-13 | 2010-08-24 | Cinvention Ag | Composite materials containing carbon nanoparticles |
US8084056B2 (en) | 1998-01-14 | 2011-12-27 | Lantheus Medical Imaging, Inc. | Preparation of a lipid blend and a phospholipid suspension containing the lipid blend |
CN102493061A (en) * | 2011-12-06 | 2012-06-13 | 江苏紫荆花纺织科技股份有限公司 | Blended yarn of jute fiber, cotton fiber and wool fiber and application of blended yarn |
WO2016111915A1 (en) | 2015-01-06 | 2016-07-14 | De Haas Anthony H | Near-infrared fluorescent surgical dye markers |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2744291A (en) * | 1951-04-19 | 1956-05-08 | Basf Ag | Production of porous shaped articles from thermoplastic materials |
US2815559A (en) * | 1953-08-03 | 1957-12-10 | Robinson Thread Company | Cellular synthetic fibre thread and a method of making the same |
US2940871A (en) * | 1955-08-05 | 1960-06-14 | S J Chemical Company | Composition and method of making microporous products |
US3100926A (en) * | 1958-04-03 | 1963-08-20 | Electric Storage Battery Co | Method of producing expanded fabric-like material |
US3154604A (en) * | 1956-03-19 | 1964-10-27 | Dow Chemical Co | Method for forming articles comprising expanded thermoplastic resinous materials |
US3359130A (en) * | 1963-11-12 | 1967-12-19 | Papex Corp | Double shelled foamable plastic particles |
US3372215A (en) * | 1965-03-17 | 1968-03-05 | Shell Oil Co | Production of expandable polymer particles |
-
1967
- 1967-11-29 US US686656A patent/US3479811A/en not_active Expired - Lifetime
-
1969
- 1969-09-05 BE BE738475D patent/BE738475A/xx unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2744291A (en) * | 1951-04-19 | 1956-05-08 | Basf Ag | Production of porous shaped articles from thermoplastic materials |
US2815559A (en) * | 1953-08-03 | 1957-12-10 | Robinson Thread Company | Cellular synthetic fibre thread and a method of making the same |
US2940871A (en) * | 1955-08-05 | 1960-06-14 | S J Chemical Company | Composition and method of making microporous products |
US3154604A (en) * | 1956-03-19 | 1964-10-27 | Dow Chemical Co | Method for forming articles comprising expanded thermoplastic resinous materials |
US3100926A (en) * | 1958-04-03 | 1963-08-20 | Electric Storage Battery Co | Method of producing expanded fabric-like material |
US3359130A (en) * | 1963-11-12 | 1967-12-19 | Papex Corp | Double shelled foamable plastic particles |
US3372215A (en) * | 1965-03-17 | 1968-03-05 | Shell Oil Co | Production of expandable polymer particles |
Cited By (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3936335A (en) * | 1972-01-27 | 1976-02-03 | Scientific Anglers, Inc. | Process for producing a buoyant fishing line |
US6479034B1 (en) | 1989-12-22 | 2002-11-12 | Bristol-Myers Squibb Medical Imaging, Inc. | Method of preparing gas and gaseous precursor-filled microspheres |
US6001335A (en) * | 1989-12-22 | 1999-12-14 | Imarx Pharmaceutical Corp. | Contrasting agents for ultrasonic imaging and methods for preparing the same |
US6315981B1 (en) | 1989-12-22 | 2001-11-13 | Imarx Therapeutics, Inc. | Gas filled microspheres as magnetic resonance imaging contrast agents |
US6071495A (en) * | 1989-12-22 | 2000-06-06 | Imarx Pharmaceutical Corp. | Targeted gas and gaseous precursor-filled liposomes |
US6443898B1 (en) | 1989-12-22 | 2002-09-03 | Imarx Pharmaceutical Corp. | Therapeutic delivery systems |
US5853752A (en) * | 1989-12-22 | 1998-12-29 | Imarx Pharmaceutical Corp. | Methods of preparing gas and gaseous precursor-filled microspheres |
US6461586B1 (en) | 1989-12-22 | 2002-10-08 | Imarx Therapeutics, Inc. | Method of magnetic resonance focused surgical and therapeutic ultrasound |
