US20100003337A1 - Functionalized poly(ether-anhydride) block copolymers - Google Patents
Functionalized poly(ether-anhydride) block copolymers Download PDFInfo
- Publication number
- US20100003337A1 US20100003337A1 US11/721,123 US72112305A US2010003337A1 US 20100003337 A1 US20100003337 A1 US 20100003337A1 US 72112305 A US72112305 A US 72112305A US 2010003337 A1 US2010003337 A1 US 2010003337A1
- Authority
- US
- United States
- Prior art keywords
- polymer
- occurrence
- independently
- formula
- integer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920001400 block copolymer Polymers 0.000 title claims description 28
- 229920000642 polymer Polymers 0.000 claims abstract description 74
- 239000000203 mixture Substances 0.000 claims abstract description 69
- 239000003814 drug Substances 0.000 claims abstract description 44
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000004005 microsphere Substances 0.000 claims abstract description 21
- 239000002077 nanosphere Substances 0.000 claims abstract description 16
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 15
- 229940124597 therapeutic agent Drugs 0.000 claims abstract description 7
- 229960002685 biotin Drugs 0.000 claims description 24
- 239000011616 biotin Substances 0.000 claims description 24
- 239000008194 pharmaceutical composition Substances 0.000 claims description 12
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 claims description 6
- 239000002671 adjuvant Substances 0.000 claims description 5
- 239000000178 monomer Substances 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 3
- 239000000032 diagnostic agent Substances 0.000 claims description 3
- 229940039227 diagnostic agent Drugs 0.000 claims description 3
- 239000012216 imaging agent Substances 0.000 claims description 3
- 125000005842 heteroatom Chemical group 0.000 claims 2
- 229920001730 Moisture cure polyurethane Polymers 0.000 claims 1
- 125000000524 functional group Chemical group 0.000 claims 1
- 229920002988 biodegradable polymer Polymers 0.000 abstract description 4
- 239000004621 biodegradable polymer Substances 0.000 abstract description 4
- 238000013268 sustained release Methods 0.000 abstract description 3
- 239000012730 sustained-release form Substances 0.000 abstract description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 38
- 239000002245 particle Substances 0.000 description 37
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 37
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 24
- 229940079593 drug Drugs 0.000 description 23
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 22
- 239000000243 solution Substances 0.000 description 21
- -1 poly(ethylene glycol) Polymers 0.000 description 19
- 238000009472 formulation Methods 0.000 description 18
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 15
- 238000000576 coating method Methods 0.000 description 14
- 229920001577 copolymer Polymers 0.000 description 13
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 11
- 235000020958 biotin Nutrition 0.000 description 11
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- 238000012377 drug delivery Methods 0.000 description 10
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 239000004094 surface-active agent Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- 239000004372 Polyvinyl alcohol Substances 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 239000003380 propellant Substances 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 7
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- 239000000443 aerosol Substances 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000000839 emulsion Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 6
- 239000011859 microparticle Substances 0.000 description 6
- 108090000765 processed proteins & peptides Proteins 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 6
- 239000003826 tablet Substances 0.000 description 6
- 230000008685 targeting Effects 0.000 description 6
- 238000005160 1H NMR spectroscopy Methods 0.000 description 5
- WXMFWWZIJLIMLP-UHFFFAOYSA-N 2-[3-(2-carboxyphenoxy)propoxy]benzoic acid Chemical compound OC(=O)C1=CC=CC=C1OCCCOC1=CC=CC=C1C(O)=O WXMFWWZIJLIMLP-UHFFFAOYSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 239000013543 active substance Substances 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 239000002775 capsule Substances 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 239000012153 distilled water Substances 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 235000019441 ethanol Nutrition 0.000 description 5
- 238000005227 gel permeation chromatography Methods 0.000 description 5
- 239000007943 implant Substances 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 239000002105 nanoparticle Substances 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 125000006239 protecting group Chemical group 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- KILNVBDSWZSGLL-KXQOOQHDSA-N 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCCCCCCCCC KILNVBDSWZSGLL-KXQOOQHDSA-N 0.000 description 4
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 4
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000002702 enteric coating Substances 0.000 description 4
- 238000009505 enteric coating Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 235000010445 lecithin Nutrition 0.000 description 4
- 239000000787 lecithin Substances 0.000 description 4
- 229940067606 lecithin Drugs 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 210000001724 microfibril Anatomy 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 239000006187 pill Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- YMXHPSHLTSZXKH-RVBZMBCESA-N (2,5-dioxopyrrolidin-1-yl) 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoate Chemical compound C([C@H]1[C@H]2NC(=O)N[C@H]2CS1)CCCC(=O)ON1C(=O)CCC1=O YMXHPSHLTSZXKH-RVBZMBCESA-N 0.000 description 3
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- 241000416162 Astragalus gummifer Species 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 3
- 240000007472 Leucaena leucocephala Species 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 229920001615 Tragacanth Polymers 0.000 description 3
- 235000010443 alginic acid Nutrition 0.000 description 3
- 229920000615 alginic acid Polymers 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 150000008064 anhydrides Chemical class 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 235000012216 bentonite Nutrition 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 239000006071 cream Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 239000004006 olive oil Substances 0.000 description 3
- 239000006072 paste Substances 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229960004063 propylene glycol Drugs 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000000829 suppository Substances 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 235000012222 talc Nutrition 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 235000010487 tragacanth Nutrition 0.000 description 3
- 239000000196 tragacanth Substances 0.000 description 3
- 229940116362 tragacanth Drugs 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 235000010777 Arachis hypogaea Nutrition 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 108090001008 Avidin Proteins 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- VNKYTQGIUYNRMY-UHFFFAOYSA-N CCCOC Chemical compound CCCOC VNKYTQGIUYNRMY-UHFFFAOYSA-N 0.000 description 2
- YMEVIKPUDPGKFL-UHFFFAOYSA-N COC(=O)C1=CC=C(CCCC2=CC=C(C(C)=O)C=C2)C=C1 Chemical compound COC(=O)C1=CC=C(CCCC2=CC=C(C(C)=O)C=C2)C=C1 YMEVIKPUDPGKFL-UHFFFAOYSA-N 0.000 description 2
- WRQNANDWMGAFTP-UHFFFAOYSA-N COC(=O)CC(C)=O Chemical compound COC(=O)CC(C)=O WRQNANDWMGAFTP-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 2
- 241000206672 Gelidium Species 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 102000004856 Lectins Human genes 0.000 description 2
- 108090001090 Lectins Proteins 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 0 O=C([Y])OC(=O)C1=CC=C(CCCC2=CC=C(C(=O)OC(=O)[Y])C=C2)C=C1.O=C([Y])OC(=O)CC(=O)OC(=O)[Y].[1*]OCCC Chemical compound O=C([Y])OC(=O)C1=CC=C(CCCC2=CC=C(C(=O)OC(=O)[Y])C=C2)C=C1.O=C([Y])OC(=O)CC(=O)OC(=O)[Y].[1*]OCCC 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 238000012387 aerosolization Methods 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- 125000004103 aminoalkyl group Chemical group 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 229940041181 antineoplastic drug Drugs 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- XFLVBMBRLSCJAI-ZKWXMUAHSA-N biotin amide Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)N)SC[C@@H]21 XFLVBMBRLSCJAI-ZKWXMUAHSA-N 0.000 description 2
- XFLVBMBRLSCJAI-UHFFFAOYSA-N biotin amide Natural products N1C(=O)NC2C(CCCCC(=O)N)SCC21 XFLVBMBRLSCJAI-UHFFFAOYSA-N 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- LHQLJMJLROMYRN-UHFFFAOYSA-L cadmium acetate Chemical compound [Cd+2].CC([O-])=O.CC([O-])=O LHQLJMJLROMYRN-UHFFFAOYSA-L 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000002285 corn oil Substances 0.000 description 2
- 239000002385 cottonseed oil Substances 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000002059 diagnostic imaging Methods 0.000 description 2
- GWZCCUDJHOGOSO-UHFFFAOYSA-N diphenic acid Chemical compound OC(=O)C1=CC=CC=C1C1=CC=CC=C1C(O)=O GWZCCUDJHOGOSO-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 239000008298 dragée Substances 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 2
- 229940093471 ethyl oleate Drugs 0.000 description 2
- 239000003885 eye ointment Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 230000005661 hydrophobic surface Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000003701 inert diluent Substances 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000002523 lectin Substances 0.000 description 2
- 239000011968 lewis acid catalyst Substances 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 210000003097 mucus Anatomy 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 239000002674 ointment Substances 0.000 description 2
- 235000008390 olive oil Nutrition 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000000312 peanut oil Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- ARIWANIATODDMH-UHFFFAOYSA-N rac-1-monolauroylglycerol Chemical compound CCCCCCCCCCCC(=O)OCC(O)CO ARIWANIATODDMH-UHFFFAOYSA-N 0.000 description 2
- 229920005604 random copolymer Polymers 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007909 solid dosage form Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000001694 spray drying Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 229940032147 starch Drugs 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- HQHCYKULIHKCEB-UHFFFAOYSA-N tetradecanedioic acid Chemical compound OC(=O)CCCCCCCCCCCCC(O)=O HQHCYKULIHKCEB-UHFFFAOYSA-N 0.000 description 2
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- LWBHHRRTOZQPDM-UHFFFAOYSA-N undecanedioic acid Chemical compound OC(=O)CCCCCCCCCC(O)=O LWBHHRRTOZQPDM-UHFFFAOYSA-N 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 1
- ZORQXIQZAOLNGE-UHFFFAOYSA-N 1,1-difluorocyclohexane Chemical compound FC1(F)CCCCC1 ZORQXIQZAOLNGE-UHFFFAOYSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 1
- QFGCFKJIPBRJGM-UHFFFAOYSA-N 12-[(2-methylpropan-2-yl)oxy]-12-oxododecanoic acid Chemical compound CC(C)(C)OC(=O)CCCCCCCCCCC(O)=O QFGCFKJIPBRJGM-UHFFFAOYSA-N 0.000 description 1
- LJCZNYWLQZZIOS-UHFFFAOYSA-N 2,2,2-trichlorethoxycarbonyl chloride Chemical compound ClC(=O)OCC(Cl)(Cl)Cl LJCZNYWLQZZIOS-UHFFFAOYSA-N 0.000 description 1
- UPQQXPKAYZYUKO-UHFFFAOYSA-N 2,2,2-trichloroacetamide Chemical compound OC(=N)C(Cl)(Cl)Cl UPQQXPKAYZYUKO-UHFFFAOYSA-N 0.000 description 1
- FGRJGEWVJCCOJJ-UHFFFAOYSA-N 2,2-dimethylaziridine Chemical compound CC1(C)CN1 FGRJGEWVJCCOJJ-UHFFFAOYSA-N 0.000 description 1
- 239000000263 2,3-dihydroxypropyl (Z)-octadec-9-enoate Substances 0.000 description 1
- HDIFHQMREAYYJW-FMIVXFBMSA-N 2,3-dihydroxypropyl (e)-12-hydroxyoctadec-9-enoate Chemical compound CCCCCCC(O)C\C=C\CCCCCCCC(=O)OCC(O)CO HDIFHQMREAYYJW-FMIVXFBMSA-N 0.000 description 1
- UKUVVAMSXXBMRX-UHFFFAOYSA-N 2,4,5-trithia-1,3-diarsabicyclo[1.1.1]pentane Chemical compound S1[As]2S[As]1S2 UKUVVAMSXXBMRX-UHFFFAOYSA-N 0.000 description 1
- PHKLLFUEVATMSI-UHFFFAOYSA-N 2-(2-carboxy-3-methylphenyl)-6-methylbenzoic acid Chemical compound CC1=CC=CC(C=2C(=C(C)C=CC=2)C(O)=O)=C1C(O)=O PHKLLFUEVATMSI-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- HJRDNARELSKHEF-CLFAGFIQSA-N 2-[2-[(z)-octadec-9-enoyl]oxyethoxy]ethyl (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCCOCCOC(=O)CCCCCCC\C=C/CCCCCCCC HJRDNARELSKHEF-CLFAGFIQSA-N 0.000 description 1
- STADJQHOHRGJON-UHFFFAOYSA-N 2-[3-(2-carboxyphenoxy)hexoxy]benzoic acid Chemical compound C=1C=CC=C(C(O)=O)C=1OC(CCC)CCOC1=CC=CC=C1C(O)=O STADJQHOHRGJON-UHFFFAOYSA-N 0.000 description 1
- 229940058020 2-amino-2-methyl-1-propanol Drugs 0.000 description 1
- HCUZVMHXDRSBKX-UHFFFAOYSA-N 2-decylpropanedioic acid Chemical compound CCCCCCCCCCC(C(O)=O)C(O)=O HCUZVMHXDRSBKX-UHFFFAOYSA-N 0.000 description 1
- JNODDICFTDYODH-UHFFFAOYSA-N 2-hydroxytetrahydrofuran Chemical compound OC1CCCO1 JNODDICFTDYODH-UHFFFAOYSA-N 0.000 description 1
- 150000000376 2-oxazolines Chemical class 0.000 description 1
- RZRNAYUHWVFMIP-GDCKJWNLSA-N 3-oleoyl-sn-glycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-GDCKJWNLSA-N 0.000 description 1
- NEQFBGHQPUXOFH-UHFFFAOYSA-N 4-(4-carboxyphenyl)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C1=CC=C(C(O)=O)C=C1 NEQFBGHQPUXOFH-UHFFFAOYSA-N 0.000 description 1
- CSDQQAQKBAQLLE-UHFFFAOYSA-N 4-(4-chlorophenyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine Chemical compound C1=CC(Cl)=CC=C1C1C(C=CS2)=C2CCN1 CSDQQAQKBAQLLE-UHFFFAOYSA-N 0.000 description 1
- HIQIXEFWDLTDED-UHFFFAOYSA-N 4-hydroxy-1-piperidin-4-ylpyrrolidin-2-one Chemical compound O=C1CC(O)CN1C1CCNCC1 HIQIXEFWDLTDED-UHFFFAOYSA-N 0.000 description 1
- XZIIFPSPUDAGJM-UHFFFAOYSA-N 6-chloro-2-n,2-n-diethylpyrimidine-2,4-diamine Chemical compound CCN(CC)C1=NC(N)=CC(Cl)=N1 XZIIFPSPUDAGJM-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 235000003276 Apios tuberosa Nutrition 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 235000010744 Arachis villosulicarpa Nutrition 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 206010005949 Bone cancer Diseases 0.000 description 1
- 208000018084 Bone neoplasm Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 229920003134 Eudragit® polymer Polymers 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 239000004705 High-molecular-weight polyethylene Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 1
- YVXNGXSLAKMFNK-UHFFFAOYSA-N O=C([Y])OC(=O)C1=CC=C(CCCC2=CC=C(C(=O)OC(=O)[Y])C=C2)C=C1 Chemical compound O=C([Y])OC(=O)C1=CC=C(CCCC2=CC=C(C(=O)OC(=O)[Y])C=C2)C=C1 YVXNGXSLAKMFNK-UHFFFAOYSA-N 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 239000004147 Sorbitan trioleate Substances 0.000 description 1
- PRXRUNOAOLTIEF-ADSICKODSA-N Sorbitan trioleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCC\C=C/CCCCCCCC)[C@H]1OC[C@H](O)[C@H]1OC(=O)CCCCCCC\C=C/CCCCCCCC PRXRUNOAOLTIEF-ADSICKODSA-N 0.000 description 1
- 229920001963 Synthetic biodegradable polymer Polymers 0.000 description 1
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- BIKKLKMQVZDLNM-UHFFFAOYSA-N [H]C(C(=O)CCCCCCCCC(=O)OC(C)=O)C(=O)CCCCC1SCC2NC(=O)NC21 Chemical compound [H]C(C(=O)CCCCCCCCC(=O)OC(C)=O)C(=O)CCCCC1SCC2NC(=O)NC21 BIKKLKMQVZDLNM-UHFFFAOYSA-N 0.000 description 1
- ULJKAXRVBWBCNY-UHFFFAOYSA-N [H]N(C)C(=O)CCCCC1SCC2NC(=O)NC21 Chemical compound [H]N(C)C(=O)CCCCC1SCC2NC(=O)NC21 ULJKAXRVBWBCNY-UHFFFAOYSA-N 0.000 description 1
- RALUWMNLWAQMBB-UHFFFAOYSA-N [H]N(CC(=O)CCCCCCCCC(=O)OC(C)=O)C(=O)CCCCC1SCC2NC(=O)NC21 Chemical compound [H]N(CC(=O)CCCCCCCCC(=O)OC(C)=O)C(=O)CCCCC1SCC2NC(=O)NC21 RALUWMNLWAQMBB-UHFFFAOYSA-N 0.000 description 1
- VOCABAJAKZDACD-UHFFFAOYSA-N [H]N(COC(=O)CCCCCCCCC(=O)OC(C)=O)C(=O)CCCCC1SCC2NC(=O)NC21 Chemical compound [H]N(COC(=O)CCCCCCCCC(=O)OC(C)=O)C(=O)CCCCC1SCC2NC(=O)NC21 VOCABAJAKZDACD-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 230000009102 absorption Effects 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000005036 alkoxyphenyl group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- CBTVGIZVANVGBH-UHFFFAOYSA-N aminomethyl propanol Chemical compound CC(C)(N)CO CBTVGIZVANVGBH-UHFFFAOYSA-N 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 229940027983 antiseptic and disinfectant quaternary ammonium compound Drugs 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229960000686 benzalkonium chloride Drugs 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- CADWTSSKOVRVJC-UHFFFAOYSA-N benzyl(dimethyl)azanium;chloride Chemical compound [Cl-].C[NH+](C)CC1=CC=CC=C1 CADWTSSKOVRVJC-UHFFFAOYSA-N 0.000 description 1