US6039557A (en) * | 1989-12-22 | 2000-03-21 | Imarx Pharmaceutical Corp. | Apparatus for making gas-filled vesicles of optimal size |
US6033646A (en) * | 1989-12-22 | 2000-03-07 | Imarx Pharmaceutical Corp. | Method of preparing fluorinated gas microspheres |
US5922304A (en) * | 1989-12-22 | 1999-07-13 | Imarx Pharmaceutical Corp. | Gaseous precursor filled microspheres as magnetic resonance imaging contrast agents |
US6088613A (en) * | 1989-12-22 | 2000-07-11 | Imarx Pharmaceutical Corp. | Method of magnetic resonance focused surgical and therapeutic ultrasound |
US5985246A (en) * | 1989-12-22 | 1999-11-16 | Imarx Pharmaceutical Corp. | Contrast agents for ultrasonic imaging and methods for preparing the same |
US6146657A (en) * | 1989-12-22 | 2000-11-14 | Imarx Pharmaceutical Corp. | Gas-filled lipid spheres for use in diagnostic and therapeutic applications |
US5733572A (en) * | 1989-12-22 | 1998-03-31 | Imarx Pharmaceutical Corp. | Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles |
US7078015B2 (en) | 1989-12-22 | 2006-07-18 | Imarx Therapeutics, Inc. | Ultrasound imaging and treatment |
US5769080A (en) * | 1989-12-22 | 1998-06-23 | Dupont Merck Pharmaceutical Company | Gas filled liposomes and stabilized gas bubbles and their use as ultrasonic contrast agents |
US5770222A (en) * | 1989-12-22 | 1998-06-23 | Imarx Pharmaceutical Corp. | Therapeutic drug delivery systems |
US5776429A (en) * | 1989-12-22 | 1998-07-07 | Imarx Pharmaceutical Corp. | Method of preparing gas-filled microspheres using a lyophilized lipids |
US6551576B1 (en) | 1989-12-22 | 2003-04-22 | Bristol-Myers Squibb Medical Imaging, Inc. | Container with multi-phase composition for use in diagnostic and therapeutic applications |
US5562985A (en) * | 1990-02-16 | 1996-10-08 | Sumitomo Electric Industries, Ltd. | Communication line material |
US5441813A (en) * | 1990-02-16 | 1995-08-15 | Sumitomo Electric Industries, Ltd. | Communication line material |
US6528039B2 (en) | 1991-04-05 | 2003-03-04 | Bristol-Myers Squibb Medical Imaging, Inc. | Low density microspheres and their use as contrast agents for computed tomography and in other applications |
US6117414A (en) * | 1991-04-05 | 2000-09-12 | Imarx Pharmaceutical Corp. | Method of computed tomography using fluorinated gas-filled lipid microspheres as contract agents |
US6773696B2 (en) | 1991-04-05 | 2004-08-10 | Bristol-Myers Squibb Medical Imaging, Inc. | Contrast agent comprising low density microspheres |
US6998107B2 (en) | 1991-04-05 | 2006-02-14 | Bristol-Myers Squibb Pharma Comapany | Composition comprising low density microspheres |
US5281408A (en) * | 1991-04-05 | 1994-01-25 | Unger Evan C | Low density microspheres and their use as contrast agents for computed tomography |
US5547656A (en) * | 1991-04-05 | 1996-08-20 | Imarx Pharmaceutical Corp. | Low density microspheres and their use as contrast agents for computed tomography, and in other applications |
US5527521A (en) * | 1991-04-05 | 1996-06-18 | Imarx Pharmaceutical Corp. | Low density microspheres and suspensions and their use as contrast agents for computed tomography and in other applications |
US5874062A (en) * | 1991-04-05 | 1999-02-23 | Imarx Pharmaceutical Corp. | Methods of computed tomography using perfluorocarbon gaseous filled microspheres as contrast agents |
US5456900A (en) * | 1991-04-05 | 1995-10-10 | Unger; Evan C. | Low density microspheres and their use as contrast agents for computed tomography |
US7344705B2 (en) | 1991-04-05 | 2008-03-18 | Bristol-Myers Squibb Medical Imaging, Inc. | Composition comprising low density microspheres |