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000012867 bioactive agent Substances 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 125000006244 carboxylic acid protecting group Chemical group 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 description 1
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000002975 chemoattractant Substances 0.000 description 1
- 230000003399 chemotactic effect Effects 0.000 description 1
- 230000000973 chemotherapeutic effect Effects 0.000 description 1
- 150000005827 chlorofluoro hydrocarbons Chemical class 0.000 description 1
- 229960003677 chloroquine Drugs 0.000 description 1
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000005687 corn oil Nutrition 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 239000001767 crosslinked sodium carboxy methyl cellulose Substances 0.000 description 1
- QSAWQNUELGIYBC-UHFFFAOYSA-N cyclohexane-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCCCC1C(O)=O QSAWQNUELGIYBC-UHFFFAOYSA-N 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- GJBRTCPWCKRSTQ-UHFFFAOYSA-N decanedioic acid Chemical compound OC(=O)CCCCCCCCC(O)=O.OC(=O)CCCCCCCCC(O)=O GJBRTCPWCKRSTQ-UHFFFAOYSA-N 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 229940012356 eye drops Drugs 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 229940068939 glyceryl monolaurate Drugs 0.000 description 1
- 229940075507 glyceryl monostearate Drugs 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 125000005059 halophenyl group Chemical group 0.000 description 1
- XEUHNWODXVYLFD-UHFFFAOYSA-N heptanedioic acid Chemical compound OC(=O)CCCCCC(O)=O.OC(=O)CCCCCC(O)=O XEUHNWODXVYLFD-UHFFFAOYSA-N 0.000 description 1
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 1
- YVSCCMNRWFOKDU-UHFFFAOYSA-N hexanedioic acid Chemical compound OC(=O)CCCCC(O)=O.OC(=O)CCCCC(O)=O YVSCCMNRWFOKDU-UHFFFAOYSA-N 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 229940074928 isopropyl myristate Drugs 0.000 description 1
- 239000000644 isotonic solution Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- JJTUDXZGHPGLLC-UHFFFAOYSA-N lactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- RGLRXNKKBLIBQS-XNHQSDQCSA-N leuprolide acetate Chemical compound CC(O)=O.CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 RGLRXNKKBLIBQS-XNHQSDQCSA-N 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000004092 methylthiomethyl group Chemical group [H]C([H])([H])SC([H])([H])* 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 229940029985 mineral supplement Drugs 0.000 description 1
- 235000020786 mineral supplement Nutrition 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 239000001788 mono and diglycerides of fatty acids Substances 0.000 description 1
- RZRNAYUHWVFMIP-UHFFFAOYSA-N monoelaidin Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-UHFFFAOYSA-N 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 210000004400 mucous membrane Anatomy 0.000 description 1
- 230000036457 multidrug resistance Effects 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 108010087904 neutravidin Proteins 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- WPBWJEYRHXACLR-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O.OC(=O)CCCCCCCC(O)=O WPBWJEYRHXACLR-UHFFFAOYSA-N 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000002853 nucleic acid probe Substances 0.000 description 1
- TWHMVKPVFOOAMY-UHFFFAOYSA-N octanedioic acid Chemical compound OC(=O)CCCCCCC(O)=O.OC(=O)CCCCCCC(O)=O TWHMVKPVFOOAMY-UHFFFAOYSA-N 0.000 description 1
- 229960002969 oleic acid Drugs 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 125000001117 oleyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])/C([H])=C([H])\C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000014207 opsonization Effects 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- GIPDEPRRXIBGNF-KTKRTIGZSA-N oxolan-2-ylmethyl (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC1CCCO1 GIPDEPRRXIBGNF-KTKRTIGZSA-N 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000003921 particle size analysis Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 229940021222 peritoneal dialysis isotonic solution Drugs 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000008191 permeabilizing agent Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 125000000612 phthaloyl group Chemical group C(C=1C(C(=O)*)=CC=CC1)(=O)* 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229940002612 prodrug Drugs 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- HJCRVWSKQNDSPZ-UHFFFAOYSA-N propan-2-olate;samarium(3+) Chemical compound [Sm+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] HJCRVWSKQNDSPZ-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 229940035044 sorbitan monolaurate Drugs 0.000 description 1
- 235000011069 sorbitan monooleate Nutrition 0.000 description 1
- 239000001593 sorbitan monooleate Substances 0.000 description 1
- 229940035049 sorbitan monooleate Drugs 0.000 description 1
- 235000019337 sorbitan trioleate Nutrition 0.000 description 1
- 229960000391 sorbitan trioleate Drugs 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229940012831 stearyl alcohol Drugs 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 235000020238 sunflower seed Nutrition 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000001839 systemic circulation Effects 0.000 description 1
- FGTJJHCZWOVVNH-UHFFFAOYSA-N tert-butyl-[tert-butyl(dimethyl)silyl]oxy-dimethylsilane Chemical compound CC(C)(C)[Si](C)(C)O[Si](C)(C)C(C)(C)C FGTJJHCZWOVVNH-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229940072958 tetrahydrofurfuryl oleate Drugs 0.000 description 1
- MPLHNVLQVRSVEE-UHFFFAOYSA-N texas red Chemical compound [O-]S(=O)(=O)C1=CC(S(Cl)(=O)=O)=CC=C1C(C1=CC=2CCCN3CCCC(C=23)=C1O1)=C2C1=C(CCC1)C3=[N+]1CCCC3=C2 MPLHNVLQVRSVEE-UHFFFAOYSA-N 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 125000004044 trifluoroacetyl group Chemical group FC(C(=O)*)(F)F 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea group Chemical group NC(=O)N XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 206010046885 vaginal cancer Diseases 0.000 description 1
- 208000013139 vaginal neoplasm Diseases 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 235000014692 zinc oxide Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6905—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
- A61K47/6907—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a microemulsion, nanoemulsion or micelle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6927—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
- A61K47/6929—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
- C08G2261/12—Copolymers
- C08G2261/126—Copolymers block
Definitions
- Biodegradable polymers have been used for many applications in medicine, including controlled release drug delivery systems, resorbable bone pins and screws, and scaffolds for cells in tissue engineering. Systems based on biodegradable polymers obviate the need for surgical removal since their degradation products are absorbed or metabolized by the body. Micro- and nano-sized systems made using polymers can be used to deliver precise amounts of drugs, including small molecules, proteins and genes, over prolonged periods to local tissues or the systemic circulation. Of particular interest is the development of drug delivery vehicles that exhibit reduced detection rates by the immune system (e.g., long-circulating carriers for intravenous administration), or that can be administered via non-invasive delivery routes (such as inhalation). Biodegradable polymers that safely erode in the body, preferably at a rate that closely coincides with the rate of drug delivery, are required for these advanced applications.
- the immune system e.g., long-circulating carriers for intravenous administration
- non-invasive delivery routes such as inhalation
- PLGA ester copolymers of lactide and glycolide
- SA sebacic acid
- CPP 1,3-bis(carboxyphenoxy)-propane
- PLGA particles typically take a few weeks to several months to completely degrade in the body, but the device is typically depleted of drug more rapidly.
- Implants composed of poly(CPP:SA) were approved for use in humans in the 1990's to deliver chemotherapeutic molecules directly at the site of a resected brain tumor.
- CPP:SA copolymers erode from the surface-in (called surface-erosion), leading to desirable steady drug delivery rates over time.
- Proven biocompatibility, current clinical use, and steady drug release profiles make polymers composed of CPP and SA good candidates for new drug delivery applications.
- small particles made with poly(CPP:SA) possess hydrophobic surfaces that lead to rapid removal by the immune system and poor resuspension and aerosolization properties.
- the present invention provides novel functionalized poly(ether-anhydride) block copolymers, wherein one end of the copolymer is capable of being attached to a moiety with a desirable characteristic (e.g., a targeting ligand, a drug, a monoclonal antibody, etc.).
- a desirable characteristic e.g., a targeting ligand, a drug, a monoclonal antibody, etc.
- the present invention also provides novel methods of using the copolymers of the present invention (e.g., therapy, diagnosing, imaging, and as an adjuvant).
- the present invention also provides novel particles (e.g., microspheres and nanospheres) formed from the copolymers of the present invention. These particles may be used to encapsulate biologically active agents and deliver it to a patient in need thereof.
- novel particles e.g., microspheres and nanospheres
- the present invention also provides novel compositions (e.g., pharmaceutical compositions) comprising the copolymers of the present invention.
- the present invention also provides novel methods of making the copolymers of the present invention.
- block copolymers of polyethylene glycol can be formed by copolymerization with a functionalized PEG prepolymer.
- FIG. 1 presents the 1 H NMR spectra of Biotin-NHS.
- FIG. 2 presents the 1 H NMR spectra of Biotin-PEG.
- FIG. 3 presents the FT-IR spectra of Biotin-PEG-PSA (15:85).
- FIG. 4 presents the 1 H NMR spectra of Biotin-PEG-PSA (15:85).
- FIG. 5 presents the GPC chromatogram of Biotin-PEG-PSA.
- FIG. 6 presents the graph of the size distribution of microparticles of Biotin-PEG-PSA.
- FIG. 7 presents the graph of the size distribution of nanoparticles of Biotin-PEG-PSA.
- FIG. 8 presents the schematic of a Biotin-PEG-PSA particle that has been modified with a biotinylated ligand.
- the present invention provides poly(ether-anhydride) block copolymers, which can be suitable for administration of therapeutic and biologically active agents, including sustained release administration, through a wide variety of routes, including microspheres and nanospheres for injection or inhalation.
- the polymers can be prepared using clinically approved monomers, including sebacic acid (SA), 1,3-bis(carboxyphenoxy)propane (CPP), and functionalized blocks of poly(ethylene glycol) (PEG) of various molecular weights.
- SA sebacic acid
- CPP 1,3-bis(carboxyphenoxy)propane
- PEG poly(ethylene glycol)
- the present invention provides novel poly(ether-anhydride) block copolymers, comprising: subunits of a diacid and a subunit of Formula B:
- Z is an end group that does not polymerize with the diacid
- the starting material or prepolymer of the subunit of Formula B is formed from a polyethylene glycol (e.g., PEG) of various molecular weights.
- PEG polyethylene glycol
- One end of the PEG is functionalized with group Z, which is an end group that does not polymerize with the diacid.
- Z is a group that allows for attachment of a group having a desirable property (e.g., a peptide, protein, antigen, antibody, enzyme, nucleic acid, lectin, or any type of targeting or drug moiety).
- Z can allow for attached by itself being modifiable, by being partly or fully cleavable to expose a chemical group (e.g., an OH group) that is capable of being functionalized.
- the block copolymers of the present invention can be used for therapies that benefit from some type of targeting. These uses include, but are not limited to, targeted drug delivery, target gene/oligonucleotide delivery, vaccine delivery, medical imaging, diagnostics, and tissue engineering.
- Biotin which can be attached to an ⁇ -hydroxy- ⁇ -amine PEG via known chemistry to form a biotinamide Z group.
- This biotinamide can then be attached to a variety of groups via an avidin-biotin ligating procedure.
- the biotin-PEG polymer can be reacted with neutravidin, and the resulting product can then be reacted with any biotinylated moiety.
- Z also can be one of many other groups known to those of skill in the art, including OH, NH 2 , COOH, and SH, which can be protected first with a known protecting group (see, for example, Greene and Wuts, Protective Groups In Organic Synthesis , Wiley and Sons, 1991), then deprotected after polymerization for further modification as discussed herein (e.g., attachment of a drug, peptide, or target compound, such as folic acid).
- the protecting group selected is one that does not polymerize with the other monomers that form the block copolymer. Typical examples of protecting groups are provided below. As will all examples provided herein, they should not be considered limiting.
- hydroxyl protecting groups include tetrahydropyranyl (THP), methoxymethyl (MOM), ⁇ -methoxyethoxymethyl (MEM), methylthiomethyl, t-butyl, triphenylmethyl (trityl), benzyl, allyl, silyl ethers (e.g., trimethylsilyl ether and t-butyldimethylsilyl ether), mesylate, tosylate, acetate, benzoate, N-acylimidazoles, and trichloroethyl chloroformate.
- THP tetrahydropyranyl
- MOM methoxymethyl
- MEM ⁇ -methoxyethoxymethyl
- methylthiomethyl t-butyl
- triphenylmethyl trityl
- benzyl allyl
- silyl ethers e.g., trimethylsilyl ether and t-butyldimethylsilyl
- amino protecting groups include carbobenzyloxy, t-butoxycarbonyl, phthaloyl, trichloroacetamide, and trifluoroacetyl.
- carboxylic acid protecting groups include esters (e.g., t-butyl ester and benzyl ester) and 2-oxazolines (from 2-amino-2-methyl-1-propanol or 2,2-dimethylaziridine).
- Diacids are known to those of skill in the art. They correspond to a chemical moiety that is terminated by two carboxylic acids (i.e., CO 2 H) or a derivative thereof (e.g., ester, anhydride, acid halide, etc.).
- the two carboxylic acids or derivatives thereof are separated by at least four aliphatic carbons (e.g., (CH 2 ) 4 ), at least four aromatic carbon atoms (e.g., a 1,4-disubstituted benzene), or a combination thereof (e.g., (CH 2 ) 4-20 , (CH 2 ) 1-20 -phenyl-(CH 2 ) 1-20 ).
- the aliphatic or aromatic carbon atoms can be substituted by 1-6 groups including, but not limited to, C 1-6 alkyl, benzyl, phenyl, F, Cl, Br, I, CF 3 , and NO 2 , as long as the substituent does not prohibit polymerization between the diacid and the subunit of Formula B.
- diacids include, but are not limited to, hexanedioic acid (adipic acid), heptanedioic acid (pimelic acid), octanedioic acid (suberic acid), nonanedioic acid (azelaic acid), decanedioic acid (sebacic acid), undecanedioic acid, dodecanedioic acid, 1,1-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, 1,3-bis(carboxyphenoxy)propane (CPP), 1,3-bis(carboxyphenoxy)hexane (CPH), isophthalic acid (1,3-phenyl dicarboxylic acid), terephthalic acid (1,4-phenyl-dicarboxylic acid), diphenic acid (2,2′-biphenyl dicarboxylic acid), 3,3′-dimethyl-biphenyl-2,2
- the diacid forms a subunit of formula A:
- n is, independently for each occurrence, an integer from (a) 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, to 20; (b) 4-12; and, (c) 8;
- p is, independently for each occurrence, an integer from (a) ⁇ 1, (b) 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, to 10,000 (c) 1-5,000, (d) 5-10,000, and (e) 10-5,000.
- block copolymer further comprises subunits of formula C:
- r is, independently for each occurrence, an integer from (a) ⁇ 1, (b) 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, to 10,000 (c) 1-5,000, (d) 5-10,000, and (e) 10-5,000; and,
- q is, independently for each occurrence, an integer from (a) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, to 20; (b) 2 to 10; (c) 2 to 6; and, (d) 3 or 6.
- the block copolymers of the present invention are terminated on one end by Z and on the other end by the free end of the diacid or Formula C, if present.
- the non-Z end of the copolymer can be the free acid, a group remaining from the prepolymer of the diacid or Formula C, or optionally a group resulting from the post-polymerization functionalization (e.g., a C 1-8 alkyl ester).
- prepolymer terminal groups include C 1-8 alkyl, C 1-8 alkylC(O)— (e.g., CH 3 C(O)—), HOOC—R—C(O)—, amino alkyl groups (e.g., H 2 NCH 2 CH 2 —), or any other group that allows reaction with the other prepolymers used to form the block copolymers of the present invention.
- the R group includes an aliphatic group (e.g., C 1-8 alkyl), aromatic groups (e.g., phenyl and bi-phenyl), or a mixture of aliphatic and aromatic groups.