US5205290A (en) * | 1991-04-05 | 1993-04-27 | Unger Evan C | Low density microspheres and their use as contrast agents for computed tomography |
US5277957A (en) * | 1991-09-09 | 1994-01-11 | Orcon Corporation | Film reinforced with yarn coated with hot melt adhesive |
US5334418A (en) * | 1991-11-15 | 1994-08-02 | Reeves Brothers, Inc. | Compressible fabric substrate |
US5549968A (en) * | 1991-11-15 | 1996-08-27 | Reeves Brothers, Inc. | Compressible fabric substrate |
US5486402A (en) * | 1992-02-14 | 1996-01-23 | Reeves Brothers, Inc. | Printing blanket having printing face surface profile within specified roughness range |
US5364683A (en) * | 1992-02-14 | 1994-11-15 | Reeves Brothers, Inc. | Compressible printing blanket and method of making same |
US6287638B1 (en) | 1992-03-25 | 2001-09-11 | Reeves Brothers, Inc. | Formation of compressible ply containing high melting point thermoplastic microspheres and printing blankets comprising same |
US6071567A (en) * | 1992-03-25 | 2000-06-06 | Reeves Brothers, Inc. | Formation of compressible ply containing high melting point thermoplastic microspheres and printing blankets comprising same |
US7083572B2 (en) | 1993-11-30 | 2006-08-01 | Bristol-Myers Squibb Medical Imaging, Inc. | Therapeutic delivery systems |
EP0672883A1 (en) * | 1994-02-28 | 1995-09-20 | Niltar Trading S.A. | Antitrauma packet |
US6576220B2 (en) | 1994-03-11 | 2003-06-10 | Imarx Therapeutics, Inc. | Non-invasive methods for surgery in the vasculature |
US5736121A (en) * | 1994-05-23 | 1998-04-07 | Imarx Pharmaceutical Corp. | Stabilized homogenous suspensions as computed tomography contrast agents |
US7612033B2 (en) | 1994-11-29 | 2009-11-03 | Imarx Pharmaceutical Corp. | Methods for delivering compounds into a cell |
US6743779B1 (en) | 1994-11-29 | 2004-06-01 | Imarx Pharmaceutical Corp. | Methods for delivering compounds into a cell |
US5830430A (en) * | 1995-02-21 | 1998-11-03 | Imarx Pharmaceutical Corp. | Cationic lipids and the use thereof |
US6056938A (en) * | 1995-02-21 | 2000-05-02 | Imarx Pharaceutical Corp. | Cationic lipids and the use thereof |
US5997898A (en) * | 1995-06-06 | 1999-12-07 | Imarx Pharmaceutical Corp. | Stabilized compositions of fluorinated amphiphiles for methods of therapeutic delivery |
US7329402B2 (en) | 1995-06-07 | 2008-02-12 | Imarx Pharmaceutical Corp. | Methods of imaging and treatment |
US6139819A (en) * | 1995-06-07 | 2000-10-31 | Imarx Pharmaceutical Corp. | Targeted contrast agents for diagnostic and therapeutic use |
US6231834B1 (en) | 1995-06-07 | 2001-05-15 | Imarx Pharmaceutical Corp. | Methods for ultrasound imaging involving the use of a contrast agent and multiple images and processing of same |
US6521211B1 (en) | 1995-06-07 | 2003-02-18 | Bristol-Myers Squibb Medical Imaging, Inc. | Methods of imaging and treatment with targeted compositions |
US6638767B2 (en) | 1996-05-01 | 2003-10-28 | Imarx Pharmaceutical Corporation | Methods for delivering compounds into a cell |
US6033645A (en) * | 1996-06-19 | 2000-03-07 | Unger; Evan C. | Methods for diagnostic imaging by regulating the administration rate of a contrast agent |
US6414139B1 (en) | 1996-09-03 | 2002-07-02 | Imarx Therapeutics, Inc. | Silicon amphiphilic compounds and the use thereof |
US5846517A (en) * | 1996-09-11 | 1998-12-08 | Imarx Pharmaceutical Corp. | Methods for diagnostic imaging using a renal contrast agent and a vasodilator |
US6071494A (en) * | 1996-09-11 | 2000-06-06 | Imarx Pharmaceutical Corp. | Methods for diagnostic imaging using a contrast agent and a renal vasodilator |