- the block copolymers of the present invention can be readily processed into nearly any shape or size and used like previously known medical polymers (e.g., implants, coatings on stents, etc.).
- the block copolymers of the present invention can also be formed into particles.
- Particles e.g., biodegradable particles
- the block copolymers of the present invention possess a hydrophobic polymer core and hydrophilic PEG shell. This is due to the functionalized PEG moiety partitioning to the surface of the particle.
- the surface of the particles of the present invention can be easily modified. Modification of the present particles can produce particles that more readily cross biological barriers (e.g., they are less adhesive with mucus).
- molecules that are attached to the end of flexible PEG molecules therefore, partition selectively to the surface of the particles upon formulation, thus making the attached molecules readily available to the body.
- a wide variety of molecules e.g., targeting ligands, peptides, proteins, antigens, antibodies, enzymes, nucleic acids, lectins, and drugs (e.g., anticancer and anti-inflammatory) can be attached to the functionalized end (i.e., non-polymerized end) of PEG under mild conditions to form poly(diacid acid-co-PEG-Ligand) micro- or nanospheres for biological applications, including targeted drug and gene delivery, medical imaging, diagnostics, and tissue engineering.
- Additional utilities include tissue or cell-specific and/or sustained delivery of chemotherapeutic agents for treatment of cancers (e.g., breast cancer, brain cancer, bone cancer, lung cancer, gastrointestinal, liver, prostate, pancreatic, cervical, bladder, vaginal, and colon cancer, etc.) and targeted drug delivery to inflamed endothelium for treatment of an array of pathologies, including cardiovascular disease, arthritis, inflammatory bowel disease, and cancer.
- cancers e.g., breast cancer, brain cancer, bone cancer, lung cancer, gastrointestinal, liver, prostate, pancreatic, cervical, bladder, vaginal, and colon cancer, etc.
- a desirable property of the present block copolymers is that they can be prepared such that they degrade at a rate that closely coincides with drug release times.
- Another favorable property of the present particles is that their size can be easily controlled (e.g., sizes ranging from 30 nm to over 100 ⁇ m are readily accessible).
- m, n, and q each, independently, can be a constant value throughout the copolymer, i.e., m, n, and q do not vary within a subunit of Formula A, B, or C, or within different subunits of the same formula, within a sample of polymer or a polymer chain.
- the copolymers of the present invention may further comprise monomeric units other than those subunits represented by the diacid (e.g., Formula A) and Formula B and, optionally, the diacid of Formula C. In other embodiments, however, the polymer consists essentially of subunits of the diacid (e.g., Formula A), and Formula B and optionally Formula C.
- the uncapped end of the present polymers may be capped (i.e., terminated) with H (to form carboxylic acids), acyl groups (to form anhydrides), alkoxy groups (to form esters), or any other suitable capping groups.
- Examples of molecular weights for the subunits of Formula B include (a) 200, 300, 400, 500, 600, 700, 800, 900, 1,000, 10,000, 20,000, 30,000, 40,000, 50,000, 100,000, 200,000, 300,000, 400,000, 500,000, 600,000, 700,000, 800,000, 900,000 to 1,000,000 daltons, (b) 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, up to 30000 daltons.
- the subunits of Formula B may have molecular weights that vary throughout the polymer (e.g., between 200 and 100,000 or more daltons). Alternatively, the subunits of Formula B may have molecular weights that vary only within a narrow range (e.g., 200-300 daltons or 2,000-3,000 daltons).
- Examples of weight ranges for the diacid include (a) between 10-99% by weight of the polymer and (b) between 15-% by weight of the polymer.
- Examples of weight ranges for the subunit of Formula B include (a) between 1-90% by weight of the polymer and (b) between 2-60% by weight of the polymer.
- examples of weight ranges for the diacid include between 10-98% by weight of the polymer.
- examples of weight ranges for the subunit of Formula B include between 1-80% by weight of the polymer.
- Examples of weight ranges for the subunit of Formula C include between 1-95% by weight of the polymer.
- the block copolymers of the present invention may have molecular weights (M w ) ranging from (a) about 2000 or less to about 300,000, 600,000 or 1,000,000 or more daltons, (b) at least about 10,000, 15,000, 20,000, 25,000, 30,000, 35,000, 40,000, 45,000, or 50,000 daltons, and (c) at least about 100,000 daltons.
- M n number-average molecular weight
- the present invention provides novel compositions comprising the present block copolymers.
- a specific type of composition is a pharmaceutical composition, which can be for the delivery of biologically active agent, e.g., for the prevention or treatment of a disease or other condition in a patient.
- the pharmaceutical composition may further comprise a pharmaceutically acceptable carrier.
- the block copolymers of the present invention are formed into particles (e.g., microspheres or nanospheres).
- the micro- or nanospheres of the present invention maybe used for the sustained release of an encapsulated agent.
- Microparticles and microspheres are used interchangeably herein.
- Nanoparticles and nanospheres are used interchangeably herein.
- Microspheres and nanospheres can be formed by a wide variety of techniques known to those of skill in the art. Different methods can be employed to form micro- or nanospheres depending upon the desired application. Suitable methods include, but are not limited to, spray drying, solvent evaporation, emulsion methods, phase separation, freeze drying, air drying, vacuum drying, fluidized-bed drying, milling, co-precipitation and critical fluid extraction.
- the present invention provides novel compositions comprising one of the block copolymers and an encapsulated agent (e.g., therapeutic agent, diagnostic agent, imaging agent, and/or an adjuvant).
- Agents that may be encapsulated in the subject compositions include imaging and diagnostic agents (such as radiopaque agents, labeled antibodies, labeled nucleic acid probes, dyes, etc.), adjuvants (radiosensitizers, immunomodulatory molecules, transfection-enhancing agents (such as chloroquine and analogs thereof)), chemotactic agents and chemoattractants, peptides (e.g., peptides that modulate cell adhesion and/or cell mobility, cell permeabilizing agents, inhibitors of multidrug resistance and/or efflux pumps, etc.).
- imaging and diagnostic agents such as radiopaque agents, labeled antibodies, labeled nucleic acid probes, dyes, etc.
- adjuvants radiopaque agents, labeled antibodies, labeled
- the present invention also relates to methods of administering such compositions, e.g., as part of a treatment regimen, for example, by inhalation, or injection (e.g., subcutaneously, intramuscularly, or intravenously).
- a treatment regimen for example, by inhalation, or injection (e.g., subcutaneously, intramuscularly, or intravenously).
- injection e.g., subcutaneously, intramuscularly, or intravenously.
- the block copolymer that encapsulates the agent can be in the form of a micro- or nanosphere.
- the present pharmaceutical compositions under biological conditions, e.g., upon contact with body fluids including blood, interstitial fluid, mucus, cell interiors, spinal fluid, lymph or the like, release the encapsulated drug over a sustained or extended period (as compared to the release from an isotonic saline solution).
- body fluids including blood, interstitial fluid, mucus, cell interiors, spinal fluid, lymph or the like
- Such a system may result in prolonged delivery of effective amounts (e.g., 0.0001 mg/kg/hour to 10 mg/kg/hour) of the drug.
- Delivery times can include (a) 8, 16, 24, 48, 96, 120, 144, 168, 800, 1600, to 2400 or more hours or (b) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, to 100 or more days.
- the block copolymers of the present invention may be used in the presence of a solvent to facilitate mixing or to maintain the flowability of the polymer composition.
- suitable biocompatible solvents include, but are not limited to, N-methyl-2-pyrrolidone, 2-pyrrolidone, ethanol, propylene glycol, acetone, methyl acetate, ethyl acetate, methyl ethyl ketone, dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, caprolactam, oleic acid, and 1-dodecylazacycoheptanone.
- Polymers of the present invention can be prepared by combining a mixture of compounds of a prepolymer of a diacid (e.g., Formula A 1 ) and Formula B 1 and optionally Formula C 1 , depicted below, and heating at a temperature and for a time sufficient to form a polymer.
- the mixture can be heated to a temperature sufficient to melt the prepolymers, for example (a) about 120, 130, 140, 150, 160, 170, 180, 190, to 200 or (b) about 140-190.
- the reaction can be run for (a) about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 100, to 1440 or more minutes or (b) about 20-180 minutes.
- the mixture can be heated to a temperature of (a) about 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, to 220 or (b) about 140-200.
- the reaction can be run for (a) about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 300, 400, 500, 600, 700, 800, 900, 100, to 1440 or more minutes.
- the reaction times and temperatures can be varied to achieve different molecular weight polymers.
- R 1 is a group that is capable with reacting with the prepolymers of the diacid (e.g., Formula A 1 ), the prepolymer of the optional subunit of Formula C (e.g., Formula C 1 ), the prepolymer of any other subunit present, or a combination of these prepolymers.
- R 1 groups examples include H, C 1-8 alkylC(O)— (e.g., CH 3 C(O)—), HOOC—R—C(O)—, amino alkyl groups (e.g., H 2 NCH 2 CH 2 —),
- the R group includes an aliphatic group (e.g., C 1-8 alkyl), aromatic groups (e.g., phenyl and bi-phenyl), or a mixture of aliphatic and aromatic groups.
- Y is a group that allows for prepolymers A 1 (i.e., the diacid prepolymer) and C 1 , if present, to react with themselves, each other, and with the PEG prepolymer B 1 .
- Examples of Y include H, C 1-8 alkyl (e.g., methyl), OC 1-8 alkyl, SC 1-8 alkyl, and NHC 1-8 alkyl.
- Y, together with the CO 2 to which it is attached, may form a carbonate, carbamate, or ester moiety.
- the polymerization may be conducted under vacuum, e.g., >1 Torr or >0.1 Torr).
- the polymerization may also be conducted in the presence of a solvent (e.g., an organic solvent). It can be desirable for the solvent to have a boiling point at a temperature above the reaction temperature, e.g., by at least 10° C., or even by at least 30° C.
- organic solvents include, but are not limited to, dimethylsulfoxide (DMSO) and sulfolane.
- a catalyst e.g., Lewis acid catalyst
- Lewis acid catalysts include, but are not limited to cadmium acetate and a lanthanide halide or alkoxide (e.g., samarium triisopropoxide).
- Bioactive agent includes drug, therapeutic agent, medicament, or bioactive substance, which are biologically, physiologically, or pharmacologically active substances that act locally or systemically in the human or animal body.
- bioactive agent includes without limitation, medicaments; vitamins; mineral supplements; substances used for the treatment, prevention, diagnosis, cure or mitigation of disease or illness; or substances which affect the structure or function of the body; or pro-drugs, which become biologically active or more active after they have been placed in a predetermined physiological environment.
- Alkyl refers to a saturated hydrocarbon chain having the specified number of carbon atoms (e.g., 1-8).
- An allyl chains may be straight (e.g., n-butyl) or branched (e.g., sec-butyl, isobutyl, or t-butyl).
- Alkyl groups may be unsubstituted or substituted with from 1 to 4 substituents selected from F, Cl, Br, I, haloalkyl (e.g., CF 3 ), hydroxy, and aryl (e.g., phenyl, tolyl, alkoxyphenyl, alkyloxycarbonylphenyl, halophenyl).
- the particles of the present invention may have various coatings applied to modify their properties.
- Three exemplary types of coatings are seal, gloss and enteric coatings. Other types of coatings having various dissolution or erosion properties may be used to further modify subject matrices behavior, and such coatings are readily known to one of ordinary skill in the art.
- the seal coat may prevent excess moisture uptake by the matrices during the application of aqueous based enteric coatings.
- the gloss coat generally improves the handling of the finished matrices. Water-soluble materials such as hydroxypropylcellulose may be used to seal coat and gloss coat implants. The seal coat and gloss coat are generally sprayed onto the matrices until an increase in weight between about 0.5% and about 5%, often about 1% for a seal coat and about 3% for a gloss coat, has been obtained.
- Enteric coatings consist of polymers which are insoluble in the low pH (less than 3.0) of the stomach, but are soluble in the elevated pH (greater than 4.0) of the small intestine.
- Polymers such as EUDRAGIT, RohmTech, Inc., Malden, Mass., and AQUATERIC, FMC Corp., Philadelphia, Pa., may be used and are layered as thin membranes onto the implants from aqueous solution or suspension or by a spray drying method.
- the enteric coat is generally sprayed to a weight increase of about one to about 30%, preferably about 10 to about 15% and may contain coating adjuvants such as plasticizers, surfactants, separating agents that reduce the tackiness of the implants during coating, and coating permeability adjusters.
- the present compositions may additionally contain one or more optional additives such as fibrous reinforcement, colorants, perfumes, rubber modifiers, modifying agents, etc.
- optional additives such as fibrous reinforcement, colorants, perfumes, rubber modifiers, modifying agents, etc.
- fibrous reinforcement examples include PGA microfibrils, collagen microfibrils, cellulosic microfibrils, and olefinic microfibrils.
- the amount of each of these optional additives employed in the composition is an amount necessary to achieve the desired effect.
- the present block copolymers can be useful as biodegradable delivery systems.
- a biodegradable delivery system for a therapeutic agent consists of a dispersion of such a therapeutic agent in a polymer matrix.
- an article is used for implantation, injection, or otherwise placed totally or partially within the body, the article comprising the present block copolymers. It is particularly desirable that such an article result in minimal tissue irritation when implanted or injected into vasculated tissue.
- the block copolymers will incorporate the substance to be delivered in an amount sufficient to deliver to a patient a therapeutically effective amount of an incorporated therapeutic agent or other material as part of a prophylactic or therapeutic treatment.
- the desired concentration of active compound in the particle will depend on absorption, inactivation, and excretion rates of the drug as well as the delivery rate of the compound from the subject compositions. It is to be noted that dosage values may also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions. Typically, dosing will be determined using techniques known to one skilled in the art.
- the block copolymers of the present invention may be administered by various means, depending on their intended use, as is well known in the art.
- subject compositions may be formulated as tablets, capsules, granules, powders or syrups.
- formulations of the present invention may be administered parenterally as injections (intravenous, intramuscular, or subcutaneous), drop infusion preparations, or suppositories.
- subject compositions may be formulated as eyedrops or eye ointments.
- compositions may be prepared by conventional means, and, if desired, the subject compositions may be mixed with any conventional additive, such as a binder, a disintegrating agent, a lubricant, a corrigent, a solubilizing agent, a suspension aid, an emulsifying agent or a coating agent.
- Formulations useful in the methods of the present invention include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal, aerosol and/or parenteral administration.
- the formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy.
- the amount of a subject composition which may be combined with a carrier material to produce a single dose vary depending upon the subject being treated, and the particular mode of administration.
- Formulations suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia), each containing a predetermined amount of a subject composition as an active ingredient.
- Subject compositions of the present invention may also be administered as a bolus, electuary, or paste.
- the subject composition is mixed with one or more pharmaceutically acceptable carriers and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, acetyl alcohol and glycerol monostearate; (8)
- compositions may also comprise buffering agents.
- Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
- a tablet may be made by compression or molding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared using a binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent.
- a binder for example, gelatin or hydroxypropylmethyl cellulose
- lubricant for example, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent.
- preservative for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose
- disintegrant for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose
- Molded tablets may be made by molding in a suitable machine a mixture of the subject composition moistened with an inert liquid diluent Tablets, and other solid dosage forms, such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
- the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, peanut, sunflower, soybean, olive, castor, and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and
- Suspensions in addition to the subject compositions, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol, and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
- suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol, and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
- Formulations for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing a subject composition with one or more suitable non-irritating carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax, or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the appropriate body cavity and release the encapsulated analgesic.
- suitable non-irritating carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax, or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the appropriate body cavity and release the encapsulated analgesic.
- Formulations which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams, or spray formulations containing such carriers as are known in the art to be appropriate.
- Dosage forms for transdermal administration include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches, and inhalants.
- a subject composition may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants that may be required.
- the complexes may include lipophilic and hydrophilic groups to achieve the desired water solubility and transport properties.
- the ointments, pastes, creams and gels may contain, in addition to subject compositions, other carriers, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
- Powders and sprays may contain, in addition to a subject composition, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of such substances.
- Sprays may additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
- the particle size of the particulate medicament should be such as to permit inhalation of as much of the medicament into the lungs as possible upon administration of the aerosol formulation and will thus desirably be less than 20 microns, preferably in the range 1 to 10 microns if inhaled as a dry powder, e.g., 1 to 5 microns.
- the particle size of the medicament may be reduced by conventional means, for example by milling or micronisation.
- the final aerosol formulation desirably contains 0.005-90% w/w, preferably 5-80% w/w, especially 5-50% w/w, of medicament relative to the total weight of the formulation.