US6884407B1 (en) | 1996-09-11 | 2005-04-26 | Bristol-Myers Squibb Pharma Company | Methods for diagnostic imaging involving the use of a contrast agent and a coronary vasodilator |
US6120751A (en) * | 1997-03-21 | 2000-09-19 | Imarx Pharmaceutical Corp. | Charged lipids and uses for the same |
US6143276A (en) * | 1997-03-21 | 2000-11-07 | Imarx Pharmaceutical Corp. | Methods for delivering bioactive agents to regions of elevated temperatures |
US6808720B2 (en) | 1997-03-21 | 2004-10-26 | Imarx Therapeutics, Inc. | Charged lipids and uses for the same |
US6403056B1 (en) | 1997-03-21 | 2002-06-11 | Imarx Therapeutics, Inc. | Method for delivering bioactive agents using cochleates |
US6444660B1 (en) | 1997-05-06 | 2002-09-03 | Imarx Therapeutics, Inc. | Lipid soluble steroid prodrugs |
US6028066A (en) * | 1997-05-06 | 2000-02-22 | Imarx Pharmaceutical Corp. | Prodrugs comprising fluorinated amphiphiles |
US6090800A (en) * | 1997-05-06 | 2000-07-18 | Imarx Pharmaceutical Corp. | Lipid soluble steroid prodrugs |
US6416740B1 (en) | 1997-05-13 | 2002-07-09 | Bristol-Myers Squibb Medical Imaging, Inc. | Acoustically active drug delivery systems |
US7105151B2 (en) | 1997-06-18 | 2006-09-12 | Imarx Therapeutics, Inc. | Oxygen delivery agents and uses for the same |
US6537246B1 (en) | 1997-06-18 | 2003-03-25 | Imarx Therapeutics, Inc. | Oxygen delivery agents and uses for the same |
US6716412B2 (en) | 1997-09-15 | 2004-04-06 | Imarx Therapeutics, Inc. | Methods of ultrasound treatment using gas or gaseous precursor-filled compositions |
US6548047B1 (en) | 1997-09-15 | 2003-04-15 | Bristol-Myers Squibb Medical Imaging, Inc. | Thermal preactivation of gaseous precursor filled compositions |
US6123923A (en) * | 1997-12-18 | 2000-09-26 | Imarx Pharmaceutical Corp. | Optoacoustic contrast agents and methods for their use |
US8084056B2 (en) | 1998-01-14 | 2011-12-27 | Lantheus Medical Imaging, Inc. | Preparation of a lipid blend and a phospholipid suspension containing the lipid blend |
US9545457B2 (en) | 1998-01-14 | 2017-01-17 | Lantheus Medical Imaging, Inc. | Preparation of a lipid blend and a phospholipid suspension containing the lipid blend |
US8685441B2 (en) | 1998-01-14 | 2014-04-01 | Lantheus Medical Imaging, Inc. | Preparation of a lipid blend and a phospholipid suspension containing the lipid blend |
US8747892B2 (en) | 1998-01-14 | 2014-06-10 | Lantheus Medical Imaging, Inc. | Preparation of a lipid blend and a phospholipid suspension containing the lipid blend |
US8658205B2 (en) | 1998-01-14 | 2014-02-25 | Lantheus Medical Imaging, Inc. | Preparation of a lipid blend and a phospholipid suspension containing the lipid blend |
US6248274B1 (en) | 1999-09-21 | 2001-06-19 | Playtex Products, Inc. | Method of manufacturing a catamenial/tampon device |
US6635205B2 (en) | 1999-09-21 | 2003-10-21 | Playtex Products, Inc. | Method of manufacturing a catamenial/tampon device |
US6688226B2 (en) | 2000-10-03 | 2004-02-10 | Erminio Rossini, S.P.A. | Sleeve for blanket cylinder of an indirect or offset printing machine and method of making said sleeve |
US7452551B1 (en) | 2000-10-30 | 2008-11-18 | Imarx Therapeutics, Inc. | Targeted compositions for diagnostic and therapeutic use |
DE10104585A1 (en) * | 2001-02-01 | 2002-08-14 | Verseidag Indutex Gmbh | Protection element against ballistic effects |
EP1423568A4 (en) * | 2001-08-01 | 2004-10-20 | Coating Innovations Pty Ltd | Alternative to viscose flocking |
US20060063452A1 (en) * | 2003-06-27 | 2006-03-23 | Moore Steven C | Adhesive coated sewing thread |