- the aerosol formulations according to the invention may further comprise one or more surfactants, which include L- ⁇ -phosphatidylcholine (PC), 1,2-dipalmitoylphosphatidylcholine (DPPC), oleic acid, sorbitan trioleate, sorbitan mono-oleate, sorbitan monolaurate, polyoxyethylene (20) sorbitan monolaurate, polyoxyethylene (20) sorbitan monooleate, natural lecithin, oleyl polyoxyethylene (2) ether, stearyl polyoxyethylene (2) ether, lauryl polyoxyethylene (4) ether, block copolymers of oxyethylene and oxypropylene, synthetic lecithin, diethylene glycol dioleate, tetrahydrofurfuryl oleate, ethyl oleate, isopropyl myristate, glyceryl monooleate, glyceryl monostearate, glyceryl monoricinoleate, cet
- the amount of surfactant employed in coating the particulate medicament is desirably in the range 0.1 to 10% w/w preferably 1 to 10% w/w, relative to the medicament Where the surfactant is present as a surface coating, the amount may advantageously be chosen such that a substantially monomolecular coating of sent is formed.
- the formulations of the invention are substantially free of surfactants, i.e., contain less than an effective stabilizing amount of a surfactant such as less than 0.0001% by weight of medicament.
- the formulations of the invention may be prepared by dispersal of the medicament in a selected propellant and/or co-propellant in an appropriate container, e.g., with the aid of sonication.
- a selected propellant and/or co-propellant e.g., with the aid of sonication.
- the particulate medicament is suspended in co-propellant and filled into, a suitable container.
- the valve of the container is then sealed into place and the propellant introduced by pressure filling through the valve in the conventional manner.
- the active ingredient may be thus suspended or dissolved in a liquified propellant, sealed in a container with a metering valve and fitted into an actuator.
- the metering valve may meter 10 to 500 ⁇ L and preferably 25 to 150 ⁇ L.
- dispersal may be achieved using dry powder inhalers (e.g., spinhaler) for the microspheres (which remain as dry powders).
- microspheres which remain as dry powders.
- nanospheres may be suspended in an aqueous fluid and nebulized into fine droplets to be aerosolized into the lungs.
- Sonic nebulizers may be used because they minimize exposing the agent to shear, which may result in degradation of the compound.
- an aqueous aerosol is made by formulating an aqueous solution or suspension of the polymeric materials together with conventional pharmaceutically acceptable carriers and stabilizers.
- the carriers and stabilizers vary with the requirements of the particular compound, but typically include non-ionic surfactants (Tweens, Pluronics, or polyethylene glycol), innocuous proteins like serum albumin, sorbitan esters, oleic acid, lecithin, amino acids such as glycine, buffers, salts, sugars, or sugar alcohols.
- Aerosols generally are prepared from isotonic solutions.
- Ophthalmic formulations are also contemplated as being within the scope of this invention.
- compositions of this invention suitable for parenteral administration comprise one or more subject compositions in combination with one or more pharmaceutically acceptable sterile isotonic; aqueous or non-aqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be-reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.
- aqueous and non-aqueous carriers examples include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate.
- polyols such as glycerol, propylene glycol, polyethylene glycol, and the like
- vegetable oils such as olive oil
- injectable organic esters such as ethyl oleate.
- Proper fluidity may be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
- Microsphere and/or nanosphere compositions may be suspended in a pharmaceutically acceptable solution, such as saline, Ringer's solution, dextran solution, dextrose solution, sorbitol solution, a solution containing polyvinyl alcohol (from about 1% to about 3%, preferably about 2%), or an osmotically balanced solution comprising a surfactant (such as Tween 80 or Tween 20) and a viscosity-enhancing agent (such as gelatin, alginate, sodium carboxymethylcellulose, etc.).
- a pharmaceutically acceptable solution such as saline, Ringer's solution, dextran solution, dextrose solution, sorbitol solution, a solution containing polyvinyl alcohol (from about 1% to about 3%, preferably about 2%), or an osmotically balanced solution comprising a surfactant (such as Tween 80 or Tween 20) and a viscosity-enhancing agent (such as gelatin, alginate, sodium carboxymethylcellulose
- Cadmium acetate, polyvinyl alcohol (88 mol % hydrolyzed, M w 25 kDa, Polysciences Inc., Warrington, Pa.), bovine serum albumin (BSA), pyridine, 1,2-dipalmitoylphosphatidylcholine (DPPC), L- ⁇ -phosphatidylcholine (PC), succinic anhydride, and other reagents were used as received without further purification.
- BSA bovine serum albumin
- DPPC 1,2-dipalmitoylphosphatidylcholine
- PC L- ⁇ -phosphatidylcholine
- succinic anhydride succinic anhydride
- SA Sebacic Acid
- Biotin-PEG-OH was synthesized according to a procedure previously reported. ⁇ -Hydroxy- ⁇ -amine PEG (1.0 g) was dissolved into acetonitrile (2 mL). Methylene chloride (1 mL) & pyridine (80 ⁇ l) were added and the mixture then stirred for 1 minute. After addition of NHS-Biotin (0.25 g), the reactants were stirred overnight under argon. The reaction was worked-up by the slow addition of diethyl ether (40 mL) to precipitate the polymer, which were then filtered on a Buchner funnel and washed with diethyl ether. The isolated material was then dissolved in hot isopropanol (70° C.).
- the polymer was reprecipitated on cooling.
- the polymer (350 mg) was dissolved into toluene (70 mL) and refluxed with a Dean-Stark trap and a condenser. 70% of the toluene was removed by distillation.
- the polymer was isolated on a rotary evaporator. To remove residual solvent, the polymer was dried under vacuum for 2 days. This product was then analysed for biotin attachment by 1 H-NMR spectroscopy (see structure below and FIGS. 1 and 2 ).
- Biotin-PEG-PSA was prepared by melt polycondensation of Biotin-PEG-OH and SA prepolymer under high vacuum. The polymers were precipitated from chloroform into petroleum ether and dried by vacuum. The structure of PSA-PEG-biotin were confirmed by FT-IR and 1 H NMR (see structure below and FIGS. 3 and 4 ).
- Microspheres were prepared using a single emulsion solvent method. 125 mg of PSA-PEG-biotin (15:85) were dissolved in 5 mL of dichloromethane to produce a 25 mg/mL solution. Polyvinyl alcohol (PVA, 250000 Mw) [88% hydrolyzed] was dissolved into distilled water (0.25 g into 250 mL) to make a 0.1% w/v solution. The PSA-PEG-biotin solution was then added to a homogenized PVA solution. The mixture was homogenized for a further 3 minutes at 8000 rpm and then left stirring 3 hours for dichloromethane to evaporate. Particles were collected by centrifugation, washed in distilled water.
- PVA Polyvinyl alcohol
- Micro particle size analysis was performed with a Coulter Multisizer IIe (Beckman-Coulter Inc., Fullerton, Calif.). The microparticles were added to 100 mL of isoton II solution until the coincidence of particles was between 8% and 10%. Greater than 100,000 particles were sized for each batch of microparticles to determine the mean particle size and size distribution ( FIG. 6 ).
- Nanospheres were prepared using a single emulsion solvent method. 50 mg of PSA-PEG-biotin (15:85) were dissolved in 5 mL of dichloromethane to produce a 25 mg/mL solution. PVA (250000 Mw) [88% hydrolyzed] was dissolved into distilled water to make a 0.1, and 5% w/v solution. The PSA-PEG-biotin solution was then added to 5% PVA, sonicated for 3 minutes, poured into 0.1% PVA and left stirring 3 hours for dichloromethane to evaporate. Particles were collected by centrifugation, washed in distilled water. Nanoparticle size ( FIG.
- Biotin was attached to PEG through N-Hydroxy-succinimide chemistry.
- the Biotin-PEG with end group OH was then polymerized with the prepolymer of sebacic acid at high vacuum by melt-polycondensation to get PSA-PEG-Biotin (structure shown below) (see table 1).
- PSA-PEG-Biotin Polymer a PSA-PEG-biotin 95:5 PSA-PEG-biotin 85:15 PSA-PEG-biotin 75:25 Yield (%) 85 86 72 PEG/SA 5:95 15:85 25:75 (Feed) Wt. b PEG/SA 5.4:94.6 16.3:83.7 25.8:74.2 ( 1 H NMR) Wt.
- Microspheres were prepared using a single emulsion solvent method.
- the phase separation of PEG and PSA upon particle formation ensures that the particle surface is rich in modified (e.g., biotinylated) PEG allowing facile linkage of targeting moieties to the particles at high densities.
- Texas Red avidin was conjugated to micro and nanosphere and the PSA-PEG particles were then imaged using fluorocene microscopy. Results showed that the Avidin was successfully attached to the particles.
- these particle can be further conjugated to desirable biomolecules (e.g., anticancer drug) to provide particles with desired features (see FIG. 8 ).
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Nanotechnology (AREA)
- Public Health (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Dispersion Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Immunology (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
- Recently, there has been a revolution in biotechnology that is producing an abundance of potent new protein, peptide, and DNA-based drugs. Efficient, convenient, and effective means of delivering such therapeutics, however, are still needed.
- Biodegradable polymers have been used for many applications in medicine, including controlled release drug delivery systems, resorbable bone pins and screws, and scaffolds for cells in tissue engineering. Systems based on biodegradable polymers obviate the need for surgical removal since their degradation products are absorbed or metabolized by the body. Micro- and nano-sized systems made using polymers can be used to deliver precise amounts of drugs, including small molecules, proteins and genes, over prolonged periods to local tissues or the systemic circulation. Of particular interest is the development of drug delivery vehicles that exhibit reduced detection rates by the immune system (e.g., long-circulating carriers for intravenous administration), or that can be administered via non-invasive delivery routes (such as inhalation). Biodegradable polymers that safely erode in the body, preferably at a rate that closely coincides with the rate of drug delivery, are required for these advanced applications.
- Despite their wide and growing need in medicine, few synthetic biodegradable polymers are currently used routinely in humans, especially the ester copolymers of lactide and glycolide (PLGA family), and anhydride copolymers of sebacic acid (SA) and 1,3-bis(carboxyphenoxy)-propane (CPP). PLGA is the most widely used due to its history of safe use as surgical sutures and in current drug delivery products like the Lupron Depot. While the development of PLGA remains among the most important advances in medical biomaterials, there are some limitations that significantly curtail its use. First, PLGA particles typically take a few weeks to several months to completely degrade in the body, but the device is typically depleted of drug more rapidly. Repeated dosing of such a system leads to an unwanted build up of drug-depleted polymer in the body. This may preclude the use of PLGA for many applications, especially those that require injection of polymer drug carriers into the blood or, alternatively, their inhalation into the lungs. A second limitation is that PLGA devices undergo bulk-erosion, which leads to a variety of undesirable outcomes including exposure of unreleased drug to a highly acidic environment. Third, it is difficult to release drugs in a continuous manner from PLGA particles owing the polymers' bulk-erosion mechanism. Instead, special preparation methods are required with PLGA to avoid the typical intermittent drug release pattern (i.e., burst of drug followed by a period of little or no drug release, and then by the onset of a second phase of significant drug release). Fourth, the particularly fine PLGA particles needed for intravenous injection or inhalation can agglomerate significantly, making resuspension for injection or aerosolization for inhalation difficult. Finally, small, insoluble particles with hydrophobic surfaces, like those made with PLGA, are rapidly removed and destroyed by the immune system (due to fast opsonization).
- Implants composed of poly(CPP:SA) were approved for use in humans in the 1990's to deliver chemotherapeutic molecules directly at the site of a resected brain tumor. CPP:SA copolymers erode from the surface-in (called surface-erosion), leading to desirable steady drug delivery rates over time. Proven biocompatibility, current clinical use, and steady drug release profiles make polymers composed of CPP and SA good candidates for new drug delivery applications. However, like PLGA particles, small particles made with poly(CPP:SA) possess hydrophobic surfaces that lead to rapid removal by the immune system and poor resuspension and aerosolization properties.
- Hanes et al in USPA 2003/0086895 describes random copolymers of polyethylene glycols (PEG), sebacic acid, and, optionally, 1,3-bis(carboxyphenoxy)propane. These random copolymers have numerous medical uses (e.g., biodegradable drug delivery). However, due to the random incorporation of PEG into the copolymer, there is no free end of the PEG available for further manipulation. Such a free end would allow one of ordinary skill in the art to attach groups with desirable activities (e.g., targeting ligands or anti cancer drugs).
- The present invention provides novel functionalized poly(ether-anhydride) block copolymers, wherein one end of the copolymer is capable of being attached to a moiety with a desirable characteristic (e.g., a targeting ligand, a drug, a monoclonal antibody, etc.).
- The present invention also provides novel methods of using the copolymers of the present invention (e.g., therapy, diagnosing, imaging, and as an adjuvant).
- The present invention also provides novel particles (e.g., microspheres and nanospheres) formed from the copolymers of the present invention. These particles may be used to encapsulate biologically active agents and deliver it to a patient in need thereof.
- The present invention also provides novel compositions (e.g., pharmaceutical compositions) comprising the copolymers of the present invention.
- The present invention also provides novel methods of making the copolymers of the present invention.
- These and other features of the present invention, which will become apparent during the following detailed description, have been achieved by the inventors' discovery that block copolymers of polyethylene glycol can be formed by copolymerization with a functionalized PEG prepolymer.
-
FIG. 1 presents the 1H NMR spectra of Biotin-NHS. -
FIG. 2 presents the 1H NMR spectra of Biotin-PEG. -
FIG. 3 presents the FT-IR spectra of Biotin-PEG-PSA (15:85). -
FIG. 4 presents the 1H NMR spectra of Biotin-PEG-PSA (15:85). -
FIG. 5 presents the GPC chromatogram of Biotin-PEG-PSA. -
FIG. 6 presents the graph of the size distribution of microparticles of Biotin-PEG-PSA. -
FIG. 7 presents the graph of the size distribution of nanoparticles of Biotin-PEG-PSA. -
FIG. 8 presents the schematic of a Biotin-PEG-PSA particle that has been modified with a biotinylated ligand. - The present invention provides poly(ether-anhydride) block copolymers, which can be suitable for administration of therapeutic and biologically active agents, including sustained release administration, through a wide variety of routes, including microspheres and nanospheres for injection or inhalation. The polymers can be prepared using clinically approved monomers, including sebacic acid (SA), 1,3-bis(carboxyphenoxy)propane (CPP), and functionalized blocks of poly(ethylene glycol) (PEG) of various molecular weights. By controlling the composition of the present block copolymers, the properties of drug-loaded particles made from these new polymers can be optimized. These properties can provide a great deal of flexibility for the delivery of a wide range of drugs.
- The present invention provides novel poly(ether-anhydride) block copolymers, comprising: subunits of a diacid and a subunit of Formula B:
- wherein:
- Z is an end group that does not polymerize with the diacid; and,
- n is, independently for each occurrence, an integer from (a) 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, to 10,000 (b) 10 to 5,000; and, (c) 200 to 6,000.
- The starting material or prepolymer of the subunit of Formula B is formed from a polyethylene glycol (e.g., PEG) of various molecular weights. One end of the PEG is functionalized with group Z, which is an end group that does not polymerize with the diacid. Z is a group that allows for attachment of a group having a desirable property (e.g., a peptide, protein, antigen, antibody, enzyme, nucleic acid, lectin, or any type of targeting or drug moiety). Z can allow for attached by itself being modifiable, by being partly or fully cleavable to expose a chemical group (e.g., an OH group) that is capable of being functionalized. By modifying the Z group to include a chemical moiety having a desirable property, the block copolymers of the present invention can be used for therapies that benefit from some type of targeting. These uses include, but are not limited to, targeted drug delivery, target gene/oligonucleotide delivery, vaccine delivery, medical imaging, diagnostics, and tissue engineering.
- An example of a well known and useful Z group is Biotin, which can be attached to an α-hydroxy-ω-amine PEG via known chemistry to form a biotinamide Z group. This biotinamide can then be attached to a variety of groups via an avidin-biotin ligating procedure. For example, the biotin-PEG polymer can be reacted with neutravidin, and the resulting product can then be reacted with any biotinylated moiety.
- Z also can be one of many other groups known to those of skill in the art, including OH, NH2, COOH, and SH, which can be protected first with a known protecting group (see, for example, Greene and Wuts, Protective Groups In Organic Synthesis, Wiley and Sons, 1991), then deprotected after polymerization for further modification as discussed herein (e.g., attachment of a drug, peptide, or target compound, such as folic acid). The protecting group selected is one that does not polymerize with the other monomers that form the block copolymer. Typical examples of protecting groups are provided below. As will all examples provided herein, they should not be considered limiting. Examples of hydroxyl protecting groups include tetrahydropyranyl (THP), methoxymethyl (MOM), β-methoxyethoxymethyl (MEM), methylthiomethyl, t-butyl, triphenylmethyl (trityl), benzyl, allyl, silyl ethers (e.g., trimethylsilyl ether and t-butyldimethylsilyl ether), mesylate, tosylate, acetate, benzoate, N-acylimidazoles, and trichloroethyl chloroformate. Examples of amino protecting groups include carbobenzyloxy, t-butoxycarbonyl, phthaloyl, trichloroacetamide, and trifluoroacetyl. Examples of carboxylic acid protecting groups include esters (e.g., t-butyl ester and benzyl ester) and 2-oxazolines (from 2-amino-2-methyl-1-propanol or 2,2-dimethylaziridine).
- Diacids are known to those of skill in the art. They correspond to a chemical moiety that is terminated by two carboxylic acids (i.e., CO2H) or a derivative thereof (e.g., ester, anhydride, acid halide, etc.). The two carboxylic acids or derivatives thereof are separated by at least four aliphatic carbons (e.g., (CH2)4), at least four aromatic carbon atoms (e.g., a 1,4-disubstituted benzene), or a combination thereof (e.g., (CH2)4-20, (CH2)1-20-phenyl-(CH2)1-20). The aliphatic or aromatic carbon atoms can be substituted by 1-6 groups including, but not limited to, C1-6 alkyl, benzyl, phenyl, F, Cl, Br, I, CF3, and NO2, as long as the substituent does not prohibit polymerization between the diacid and the subunit of Formula B. Examples of diacids include, but are not limited to, hexanedioic acid (adipic acid), heptanedioic acid (pimelic acid), octanedioic acid (suberic acid), nonanedioic acid (azelaic acid), decanedioic acid (sebacic acid), undecanedioic acid, dodecanedioic acid, 1,1-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, 1,3-bis(carboxyphenoxy)propane (CPP), 1,3-bis(carboxyphenoxy)hexane (CPH), isophthalic acid (1,3-phenyl dicarboxylic acid), terephthalic acid (1,4-phenyl-dicarboxylic acid), diphenic acid (2,2′-biphenyl dicarboxylic acid), 3,3′-dimethyl-biphenyl-2,2′-dicarboxylic acid, biphenyl-4,4′-dicarboxylic acid and, 1,2-cyclohexanedicarboxylic acid.
- In another embodiment, the diacid forms a subunit of formula A:
- wherein:
- m is, independently for each occurrence, an integer from (a) 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, to 20; (b) 4-12; and, (c) 8;
- p is, independently for each occurrence, an integer from (a) ≧1, (b) 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, to 10,000 (c) 1-5,000, (d) 5-10,000, and (e) 10-5,000.
- In another embodiment, the block copolymer further comprises subunits of formula C:
- wherein:
- r is, independently for each occurrence, an integer from (a) ≧1, (b) 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1,000, 2,000, 3,000, 4,000, 5,000, 6,000, 7,000, 8,000, 9,000, to 10,000 (c) 1-5,000, (d) 5-10,000, and (e) 10-5,000; and,
- q is, independently for each occurrence, an integer from (a) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, to 20; (b) 2 to 10; (c) 2 to 6; and, (d) 3 or 6.
- It is noted that the block copolymers of the present invention are terminated on one end by Z and on the other end by the free end of the diacid or Formula C, if present. The non-Z end of the copolymer can be the free acid, a group remaining from the prepolymer of the diacid or Formula C, or optionally a group resulting from the post-polymerization functionalization (e.g., a C1-8 alkyl ester). Examples of prepolymer terminal groups include C1-8 alkyl, C1-8 alkylC(O)— (e.g., CH3C(O)—), HOOC—R—C(O)—, amino alkyl groups (e.g., H2NCH2CH2—), or any other group that allows reaction with the other prepolymers used to form the block copolymers of the present invention. The R group includes an aliphatic group (e.g., C1-8 alkyl), aromatic groups (e.g., phenyl and bi-phenyl), or a mixture of aliphatic and aromatic groups.
- The block copolymers of the present invention can be readily processed into nearly any shape or size and used like previously known medical polymers (e.g., implants, coatings on stents, etc.). The block copolymers of the present invention can also be formed into particles. Particles (e.g., biodegradable particles) made from block copolymers of the present invention possess a hydrophobic polymer core and hydrophilic PEG shell. This is due to the functionalized PEG moiety partitioning to the surface of the particle. As a result, the surface of the particles of the present invention can be easily modified. Modification of the present particles can produce particles that more readily cross biological barriers (e.g., they are less adhesive with mucus). In addition, molecules that are attached to the end of flexible PEG molecules, therefore, partition selectively to the surface of the particles upon formulation, thus making the attached molecules readily available to the body.
- A wide variety of molecules (e.g., targeting ligands, peptides, proteins, antigens, antibodies, enzymes, nucleic acids, lectins, and drugs (e.g., anticancer and anti-inflammatory) can be attached to the functionalized end (i.e., non-polymerized end) of PEG under mild conditions to form poly(diacid acid-co-PEG-Ligand) micro- or nanospheres for biological applications, including targeted drug and gene delivery, medical imaging, diagnostics, and tissue engineering. Additional utilities include tissue or cell-specific and/or sustained delivery of chemotherapeutic agents for treatment of cancers (e.g., breast cancer, brain cancer, bone cancer, lung cancer, gastrointestinal, liver, prostate, pancreatic, cervical, bladder, vaginal, and colon cancer, etc.) and targeted drug delivery to inflamed endothelium for treatment of an array of pathologies, including cardiovascular disease, arthritis, inflammatory bowel disease, and cancer.
- A desirable property of the present block copolymers is that they can be prepared such that they degrade at a rate that closely coincides with drug release times. Another favorable property of the present particles is that their size can be easily controlled (e.g., sizes ranging from 30 nm to over 100 μm are readily accessible).
- In the copolymers of the present invention, m, n, and q each, independently, can be a constant value throughout the copolymer, i.e., m, n, and q do not vary within a subunit of Formula A, B, or C, or within different subunits of the same formula, within a sample of polymer or a polymer chain. The copolymers of the present invention may further comprise monomeric units other than those subunits represented by the diacid (e.g., Formula A) and Formula B and, optionally, the diacid of Formula C. In other embodiments, however, the polymer consists essentially of subunits of the diacid (e.g., Formula A), and Formula B and optionally Formula C.
- The uncapped end of the present polymers may be capped (i.e., terminated) with H (to form carboxylic acids), acyl groups (to form anhydrides), alkoxy groups (to form esters), or any other suitable capping groups.
- Examples of molecular weights for the subunits of Formula B include (a) 200, 300, 400, 500, 600, 700, 800, 900, 1,000, 10,000, 20,000, 30,000, 40,000, 50,000, 100,000, 200,000, 300,000, 400,000, 500,000, 600,000, 700,000, 800,000, 900,000 to 1,000,000 daltons, (b) 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, up to 30000 daltons. The subunits of Formula B may have molecular weights that vary throughout the polymer (e.g., between 200 and 100,000 or more daltons). Alternatively, the subunits of Formula B may have molecular weights that vary only within a narrow range (e.g., 200-300 daltons or 2,000-3,000 daltons).
- Examples of weight ranges for the diacid (e.g., subunit of Formula A) include (a) between 10-99% by weight of the polymer and (b) between 15-% by weight of the polymer. Examples of weight ranges for the subunit of Formula B include (a) between 1-90% by weight of the polymer and (b) between 2-60% by weight of the polymer.
- When optional subunit C is present, examples of weight ranges for the diacid (e.g., subunit of Formula A) include between 10-98% by weight of the polymer. Examples of weight ranges for the subunit of Formula B include between 1-80% by weight of the polymer. Examples of weight ranges for the subunit of Formula C include between 1-95% by weight of the polymer.
- The block copolymers of the present invention may have molecular weights (Mw) ranging from (a) about 2000 or less to about 300,000, 600,000 or 1,000,000 or more daltons, (b) at least about 10,000, 15,000, 20,000, 25,000, 30,000, 35,000, 40,000, 45,000, or 50,000 daltons, and (c) at least about 100,000 daltons. The block copolymers of the present invention may have number-average molecular weight (Mn) that may also vary widely, but generally fall in the ranges of (a) about 1,000 to about 200,000 daltons, (b) about 10,000 to about 100,000 daltons, (c) about 8,000 to about 50,000 daltons, and (d) about 12,000 and 45,000 daltons.
- In another embodiment, the present invention provides novel compositions comprising the present block copolymers. A specific type of composition is a pharmaceutical composition, which can be for the delivery of biologically active agent, e.g., for the prevention or treatment of a disease or other condition in a patient. The pharmaceutical composition may further comprise a pharmaceutically acceptable carrier.
- In another embodiment, the block copolymers of the present invention are formed into particles (e.g., microspheres or nanospheres). The micro- or nanospheres of the present invention maybe used for the sustained release of an encapsulated agent. Microparticles and microspheres are used interchangeably herein. Nanoparticles and nanospheres are used interchangeably herein. Microspheres and nanospheres can be formed by a wide variety of techniques known to those of skill in the art. Different methods can be employed to form micro- or nanospheres depending upon the desired application. Suitable methods include, but are not limited to, spray drying, solvent evaporation, emulsion methods, phase separation, freeze drying, air drying, vacuum drying, fluidized-bed drying, milling, co-precipitation and critical fluid extraction.
- In another embodiment, the present invention provides novel compositions comprising one of the block copolymers and an encapsulated agent (e.g., therapeutic agent, diagnostic agent, imaging agent, and/or an adjuvant). Agents that may be encapsulated in the subject compositions include imaging and diagnostic agents (such as radiopaque agents, labeled antibodies, labeled nucleic acid probes, dyes, etc.), adjuvants (radiosensitizers, immunomodulatory molecules, transfection-enhancing agents (such as chloroquine and analogs thereof)), chemotactic agents and chemoattractants, peptides (e.g., peptides that modulate cell adhesion and/or cell mobility, cell permeabilizing agents, inhibitors of multidrug resistance and/or efflux pumps, etc.). The present invention also relates to methods of administering such compositions, e.g., as part of a treatment regimen, for example, by inhalation, or injection (e.g., subcutaneously, intramuscularly, or intravenously). As noted above, the block copolymer that encapsulates the agent can be in the form of a micro- or nanosphere.
- The present pharmaceutical compositions, under biological conditions, e.g., upon contact with body fluids including blood, interstitial fluid, mucus, cell interiors, spinal fluid, lymph or the like, release the encapsulated drug over a sustained or extended period (as compared to the release from an isotonic saline solution). Such a system may result in prolonged delivery of effective amounts (e.g., 0.0001 mg/kg/hour to 10 mg/kg/hour) of the drug. Delivery times can include (a) 8, 16, 24, 48, 96, 120, 144, 168, 800, 1600, to 2400 or more hours or (b) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, to 100 or more days.
- The block copolymers of the present invention may be used in the presence of a solvent to facilitate mixing or to maintain the flowability of the polymer composition. Examples of suitable biocompatible solvents include, but are not limited to, N-methyl-2-pyrrolidone, 2-pyrrolidone, ethanol, propylene glycol, acetone, methyl acetate, ethyl acetate, methyl ethyl ketone, dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, caprolactam, oleic acid, and 1-dodecylazacycoheptanone.
- Polymers of the present invention can be prepared by combining a mixture of compounds of a prepolymer of a diacid (e.g., Formula A1) and Formula B1 and optionally Formula C1, depicted below, and heating at a temperature and for a time sufficient to form a polymer. For example, the mixture can be heated to a temperature sufficient to melt the prepolymers, for example (a) about 120, 130, 140, 150, 160, 170, 180, 190, to 200 or (b) about 140-190. The reaction can be run for (a) about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 100, to 1440 or more minutes or (b) about 20-180 minutes. When prepolymer C1 is present, the mixture can be heated to a temperature of (a) about 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, to 220 or (b) about 140-200. When prepolymer C1 is present, the reaction can be run for (a) about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 300, 400, 500, 600, 700, 800, 900, 100, to 1440 or more minutes. As understood by those of skill in the art, the reaction times and temperatures can be varied to achieve different molecular weight polymers.
- R1 is a group that is capable with reacting with the prepolymers of the diacid (e.g., Formula A1), the prepolymer of the optional subunit of Formula C (e.g., Formula C1), the prepolymer of any other subunit present, or a combination of these prepolymers. Examples a possible R1 groups include H, C1-8 alkylC(O)— (e.g., CH3C(O)—), HOOC—R—C(O)—, amino alkyl groups (e.g., H2NCH2CH2—), The R group includes an aliphatic group (e.g., C1-8 alkyl), aromatic groups (e.g., phenyl and bi-phenyl), or a mixture of aliphatic and aromatic groups.
- Y is a group that allows for prepolymers A1 (i.e., the diacid prepolymer) and C1, if present, to react with themselves, each other, and with the PEG prepolymer B1. Examples of Y include H, C1-8 alkyl (e.g., methyl), OC1-8 alkyl, SC1-8 alkyl, and NHC1-8 alkyl. Also, Y, together with the CO2 to which it is attached, may form a carbonate, carbamate, or ester moiety.
- The polymerization may be conducted under vacuum, e.g., >1 Torr or >0.1 Torr). The polymerization may also be conducted in the presence of a solvent (e.g., an organic solvent). It can be desirable for the solvent to have a boiling point at a temperature above the reaction temperature, e.g., by at least 10° C., or even by at least 30° C. Examples of organic solvents include, but are not limited to, dimethylsulfoxide (DMSO) and sulfolane. A catalyst (e.g., Lewis acid catalyst) can be used. Examples of Lewis acid catalysts include, but are not limited to cadmium acetate and a lanthanide halide or alkoxide (e.g., samarium triisopropoxide).
- Biologically active agent, as used herein, includes drug, therapeutic agent, medicament, or bioactive substance, which are biologically, physiologically, or pharmacologically active substances that act locally or systemically in the human or animal body. The term bioactive agent includes without limitation, medicaments; vitamins; mineral supplements; substances used for the treatment, prevention, diagnosis, cure or mitigation of disease or illness; or substances which affect the structure or function of the body; or pro-drugs, which become biologically active or more active after they have been placed in a predetermined physiological environment.
- Alkyl, as used herein, refers to a saturated hydrocarbon chain having the specified number of carbon atoms (e.g., 1-8). An allyl chains may be straight (e.g., n-butyl) or branched (e.g., sec-butyl, isobutyl, or t-butyl). Alkyl groups may be unsubstituted or substituted with from 1 to 4 substituents selected from F, Cl, Br, I, haloalkyl (e.g., CF3), hydroxy, and aryl (e.g., phenyl, tolyl, alkoxyphenyl, alkyloxycarbonylphenyl, halophenyl).
- The particles of the present invention may have various coatings applied to modify their properties. Three exemplary types of coatings are seal, gloss and enteric coatings. Other types of coatings having various dissolution or erosion properties may be used to further modify subject matrices behavior, and such coatings are readily known to one of ordinary skill in the art. The seal coat may prevent excess moisture uptake by the matrices during the application of aqueous based enteric coatings. The gloss coat generally improves the handling of the finished matrices. Water-soluble materials such as hydroxypropylcellulose may be used to seal coat and gloss coat implants. The seal coat and gloss coat are generally sprayed onto the matrices until an increase in weight between about 0.5% and about 5%, often about 1% for a seal coat and about 3% for a gloss coat, has been obtained.
- Enteric coatings consist of polymers which are insoluble in the low pH (less than 3.0) of the stomach, but are soluble in the elevated pH (greater than 4.0) of the small intestine. Polymers such as EUDRAGIT, RohmTech, Inc., Malden, Mass., and AQUATERIC, FMC Corp., Philadelphia, Pa., may be used and are layered as thin membranes onto the implants from aqueous solution or suspension or by a spray drying method. The enteric coat is generally sprayed to a weight increase of about one to about 30%, preferably about 10 to about 15% and may contain coating adjuvants such as plasticizers, surfactants, separating agents that reduce the tackiness of the implants during coating, and coating permeability adjusters.
- The present compositions may additionally contain one or more optional additives such as fibrous reinforcement, colorants, perfumes, rubber modifiers, modifying agents, etc. In practice, each of these optional additives should be compatible with the resulting polymer and its intended use. Examples of suitable fibrous reinforcement include PGA microfibrils, collagen microfibrils, cellulosic microfibrils, and olefinic microfibrils. The amount of each of these optional additives employed in the composition is an amount necessary to achieve the desired effect.
- The present block copolymers can be useful as biodegradable delivery systems. In its simplest form, a biodegradable delivery system for a therapeutic agent consists of a dispersion of such a therapeutic agent in a polymer matrix. In other embodiments, an article is used for implantation, injection, or otherwise placed totally or partially within the body, the article comprising the present block copolymers. It is particularly desirable that such an article result in minimal tissue irritation when implanted or injected into vasculated tissue.