US20050262646A1 (en) * | 2004-05-28 | 2005-12-01 | Mathias Berlinger | Process for depositing microcapsules into multifilament yarn and the products produced |
EP1609896A2 (en) | 2004-05-28 | 2005-12-28 | Mathias Berlinger | Process for depositing microcapsules into multifilament yarn and the products produced |
US7780875B2 (en) | 2005-01-13 | 2010-08-24 | Cinvention Ag | Composite materials containing carbon nanoparticles |
US20070088114A1 (en) * | 2005-10-18 | 2007-04-19 | Blue Membranes Gmbh | Thermoset particles and methods for production thereof |
US20080213611A1 (en) * | 2007-01-19 | 2008-09-04 | Cinvention Ag | Porous, non-degradable implant made by powder molding |
CN102493061A (en) * | 2011-12-06 | 2012-06-13 | 江苏紫荆花纺织科技股份有限公司 | Blended yarn of jute fiber, cotton fiber and wool fiber and application of blended yarn |
WO2016111915A1 (en) | 2015-01-06 | 2016-07-14 | De Haas Anthony H | Near-infrared fluorescent surgical dye markers |
US10383957B2 (en) | 2015-01-06 | 2019-08-20 | Anthony H. de Haas | Near-infrared fluorescent surgical dye markers |
Also Published As
Publication number | Publication date |
---|---|
BE738475A (en) | 1970-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3479811A (en) | Yarn and method of making the same | |
US5581856A (en) | Process for the production of uncoated technical fabrics with low air permeability | |
US2306781A (en) | Product containing siliceous fibers and method of making the same | |
CN102803601B (en) | Down proof woven fabric | |
US3748217A (en) | Lined textile fabric and method of manufacture | |
US4973382A (en) | Filtration fabric produced by wet laid process | |
US3068527A (en) | Process for the production of a fibrid slurry | |
US3562374A (en) | Method for manufacturing fibrous configuration composed of a plurality of mutually entangled bundles of extremely fine fibers | |
US5112421A (en) | Method for the production of a composite sheet for artificial leather | |
JPH03137245A (en) | Heat shrinkable uncoated fabric consisting of synthetic filament tarn, air bag and air bag yarn | |
US4879163A (en) | Textiles containing interstices and processes for making such textiles | |
JPS588147A (en) | Elastic covered yarn | |
US2476293A (en) | Artificial fiber | |
DE03252366T1 (en) | Velor fabric with fire retardant and improved dynamic insulation properties | |
US2417453A (en) | Process of producing a textile product | |
US6495210B2 (en) | Flame retardant for mesh sheets and flameproof mesh sheet | |
US2709141A (en) | Resin-treated regenerated cellulose textile material and method of making the same | |
US3489643A (en) | Sheet material of improved tear strength including long undrawn polyamide fibers | |
WO1988005090A1 (en) | Non-woven fibre product | |
US5256429A (en) | Composite sheet for artificial leather | |
JP2556624B2 (en) | Process for producing uncoated industrial fabrics having a dense weave and articles comprising the same | |
US5768875A (en) | Filter fabric with core sheating thread, and a bag produced therefrom | |
DK155191B (en) | LEADING SECONDARY BASKET SELECTED FOR USE IN A TUFFED TAPE | |
JPH0547666B2 (en) | ||
US3423284A (en) | Modification of regenerated cellulose fibers by subjecting the fibers to a swelling agent and mechanical movement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PIERCE & STEVENS CHEMICAL CORPORATION Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DOW CHEMICAL COMPANY, THE;REEL/FRAME:003869/0545 Effective date: 19810504 |
|
AS | Assignment |
Owner name: CASCO NOBEL AB, P.O. BOX 11010, S-100 61 STOCKHOLM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:PIERCE & STEVENS CORP.;REEL/FRAME:004734/0075 Effective date: 19860911 |