- Dosages and Formulations
- In most embodiments, the block copolymers will incorporate the substance to be delivered in an amount sufficient to deliver to a patient a therapeutically effective amount of an incorporated therapeutic agent or other material as part of a prophylactic or therapeutic treatment. The desired concentration of active compound in the particle will depend on absorption, inactivation, and excretion rates of the drug as well as the delivery rate of the compound from the subject compositions. It is to be noted that dosage values may also vary with the severity of the condition to be alleviated. It is to be further understood that for any particular subject, specific dosage regimens should be adjusted over time according to the individual need and the professional judgment of the person administering or supervising the administration of the compositions. Typically, dosing will be determined using techniques known to one skilled in the art.
- The block copolymers of the present invention may be administered by various means, depending on their intended use, as is well known in the art. For example, if subject compositions are to be administered orally, it may be formulated as tablets, capsules, granules, powders or syrups. Alternatively, formulations of the present invention may be administered parenterally as injections (intravenous, intramuscular, or subcutaneous), drop infusion preparations, or suppositories. For application by the ophthalmic mucous membrane route, subject compositions may be formulated as eyedrops or eye ointments. These formulations may be prepared by conventional means, and, if desired, the subject compositions may be mixed with any conventional additive, such as a binder, a disintegrating agent, a lubricant, a corrigent, a solubilizing agent, a suspension aid, an emulsifying agent or a coating agent.
- Formulations useful in the methods of the present invention include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal, aerosol and/or parenteral administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of a subject composition which may be combined with a carrier material to produce a single dose vary depending upon the subject being treated, and the particular mode of administration.
- Formulations suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia), each containing a predetermined amount of a subject composition as an active ingredient. Subject compositions of the present invention may also be administered as a bolus, electuary, or paste.
- In solid dosage forms for oral administration (capsules, tablets, pills, dragees, powders, granules and the like), the subject composition is mixed with one or more pharmaceutically acceptable carriers and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, acetyl alcohol and glycerol monostearate; (8) absorbents, such as kaolin and bentonite clay; (9) lubricants, such a talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; and (10) coloring agents. In the case of capsules, tablets and pills, the pharmaceutical compositions may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
- A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using a binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the subject composition moistened with an inert liquid diluent Tablets, and other solid dosage forms, such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art.
- Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the subject compositions, the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, peanut, sunflower, soybean, olive, castor, and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
- Suspensions, in addition to the subject compositions, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol, and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
- Formulations for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing a subject composition with one or more suitable non-irritating carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax, or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the appropriate body cavity and release the encapsulated analgesic.
- Formulations which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams, or spray formulations containing such carriers as are known in the art to be appropriate.
- Dosage forms for transdermal administration include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches, and inhalants. A subject composition may be mixed under sterile conditions with a pharmaceutically acceptable carrier, and with any preservatives, buffers, or propellants that may be required. For transdermal administration, the complexes may include lipophilic and hydrophilic groups to achieve the desired water solubility and transport properties.
- The ointments, pastes, creams and gels may contain, in addition to subject compositions, other carriers, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof. Powders and sprays may contain, in addition to a subject composition, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of such substances. Sprays may additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
- When inhaled, the particle size of the particulate medicament should be such as to permit inhalation of as much of the medicament into the lungs as possible upon administration of the aerosol formulation and will thus desirably be less than 20 microns, preferably in the
range 1 to 10 microns if inhaled as a dry powder, e.g., 1 to 5 microns. The particle size of the medicament may be reduced by conventional means, for example by milling or micronisation. The final aerosol formulation desirably contains 0.005-90% w/w, preferably 5-80% w/w, especially 5-50% w/w, of medicament relative to the total weight of the formulation. - Optionally, the aerosol formulations according to the invention may further comprise one or more surfactants, which include L-α-phosphatidylcholine (PC), 1,2-dipalmitoylphosphatidylcholine (DPPC), oleic acid, sorbitan trioleate, sorbitan mono-oleate, sorbitan monolaurate, polyoxyethylene (20) sorbitan monolaurate, polyoxyethylene (20) sorbitan monooleate, natural lecithin, oleyl polyoxyethylene (2) ether, stearyl polyoxyethylene (2) ether, lauryl polyoxyethylene (4) ether, block copolymers of oxyethylene and oxypropylene, synthetic lecithin, diethylene glycol dioleate, tetrahydrofurfuryl oleate, ethyl oleate, isopropyl myristate, glyceryl monooleate, glyceryl monostearate, glyceryl monoricinoleate, cetyl alcohol, stearyl alcohol,
polyethylene glycol 400, cetyl pyridinium chloride, benzalkonium chloride, olive oil, glyceryl monolaurate, corn oil, cotton seed oil, and sunflower seed oil. - The amount of surfactant employed in coating the particulate medicament is desirably in the range 0.1 to 10% w/w preferably 1 to 10% w/w, relative to the medicament Where the surfactant is present as a surface coating, the amount may advantageously be chosen such that a substantially monomolecular coating of sent is formed. However, it is preferable that the formulations of the invention are substantially free of surfactants, i.e., contain less than an effective stabilizing amount of a surfactant such as less than 0.0001% by weight of medicament.
- The formulations of the invention may be prepared by dispersal of the medicament in a selected propellant and/or co-propellant in an appropriate container, e.g., with the aid of sonication. Preferably the particulate medicament is suspended in co-propellant and filled into, a suitable container. The valve of the container is then sealed into place and the propellant introduced by pressure filling through the valve in the conventional manner. The active ingredient may be thus suspended or dissolved in a liquified propellant, sealed in a container with a metering valve and fitted into an actuator. Such metered dose inhalers are well known in the art. The metering valve may
meter 10 to 500 μL and preferably 25 to 150 μL. In certain embodiments, dispersal may be achieved using dry powder inhalers (e.g., spinhaler) for the microspheres (which remain as dry powders). In other embodiments, nanospheres, may be suspended in an aqueous fluid and nebulized into fine droplets to be aerosolized into the lungs. - Sonic nebulizers may be used because they minimize exposing the agent to shear, which may result in degradation of the compound. Ordinarily, an aqueous aerosol is made by formulating an aqueous solution or suspension of the polymeric materials together with conventional pharmaceutically acceptable carriers and stabilizers. The carriers and stabilizers vary with the requirements of the particular compound, but typically include non-ionic surfactants (Tweens, Pluronics, or polyethylene glycol), innocuous proteins like serum albumin, sorbitan esters, oleic acid, lecithin, amino acids such as glycine, buffers, salts, sugars, or sugar alcohols. Aerosols generally are prepared from isotonic solutions.
- Ophthalmic formulations, eye ointments, powders, solutions and the like, are also contemplated as being within the scope of this invention.
- Certain pharmaceutical compositions of this invention suitable for parenteral administration comprise one or more subject compositions in combination with one or more pharmaceutically acceptable sterile isotonic; aqueous or non-aqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be-reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.
- Examples of suitable aqueous and non-aqueous carriers which may be employed in the pharmaceutical compositions of the invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity may be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
- Microsphere and/or nanosphere compositions may be suspended in a pharmaceutically acceptable solution, such as saline, Ringer's solution, dextran solution, dextrose solution, sorbitol solution, a solution containing polyvinyl alcohol (from about 1% to about 3%, preferably about 2%), or an osmotically balanced solution comprising a surfactant (such as
Tween 80 or Tween 20) and a viscosity-enhancing agent (such as gelatin, alginate, sodium carboxymethylcellulose, etc.). In certain embodiments, the composition is administered subcutaneously. In other embodiments, the composition is administered intravenously. For intravenous delivery, the composition is preferably formulated as microspheres or nanospheres on average less than about 15 microns, more particularly less than about 10 microns, and still more particularly less than about 5 microns in average diameter. - The invention now being generally described, it will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present invention, and are not intended to limit the invention.
- All chemicals were purchased from Sigma-Aldrich (St Louis, Mo.) unless otherwise noted. Sebacic acid was recrystallized three times from ethanol. Acetic anhydride was purified by distillation. Toluene and chloroform (J. T. Baker, Phillipsburg, N.J.) were refluxed over and distilled from calcium hydride. α-Hydroxy-ω-amine PEG was purchased from EKTAR. 1,3-bis(carboxyphenoxy)propane (CPP) was synthesized according to the method described by Conix (Macromol. Synth. 1966, 2, 95). Cadmium acetate, polyvinyl alcohol (88 mol % hydrolyzed, Mw=25 kDa, Polysciences Inc., Warrington, Pa.), bovine serum albumin (BSA), pyridine, 1,2-dipalmitoylphosphatidylcholine (DPPC), L-α-phosphatidylcholine (PC), succinic anhydride, and other reagents were used as received without further purification.
- 1H NMR spectra were recorded in CDCl3 on a Varian UNITY-400 MHz spectrometer, and FT-IR spectra were obtained by Perkin-Elmer 1600 series spectrometer (KBr pellet). The molecular weight of the polymer was determined by GPC analysis in chloroform (PU-980 intelligent HPLC pump, 1560 intelligent column thermoset, RI-1530 intelligent RI detector), with polystyrene as standards. (JASCO GPC). The microspheres were evaluated for surface morphology by scanning electronic microscopy (SEM) with an AMRAY 1860 FE microscope. Thermal analysis was performed using a SEKIO DSC220, where an average sample weight of 5-10 mg was heated at
heating rates 10° C./min from −100° C. to 200° C. - Sebacic Acid (SA) Prepolymer
- SA (10.0 g) was refluxed in 100 mL acetic anhydride under N2 for 15 min and evaporated to dryness. The crude prepolymer was recrystallized from dried toluene, washed with anhydrous ethyl ether/petroleum ether (1:1), and finally dried by vacuum.
- Biotin-PEG-OH Prepolymer
- Biotin-PEG-OH was synthesized according to a procedure previously reported. α-Hydroxy-ω-amine PEG (1.0 g) was dissolved into acetonitrile (2 mL). Methylene chloride (1 mL) & pyridine (80 μl) were added and the mixture then stirred for 1 minute. After addition of NHS-Biotin (0.25 g), the reactants were stirred overnight under argon. The reaction was worked-up by the slow addition of diethyl ether (40 mL) to precipitate the polymer, which were then filtered on a Buchner funnel and washed with diethyl ether. The isolated material was then dissolved in hot isopropanol (70° C.). The polymer was reprecipitated on cooling. The polymer (350 mg) was dissolved into toluene (70 mL) and refluxed with a Dean-Stark trap and a condenser. 70% of the toluene was removed by distillation. The polymer was isolated on a rotary evaporator. To remove residual solvent, the polymer was dried under vacuum for 2 days. This product was then analysed for biotin attachment by 1H-NMR spectroscopy (see structure below and
FIGS. 1 and 2 ). - 1H NMR spectra were recorded on a Varian UNITY-400 MHz spectrometer. The appearance of a triplet at 2.03 ppm that can be assigned to the methylene from the biotin chain “a” to the amide and the appearance of a broad singlet belonging to the free amido proton at 7.81 ppm. These signals were not present on the NMR of spectra of NHS-biotin. The biotin group was identified through the two methine protons (H-g, H-h) from the cyclic biotin structure at 4.28 and 4.12 ppm and two urea protons (H-j, H-i) from the cyclic biotin structure at 6.40, 6.34 ppm (ref. 5253). 1H NMR confirm the attachment of biotin to the PEG chain.
- CPP Prepolymer
- CPP (10.0 g) was refluxed in 200 mL acetic anhydride for 30 min under N2, followed by removal of the unreacted diacid by filtration and evaporation to remove solvent. The residue was recrystallized from dimethylformamide (DMF) and ethyl ether, then washed with dry ethyl ether and dried under vacuum.
- Biotin-PEG-PSA Polymer Synthesis
- Biotin-PEG-PSA was prepared by melt polycondensation of Biotin-PEG-OH and SA prepolymer under high vacuum. The polymers were precipitated from chloroform into petroleum ether and dried by vacuum. The structure of PSA-PEG-biotin were confirmed by FT-IR and 1H NMR (see structure below and
FIGS. 3 and 4 ). - The three peaks at 2.44, 1.65, and 1.33 ppm were attributed to the methylene protons of SA. The resonance line of the methylene protons of PEG appeared at 3.65 ppm, which indicated PEG was incorporated into polymer. The biotin signal was very weak due to the low amount of this compound in PSA-PEG-biotin. As the biotin moieties are attached to the PEG end group, the appearance of ethylene glycol unites in polymer suggests of biotin available in polymer. Infrared (IR) spectra were obtained using a Perkin-Elmer 1600 series spectrometer. The samples were ground and pressed into KBr pellets for analysis. The typical anhydride IR double peaks appeared at ˜1812, ˜1742 cm−1, indicating efficient conversion of the SA to PSA. Gel permeation chromatography (GPC) measurement was carried out using a JASCO PU-980 intelligent HPLC pump, 1560 intelligent column thermoset, RI-1530 intelligent refractive index detector. Samples were filtered and eluded in chloroform through a series of Styragel columns (guard, HR4, and HR3 Waters Styragel columns) at a flow rate of 0.3 mL/min. The molecular weights were determined relative to polystyrene standards (Fluka, Milwaukee, Wis.). GPC revealed one peak (
FIG. 5 ), indicative of pure polymer formed. - Preparation of Biotin-PEG-PSA Microparticles
- Microspheres were prepared using a single emulsion solvent method. 125 mg of PSA-PEG-biotin (15:85) were dissolved in 5 mL of dichloromethane to produce a 25 mg/mL solution. Polyvinyl alcohol (PVA, 250000 Mw) [88% hydrolyzed] was dissolved into distilled water (0.25 g into 250 mL) to make a 0.1% w/v solution. The PSA-PEG-biotin solution was then added to a homogenized PVA solution. The mixture was homogenized for a further 3 minutes at 8000 rpm and then left stirring 3 hours for dichloromethane to evaporate. Particles were collected by centrifugation, washed in distilled water. Micro particle size analysis was performed with a Coulter Multisizer IIe (Beckman-Coulter Inc., Fullerton, Calif.). The microparticles were added to 100 mL of isoton II solution until the coincidence of particles was between 8% and 10%. Greater than 100,000 particles were sized for each batch of microparticles to determine the mean particle size and size distribution (
FIG. 6 ). - Preparation of Biotin-PEG-PSA Nanoparticles
- Nanospheres were prepared using a single emulsion solvent method. 50 mg of PSA-PEG-biotin (15:85) were dissolved in 5 mL of dichloromethane to produce a 25 mg/mL solution. PVA (250000 Mw) [88% hydrolyzed] was dissolved into distilled water to make a 0.1, and 5% w/v solution. The PSA-PEG-biotin solution was then added to 5% PVA, sonicated for 3 minutes, poured into 0.1% PVA and left stirring 3 hours for dichloromethane to evaporate. Particles were collected by centrifugation, washed in distilled water. Nanoparticle size (
FIG. 7 ) analysis was performed Dynamic Light Scattering (DLS) using a Zetasizer® 3000 (Malvern Instruments Inc. Southborough, Mass.) with sample diluted in filtered distilled water. The measurements were performed at 25° C. at a scattering angle of 90°. - Characterization of PEG-SA
- Biotin was attached to PEG through N-Hydroxy-succinimide chemistry. The Biotin-PEG with end group OH was then polymerized with the prepolymer of sebacic acid at high vacuum by melt-polycondensation to get PSA-PEG-Biotin (structure shown below) (see table 1).
-
TABLE 1 Characterization of PSA-PEG-Biotin Polymera PSA-PEG-biotin 95:5 PSA-PEG-biotin 85:15 PSA-PEG-biotin 75:25 Yield (%) 85 86 72 PEG/SA 5:95 15:85 25:75 (Feed) Wt. bPEG/SA 5.4:94.6 16.3:83.7 25.8:74.2 (1H NMR) Wt. cDPPEG 77 77 77 dDPPSA 354 104 58 Mw (kDa) 57.0 31.0 13.0 Mn (kDa) 16.4 14.2 5.7 PDI 3.5 2.2 2.2 apolymers were polymerized at 160° C., 0.05-0.06 torr for 30 minutes. bEstimated from integrat height of hydrogen shown in the 1H NMR spectra. cDPPEG = (3400- 17)/44 = 77. dDPPSA were calculated from 1H NMR. - Microspheres were prepared using a single emulsion solvent method. The phase separation of PEG and PSA upon particle formation ensures that the particle surface is rich in modified (e.g., biotinylated) PEG allowing facile linkage of targeting moieties to the particles at high densities. Texas Red avidin was conjugated to micro and nanosphere and the PSA-PEG particles were then imaged using fluorocene microscopy. Results showed that the Avidin was successfully attached to the particles. Thus, these particle can be further conjugated to desirable biomolecules (e.g., anticancer drug) to provide particles with desired features (see
FIG. 8 ). - All publications and patents mentioned herein, are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference.
- Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
Claims (26)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/721,123 US8354476B2 (en) | 2004-12-10 | 2005-12-09 | Functionalized poly(ether-anhydride) block copolymers |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US63528004P | 2004-12-10 | 2004-12-10 | |
US11/721,123 US8354476B2 (en) | 2004-12-10 | 2005-12-09 | Functionalized poly(ether-anhydride) block copolymers |
PCT/US2005/044658 WO2006063249A2 (en) | 2004-12-10 | 2005-12-09 | Functionalized poly (ether-anhydride) block copolymers |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100003337A1 true US20100003337A1 (en) | 2010-01-07 |
US8354476B2 US8354476B2 (en) | 2013-01-15 |
Family
ID=36578619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/721,123 Active 2027-12-18 US8354476B2 (en) | 2004-12-10 | 2005-12-09 | Functionalized poly(ether-anhydride) block copolymers |
Country Status (5)
Country | Link |
---|---|
US (1) | US8354476B2 (en) |
EP (1) | EP1856179B1 (en) |
CA (1) | CA2590098C (en) |
ES (1) | ES2407979T3 (en) |
WO (1) | WO2006063249A2 (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013151736A2 (en) | 2012-04-02 | 2013-10-10 | modeRNA Therapeutics | In vivo production of proteins |
WO2013151666A2 (en) | 2012-04-02 | 2013-10-10 | modeRNA Therapeutics | Modified polynucleotides for the production of biologics and proteins associated with human disease |
US8664194B2 (en) | 2011-12-16 | 2014-03-04 | Moderna Therapeutics, Inc. | Method for producing a protein of interest in a primate |
US8710200B2 (en) | 2011-03-31 | 2014-04-29 | Moderna Therapeutics, Inc. | Engineered nucleic acids encoding a modified erythropoietin and their expression |
WO2014113089A2 (en) | 2013-01-17 | 2014-07-24 | Moderna Therapeutics, Inc. | Signal-sensor polynucleotides for the alteration of cellular phenotypes |
US8822663B2 (en) | 2010-08-06 | 2014-09-02 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
WO2014152211A1 (en) | 2013-03-14 | 2014-09-25 | Moderna Therapeutics, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
WO2014152540A1 (en) | 2013-03-15 | 2014-09-25 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
WO2014159813A1 (en) | 2013-03-13 | 2014-10-02 | Moderna Therapeutics, Inc. | Long-lived polynucleotide molecules |
WO2015006747A2 (en) | 2013-07-11 | 2015-01-15 | Moderna Therapeutics, Inc. | Compositions comprising synthetic polynucleotides encoding crispr related proteins and synthetic sgrnas and methods of use. |
WO2015034925A1 (en) | 2013-09-03 | 2015-03-12 | Moderna Therapeutics, Inc. | Circular polynucleotides |
WO2015034928A1 (en) | 2013-09-03 | 2015-03-12 | Moderna Therapeutics, Inc. | Chimeric polynucleotides |
US9107886B2 (en) | 2012-04-02 | 2015-08-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding basic helix-loop-helix family member E41 |
WO2016014846A1 (en) | 2014-07-23 | 2016-01-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of intrabodies |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
US9334328B2 (en) | 2010-10-01 | 2016-05-10 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9428535B2 (en) | 2011-10-03 | 2016-08-30 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9597380B2 (en) | 2012-11-26 | 2017-03-21 | Modernatx, Inc. | Terminally modified RNA |
WO2017070626A2 (en) | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Respiratory virus vaccines |
WO2017070601A1 (en) | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Nucleic acid vaccines for varicella zoster virus (vzv) |
WO2017070623A1 (en) | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Herpes simplex virus vaccine |
WO2017070613A1 (en) | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Human cytomegalovirus vaccine |
WO2017070620A2 (en) | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Broad spectrum influenza virus vaccine |
WO2017070622A1 (en) | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Respiratory syncytial virus vaccine |
WO2017112943A1 (en) | 2015-12-23 | 2017-06-29 | Modernatx, Inc. | Methods of using ox40 ligand encoding polynucleotides |
WO2017120612A1 (en) | 2016-01-10 | 2017-07-13 | Modernatx, Inc. | Therapeutic mrnas encoding anti ctla-4 antibodies |
US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
US10675376B2 (en) | 2012-05-24 | 2020-06-09 | Ethicon Llc | Mechanically strong absorbable polymeric blend compositions of precisely controllable absorption rates, processing methods, and products therefrom |
US11571493B2 (en) * | 2012-03-19 | 2023-02-07 | Neomend, Inc. | Co-precipitation method |
EP4159741A1 (en) | 2014-07-16 | 2023-04-05 | ModernaTX, Inc. | Method for producing a chimeric polynucleotide encoding a polypeptide having a triazole-containing internucleotide linkage |
WO2023161350A1 (en) | 2022-02-24 | 2023-08-31 | Io Biotech Aps | Nucleotide delivery of cancer therapy |
US11771769B2 (en) | 2017-11-10 | 2023-10-03 | Cocoon Biotech Inc. | Ocular applications of silk-based products |
Families Citing this family (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006033641A1 (en) * | 2004-12-22 | 2006-03-30 | Merlin Md Pte Ltd | A medical device |
US8835513B2 (en) | 2006-02-28 | 2014-09-16 | Covidien Lp | Drug delivery devices |
CA2638038A1 (en) | 2006-02-28 | 2007-09-07 | Tyco Healthcare Group Lp | Tissue adhesives and sealants comprising biotin and avidin polymers |
WO2011106702A2 (en) | 2010-02-25 | 2011-09-01 | The Johns Hopkins University | Sustained delivery of therapeutic agents to an eye compartment |
WO2012039979A2 (en) | 2010-09-10 | 2012-03-29 | The Johns Hopkins University | Rapid diffusion of large polymeric nanoparticles in the mammalian brain |
US9327037B2 (en) | 2011-02-08 | 2016-05-03 | The Johns Hopkins University | Mucus penetrating gene carriers |
CA2793349A1 (en) * | 2011-11-18 | 2013-05-18 | Covidien Lp | Novel drug delivery devices |
WO2013110028A1 (en) | 2012-01-19 | 2013-07-25 | The Johns Hopkins University | Nanoparticle formulations with enhanced mucosal penetration |
CN104394891B (en) | 2012-03-16 | 2019-04-16 | 约翰霍普金斯大学 | For delivering non-linear segmented copolymer-drug conjugates of activating agent |
US9161756B2 (en) | 2012-03-16 | 2015-10-20 | Covidien Lp | Closure tape dispenser |
US9572580B2 (en) | 2012-03-16 | 2017-02-21 | Covidien Lp | Closure tape dispenser |
WO2013138343A1 (en) | 2012-03-16 | 2013-09-19 | The Johns Hopkins University | Controlled release formulations for the delivery of hif-1 inhibitors |
CA2871778C (en) | 2012-05-03 | 2022-09-13 | Kala Pharmaceuticals, Inc. | Pharmaceutical nanoparticles showing improved mucosal transport |
US11596599B2 (en) | 2012-05-03 | 2023-03-07 | The Johns Hopkins University | Compositions and methods for ophthalmic and/or other applications |
KR102154880B1 (en) | 2012-05-03 | 2020-09-10 | 칼라 파마슈티컬스, 인크. | Pharmaceutical nanoparticles showing improved mucosal transport |
US9827191B2 (en) | 2012-05-03 | 2017-11-28 | The Johns Hopkins University | Compositions and methods for ophthalmic and/or other applications |
EP2849728A1 (en) | 2012-05-04 | 2015-03-25 | The Johns Hopkins University | Lipid-based drug carriers for rapid penetration through mucus linings |
WO2014124006A1 (en) | 2013-02-05 | 2014-08-14 | The Johns Hopkins University | Nanoparticles for magnetic resonance imaging tracking and methods of making and using thereof |
CA2900652C (en) | 2013-02-15 | 2021-05-04 | Kala Pharmaceuticals, Inc. | Therapeutic compounds and uses thereof |
CN105189462B (en) | 2013-02-20 | 2017-11-10 | 卡拉制药公司 | Therapeutic compound and its purposes |
US9688688B2 (en) | 2013-02-20 | 2017-06-27 | Kala Pharmaceuticals, Inc. | Crystalline forms of 4-((4-((4-fluoro-2-methyl-1H-indol-5-yl)oxy)-6-methoxyquinazolin-7-yl)oxy)-1-(2-oxa-7-azaspiro[3.5]nonan-7-yl)butan-1-one and uses thereof |
US10023626B2 (en) | 2013-09-30 | 2018-07-17 | Modernatx, Inc. | Polynucleotides encoding immune modulating polypeptides |
CA2928658A1 (en) | 2013-11-01 | 2015-05-07 | Kala Pharmaceuticals, Inc. | Crystalline forms of therapeutic compounds and uses thereof |
US9890173B2 (en) | 2013-11-01 | 2018-02-13 | Kala Pharmaceuticals, Inc. | Crystalline forms of therapeutic compounds and uses thereof |
WO2015080939A1 (en) * | 2013-11-27 | 2015-06-04 | Ethicon, Inc. | Absorbable polymeric blend compositions with precisely controllable absorption rates, processing methods, and dimensionally stable medical devices therefrom |
WO2015127389A1 (en) | 2014-02-23 | 2015-08-27 | The Johns Hopkins University | Hypotonic enema formulations and methods of use |
CA2974715C (en) | 2015-01-27 | 2020-05-05 | The Johns Hopkins University | Hypotonic hydrogel formulations for enhanced transport of active agents at mucosal surfaces |
EP4286012A3 (en) | 2015-09-17 | 2024-05-29 | ModernaTX, Inc. | Compounds and compositions for intracellular delivery of therapeutic agents |
RS63051B1 (en) | 2015-12-22 | 2022-04-29 | Modernatx Inc | Compounds and compositions for intracellular delivery of agents |
US10336767B2 (en) | 2016-09-08 | 2019-07-02 | Kala Pharmaceuticals, Inc. | Crystalline forms of therapeutic compounds and uses thereof |
CA3036336A1 (en) | 2016-09-08 | 2018-03-15 | Kala Pharmaceuticals, Inc. | Crystalline forms of therapeutic compounds and uses thereof |
US10392399B2 (en) | 2016-09-08 | 2019-08-27 | Kala Pharmaceuticals, Inc. | Crystalline forms of therapeutic compounds and uses thereof |
EP3538067A1 (en) | 2016-11-08 | 2019-09-18 | Modernatx, Inc. | Stabilized formulations of lipid nanoparticles |
EP4186888A1 (en) | 2017-03-15 | 2023-05-31 | ModernaTX, Inc. | Compound and compositions for intracellular delivery of therapeutic agents |
EP3595727A1 (en) | 2017-03-15 | 2020-01-22 | ModernaTX, Inc. | Lipid nanoparticle formulation |
DK3596042T3 (en) | 2017-03-15 | 2022-04-11 | Modernatx Inc | CRYSTAL FORMS OF AMINOLIPIDS |
EP3625246A1 (en) | 2017-05-18 | 2020-03-25 | ModernaTX, Inc. | Polynucleotides encoding tethered interleukin-12 (il12) polypeptides and uses thereof |
US11485972B2 (en) | 2017-05-18 | 2022-11-01 | Modernatx, Inc. | Modified messenger RNA comprising functional RNA elements |
WO2018232006A1 (en) | 2017-06-14 | 2018-12-20 | Modernatx, Inc. | Polynucleotides encoding coagulation factor viii |
US12077501B2 (en) | 2017-06-14 | 2024-09-03 | Modernatx, Inc. | Compounds and compositions for intracellular delivery of agents |
MA49421A (en) | 2017-06-15 | 2020-04-22 | Modernatx Inc | RNA FORMULATIONS |
EP3675817A1 (en) | 2017-08-31 | 2020-07-08 | Modernatx, Inc. | Methods of making lipid nanoparticles |
WO2019104152A1 (en) | 2017-11-22 | 2019-05-31 | Modernatx, Inc. | Polynucleotides encoding ornithine transcarbamylase for the treatment of urea cycle disorders |
JP7423521B2 (en) | 2017-11-22 | 2024-01-29 | モダーナティエックス・インコーポレイテッド | Polynucleotide encoding phenylalanine hydroxylase for the treatment of phenylketonuria |
EP3714045A1 (en) | 2017-11-22 | 2020-09-30 | Modernatx, Inc. | Polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits for the treatment of propionic acidemia |
WO2019136241A1 (en) | 2018-01-05 | 2019-07-11 | Modernatx, Inc. | Polynucleotides encoding anti-chikungunya virus antibodies |
EP3796893A1 (en) | 2018-05-23 | 2021-03-31 | Modernatx, Inc. | Delivery of dna |
WO2020023390A1 (en) | 2018-07-25 | 2020-01-30 | Modernatx, Inc. | Mrna based enzyme replacement therapy combined with a pharmacological chaperone for the treatment of lysosomal storage disorders |
MA53545A (en) | 2018-09-02 | 2021-07-14 | Modernatx Inc | POLYNUCLEOTIDES ENCODED FOR VERY LONG CHAIN ACYL-COA DEHYDROGENASE FOR THE TREATMENT OF VERY LONG CHAIN ACYL-COA DEHYDROGENASE DEFICIENCY |
CA3112208A1 (en) | 2018-09-13 | 2020-03-19 | Modernatx, Inc. | Polynucleotides encoding glucose-6-phosphatase for the treatment of glycogen storage disease |
US20220243182A1 (en) | 2018-09-13 | 2022-08-04 | Modernatx, Inc. | Polynucleotides encoding branched-chain alpha-ketoacid dehydrogenase complex e1-alpha, e1-beta, and e2 subunits for the treatment of maple syrup urine disease |
WO2020056239A1 (en) | 2018-09-14 | 2020-03-19 | Modernatx, Inc. | Polynucleotides encoding uridine diphosphate glycosyltransferase 1 family, polypeptide a1 for the treatment of crigler-najjar syndrome |
WO2020061457A1 (en) | 2018-09-20 | 2020-03-26 | Modernatx, Inc. | Preparation of lipid nanoparticles and methods of administration thereof |
US20220152225A1 (en) | 2018-09-27 | 2022-05-19 | Modernatx, Inc. | Polynucleotides encoding arginase 1 for the treatment of arginase deficiency |
JP2022532078A (en) | 2019-05-08 | 2022-07-13 | アストラゼネカ アクチボラグ | Compositions for skin and wounds and methods of their use |
US11357542B2 (en) | 2019-06-21 | 2022-06-14 | Covidien Lp | Valve assembly and retainer for surgical access assembly |
WO2021055833A1 (en) | 2019-09-19 | 2021-03-25 | Modernatx, Inc. | Branched tail lipid compounds and compositions for intracellular delivery of therapeutic agents |
JP2023527875A (en) | 2020-06-01 | 2023-06-30 | モダーナティエックス・インコーポレイテッド | Phenylalanine hydroxylase variants and uses thereof |
CA3199784A1 (en) | 2020-11-13 | 2022-05-19 | Modernatx, Inc. | Polynucleotides encoding cystic fibrosis transmembrane conductance regulator for the treatment of cystic fibrosis |
US20240207374A1 (en) | 2021-03-24 | 2024-06-27 | Modernatx, Inc. | Lipid nanoparticles containing polynucleotides encoding glucose-6-phosphatase and uses thereof |
WO2022204370A1 (en) | 2021-03-24 | 2022-09-29 | Modernatx, Inc. | Lipid nanoparticles and polynucleotides encoding ornithine transcarbamylase for the treatment of ornithine transcarbamylase deficiency |
US20240216288A1 (en) | 2021-03-24 | 2024-07-04 | Modernatx, Inc. | Lipid nanoparticles containing polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits and uses thereof |
WO2022204369A1 (en) | 2021-03-24 | 2022-09-29 | Modernatx, Inc. | Polynucleotides encoding methylmalonyl-coa mutase for the treatment of methylmalonic acidemia |
WO2022204390A1 (en) | 2021-03-24 | 2022-09-29 | Modernatx, Inc. | Lipid nanoparticles containing polynucleotides encoding phenylalanine hydroxylase and uses thereof |
WO2022266083A2 (en) | 2021-06-15 | 2022-12-22 | Modernatx, Inc. | Engineered polynucleotides for cell-type or microenvironment-specific expression |
WO2022271776A1 (en) | 2021-06-22 | 2022-12-29 | Modernatx, Inc. | Polynucleotides encoding uridine diphosphate glycosyltransferase 1 family, polypeptide a1 for the treatment of crigler-najjar syndrome |
WO2023056044A1 (en) | 2021-10-01 | 2023-04-06 | Modernatx, Inc. | Polynucleotides encoding relaxin for the treatment of fibrosis and/or cardiovascular disease |
WO2023183909A2 (en) | 2022-03-25 | 2023-09-28 | Modernatx, Inc. | Polynucleotides encoding fanconi anemia, complementation group proteins for the treatment of fanconi anemia |
WO2024026254A1 (en) | 2022-07-26 | 2024-02-01 | Modernatx, Inc. | Engineered polynucleotides for temporal control of expression |
WO2024197033A1 (en) | 2023-03-21 | 2024-09-26 | Modernatx, Inc. | Polynucleotides encoding relaxin for the treatment of heart failure |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030086895A1 (en) * | 2001-06-22 | 2003-05-08 | Justin Hanes | Biodegradable polymer compositions, compositions and uses related thereto |
-
2005
- 2005-12-09 US US11/721,123 patent/US8354476B2/en active Active
- 2005-12-09 CA CA2590098A patent/CA2590098C/en active Active
- 2005-12-09 ES ES05853543T patent/ES2407979T3/en active Active
- 2005-12-09 WO PCT/US2005/044658 patent/WO2006063249A2/en active Application Filing
- 2005-12-09 EP EP05853543.6A patent/EP1856179B1/en not_active Not-in-force
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030086895A1 (en) * | 2001-06-22 | 2003-05-08 | Justin Hanes | Biodegradable polymer compositions, compositions and uses related thereto |
Cited By (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9447164B2 (en) | 2010-08-06 | 2016-09-20 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US8822663B2 (en) | 2010-08-06 | 2014-09-02 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9937233B2 (en) | 2010-08-06 | 2018-04-10 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US9181319B2 (en) | 2010-08-06 | 2015-11-10 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9334328B2 (en) | 2010-10-01 | 2016-05-10 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9657295B2 (en) | 2010-10-01 | 2017-05-23 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9701965B2 (en) | 2010-10-01 | 2017-07-11 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US10064959B2 (en) | 2010-10-01 | 2018-09-04 | Modernatx, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US9950068B2 (en) | 2011-03-31 | 2018-04-24 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
US9533047B2 (en) | 2011-03-31 | 2017-01-03 | Modernatx, Inc. | Delivery and formulation of engineered nucleic acids |
US8710200B2 (en) | 2011-03-31 | 2014-04-29 | Moderna Therapeutics, Inc. | Engineered nucleic acids encoding a modified erythropoietin and their expression |
US10022425B2 (en) | 2011-09-12 | 2018-07-17 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US10751386B2 (en) | 2011-09-12 | 2020-08-25 | Modernatx, Inc. | Engineered nucleic acids and methods of use thereof |
US9464124B2 (en) | 2011-09-12 | 2016-10-11 | Moderna Therapeutics, Inc. | Engineered nucleic acids and methods of use thereof |
US9428535B2 (en) | 2011-10-03 | 2016-08-30 | Moderna Therapeutics, Inc. | Modified nucleosides, nucleotides, and nucleic acids, and uses thereof |
US8754062B2 (en) | 2011-12-16 | 2014-06-17 | Moderna Therapeutics, Inc. | DLIN-KC2-DMA lipid nanoparticle delivery of modified polynucleotides |
US8680069B2 (en) | 2011-12-16 | 2014-03-25 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of G-CSF |
US8664194B2 (en) | 2011-12-16 | 2014-03-04 | Moderna Therapeutics, Inc. | Method for producing a protein of interest in a primate |
EP4144378A1 (en) | 2011-12-16 | 2023-03-08 | ModernaTX, Inc. | Modified nucleoside, nucleotide, and nucleic acid compositions |
US9295689B2 (en) | 2011-12-16 | 2016-03-29 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
US9271996B2 (en) | 2011-12-16 | 2016-03-01 | Moderna Therapeutics, Inc. | Formulation and delivery of PLGA microspheres |
US9186372B2 (en) | 2011-12-16 | 2015-11-17 | Moderna Therapeutics, Inc. | Split dose administration |
US11571493B2 (en) * | 2012-03-19 | 2023-02-07 | Neomend, Inc. | Co-precipitation method |
US9107886B2 (en) | 2012-04-02 | 2015-08-18 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding basic helix-loop-helix family member E41 |
US9089604B2 (en) | 2012-04-02 | 2015-07-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for treating galactosylceramidase protein deficiency |
US9192651B2 (en) | 2012-04-02 | 2015-11-24 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of secreted proteins |
US9216205B2 (en) | 2012-04-02 | 2015-12-22 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding granulysin |
US9221891B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | In vivo production of proteins |
US9220755B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
US9220792B2 (en) | 2012-04-02 | 2015-12-29 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aquaporin-5 |
US9233141B2 (en) | 2012-04-02 | 2016-01-12 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders |
WO2013151666A2 (en) | 2012-04-02 | 2013-10-10 | modeRNA Therapeutics | Modified polynucleotides for the production of biologics and proteins associated with human disease |
US9254311B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of proteins |
US9255129B2 (en) | 2012-04-02 | 2016-02-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding SIAH E3 ubiquitin protein ligase 1 |
US9114113B2 (en) | 2012-04-02 | 2015-08-25 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding citeD4 |
US9283287B2 (en) | 2012-04-02 | 2016-03-15 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of nuclear proteins |
WO2013151736A2 (en) | 2012-04-02 | 2013-10-10 | modeRNA Therapeutics | In vivo production of proteins |
US9303079B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9301993B2 (en) | 2012-04-02 | 2016-04-05 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding apoptosis inducing factor 1 |
US9095552B2 (en) | 2012-04-02 | 2015-08-04 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding copper metabolism (MURR1) domain containing 1 |
US9782462B2 (en) | 2012-04-02 | 2017-10-10 | Modernatx, Inc. | Modified polynucleotides for the production of proteins associated with human disease |
US9061059B2 (en) | 2012-04-02 | 2015-06-23 | Moderna Therapeutics, Inc. | Modified polynucleotides for treating protein deficiency |
US9050297B2 (en) | 2012-04-02 | 2015-06-09 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding aryl hydrocarbon receptor nuclear translocator |
US8999380B2 (en) | 2012-04-02 | 2015-04-07 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
US9572897B2 (en) | 2012-04-02 | 2017-02-21 | Modernatx, Inc. | Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins |
US9587003B2 (en) | 2012-04-02 | 2017-03-07 | Modernatx, Inc. | Modified polynucleotides for the production of oncology-related proteins and peptides |
US9814760B2 (en) | 2012-04-02 | 2017-11-14 | Modernatx, Inc. | Modified polynucleotides for the production of biologics and proteins associated with human disease |
US9827332B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of proteins |
US9828416B2 (en) | 2012-04-02 | 2017-11-28 | Modernatx, Inc. | Modified polynucleotides for the production of secreted proteins |
US9675668B2 (en) | 2012-04-02 | 2017-06-13 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding hepatitis A virus cellular receptor 2 |
US10501512B2 (en) | 2012-04-02 | 2019-12-10 | Modernatx, Inc. | Modified polynucleotides |
US9878056B2 (en) | 2012-04-02 | 2018-01-30 | Modernatx, Inc. | Modified polynucleotides for the production of cosmetic proteins and peptides |
US9149506B2 (en) | 2012-04-02 | 2015-10-06 | Moderna Therapeutics, Inc. | Modified polynucleotides encoding septin-4 |
US10675376B2 (en) | 2012-05-24 | 2020-06-09 | Ethicon Llc | Mechanically strong absorbable polymeric blend compositions of precisely controllable absorption rates, processing methods, and products therefrom |
EP4074834A1 (en) | 2012-11-26 | 2022-10-19 | ModernaTX, Inc. | Terminally modified rna |
US9597380B2 (en) | 2012-11-26 | 2017-03-21 | Modernatx, Inc. | Terminally modified RNA |
EP3434774A1 (en) | 2013-01-17 | 2019-01-30 | ModernaTX, Inc. | Signal-sensor polynucleotides for the alteration of cellular phenotypes |
WO2014113089A2 (en) | 2013-01-17 | 2014-07-24 | Moderna Therapeutics, Inc. | Signal-sensor polynucleotides for the alteration of cellular phenotypes |
WO2014159813A1 (en) | 2013-03-13 | 2014-10-02 | Moderna Therapeutics, Inc. | Long-lived polynucleotide molecules |
WO2014152211A1 (en) | 2013-03-14 | 2014-09-25 | Moderna Therapeutics, Inc. | Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions |
US8980864B2 (en) | 2013-03-15 | 2015-03-17 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
WO2014152540A1 (en) | 2013-03-15 | 2014-09-25 | Moderna Therapeutics, Inc. | Compositions and methods of altering cholesterol levels |
WO2015006747A2 (en) | 2013-07-11 | 2015-01-15 | Moderna Therapeutics, Inc. | Compositions comprising synthetic polynucleotides encoding crispr related proteins and synthetic sgrnas and methods of use. |
EP3971287A1 (en) | 2013-07-11 | 2022-03-23 | ModernaTX, Inc. | Compositions comprising synthetic polynucleotides encoding crispr related proteins and synthetic sgrnas and methods of use |
WO2015034928A1 (en) | 2013-09-03 | 2015-03-12 | Moderna Therapeutics, Inc. | Chimeric polynucleotides |
WO2015034925A1 (en) | 2013-09-03 | 2015-03-12 | Moderna Therapeutics, Inc. | Circular polynucleotides |
US10323076B2 (en) | 2013-10-03 | 2019-06-18 | Modernatx, Inc. | Polynucleotides encoding low density lipoprotein receptor |
EP4159741A1 (en) | 2014-07-16 | 2023-04-05 | ModernaTX, Inc. | Method for producing a chimeric polynucleotide encoding a polypeptide having a triazole-containing internucleotide linkage |
WO2016014846A1 (en) | 2014-07-23 | 2016-01-28 | Moderna Therapeutics, Inc. | Modified polynucleotides for the production of intrabodies |
WO2017070601A1 (en) | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Nucleic acid vaccines for varicella zoster virus (vzv) |
WO2017070613A1 (en) | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Human cytomegalovirus vaccine |
WO2017070620A2 (en) | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Broad spectrum influenza virus vaccine |
WO2017070622A1 (en) | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Respiratory syncytial virus vaccine |
EP4011451A1 (en) | 2015-10-22 | 2022-06-15 | ModernaTX, Inc. | Metapneumovirus mrna vaccines |
EP4349405A2 (en) | 2015-10-22 | 2024-04-10 | ModernaTX, Inc. | Respiratory virus vaccines |
WO2017070623A1 (en) | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Herpes simplex virus vaccine |
WO2017070626A2 (en) | 2015-10-22 | 2017-04-27 | Modernatx, Inc. | Respiratory virus vaccines |
EP4349404A2 (en) | 2015-10-22 | 2024-04-10 | ModernaTX, Inc. | Respiratory virus vaccines |
WO2017112943A1 (en) | 2015-12-23 | 2017-06-29 | Modernatx, Inc. | Methods of using ox40 ligand encoding polynucleotides |
EP4039699A1 (en) | 2015-12-23 | 2022-08-10 | ModernaTX, Inc. | Methods of using ox40 ligand encoding polynucleotides |
WO2017120612A1 (en) | 2016-01-10 | 2017-07-13 | Modernatx, Inc. | Therapeutic mrnas encoding anti ctla-4 antibodies |
US11771769B2 (en) | 2017-11-10 | 2023-10-03 | Cocoon Biotech Inc. | Ocular applications of silk-based products |
WO2023161350A1 (en) | 2022-02-24 | 2023-08-31 | Io Biotech Aps | Nucleotide delivery of cancer therapy |
Also Published As
Publication number | Publication date |
---|---|
US8354476B2 (en) | 2013-01-15 |
WO2006063249A3 (en) | 2006-12-07 |
CA2590098A1 (en) | 2006-06-15 |
EP1856179A4 (en) | 2009-01-21 |
WO2006063249A2 (en) | 2006-06-15 |
EP1856179A2 (en) | 2007-11-21 |
EP1856179B1 (en) | 2013-05-15 |
ES2407979T3 (en) | 2013-06-17 |
CA2590098C (en) | 2015-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8354476B2 (en) | Functionalized poly(ether-anhydride) block copolymers | |
US7163697B2 (en) | Biodegradable polymer compositions, compositions and uses related thereto | |
US5578325A (en) | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers | |
Vilar et al. | Polymers and drug delivery systems | |
CA2816977C (en) | Compositions and methods relating to reduced mucoadhesion | |
US6007845A (en) | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers | |
RU2400215C2 (en) | Peg-ylated nanoparticles | |
US5543158A (en) | Biodegradable injectable nanoparticles | |
EP2515946B1 (en) | Nanoconjugates and nanoconjugate formulations | |
US20060177416A1 (en) | Polymer particle delivery compositions and methods of use | |
WO1995003356A1 (en) | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers | |
WO2009152691A1 (en) | A polyglycol modified chitosan oligosaccharide fatty acid graft, preparation method thereof and use of the same | |
CN102335435A (en) | Multifunctional polyurethane medicament carrier as well as preparation method and application thereof | |
JP2016510001A (en) | Targeted buccal delivery containing cisplatin filled chitosan nanoparticles | |
US20100254939A1 (en) | Graft copolymers as drug delivery systems | |
WO2006041613A2 (en) | Nanoparticles for targeting hepatoma cells | |
US20050043481A1 (en) | Material consisting of at least a biodegradable polymer and cyclodextrins | |
CN112168975A (en) | Anti-tumor targeted drug sustained-release carrier, preparation and preparation method thereof | |
CN115120738A (en) | Imiquimod prodrug nanoparticles and preparation method and application thereof | |
WO2011065916A1 (en) | Crosslinking branched molecule through thiol-disulfide exchange to form hydrogel | |
Huang et al. | Two important polysaccharides as carriers for drug delivery | |
Kiparissides et al. | Nanotechnology advances in controlled drug delivery systems | |
CN115887380B (en) | Organ targeting polymer nano vesicle system and preparation method and application thereof | |
US20240301141A1 (en) | Silicone polymer compound and transdermal delivery system comprising same | |
Kobauri et al. | Amino Acid Based Biodegradable Amphiphilic Polymers and Micelles as Drug Delivery Systems: Synthesis and Study |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KALISH, ADAM, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:KALA PHARMACEUTICALS, INC.;REEL/FRAME:025414/0032 Effective date: 20101026 Owner name: THIRD ROCK VENTURES, L.P., MASSACHUSETTS Free format text: SECURITY AGREEMENT;ASSIGNOR:KALA PHARMACEUTICALS, INC.;REEL/FRAME:025414/0032 Effective date: 20101026 Owner name: WACHTEL, WILLIAM, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:KALA PHARMACEUTICALS, INC.;REEL/FRAME:025414/0032 Effective date: 20101026 Owner name: POLARIS VENTURE PARTNERS V, L.P., MASSACHUSETTS Free format text: SECURITY AGREEMENT;ASSIGNOR:KALA PHARMACEUTICALS, INC.;REEL/FRAME:025414/0032 Effective date: 20101026 Owner name: LUX VENTURES II, L.P., NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:KALA PHARMACEUTICALS, INC.;REEL/FRAME:025414/0032 Effective date: 20101026 Owner name: LUX VENTURES II SIDECAR, L.P., NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:KALA PHARMACEUTICALS, INC.;REEL/FRAME:025414/0032 Effective date: 20101026 Owner name: POLARIS VENTURE PARTNERS ENTREPRENEURS' FUND V, L. Free format text: SECURITY AGREEMENT;ASSIGNOR:KALA PHARMACEUTICALS, INC.;REEL/FRAME:025414/0032 Effective date: 20101026 Owner name: POLARIS VENTURE PARTNERS FOUNDERS' FUND V, L.P., M Free format text: SECURITY AGREEMENT;ASSIGNOR:KALA PHARMACEUTICALS, INC.;REEL/FRAME:025414/0032 Effective date: 20101026 Owner name: POLARIS VENTURE PARTNERS SPECIAL FOUNDERS' FUND V, Free format text: SECURITY AGREEMENT;ASSIGNOR:KALA PHARMACEUTICALS, INC.;REEL/FRAME:025414/0032 Effective date: 20101026 |
|
AS | Assignment |
Owner name: LIGHTHOUSE CAPITAL PARTNERS VI, L.P., CALIFORNIA Free format text: SECURITY AGREEMENT;ASSIGNOR:KALA PHARMACEUTICALS, INC.;REEL/FRAME:026611/0985 Effective date: 20110718 |
|
AS | Assignment |
Owner name: KALA PHARMACEUTICALS, INC., MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:LUX VENTURES II, L.P.;LUX VENTURES II SIDECAR, L.P.;THIRD ROCK VENTURES, L.P.;AND OTHERS;REEL/FRAME:027850/0171 Effective date: 20120229 Owner name: KALA PHARMACEUTICALS, INC., MASSACHUSETTS Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:LIGHTHOUSE CAPTIAL PARTNERS VI, L.P.;REEL/FRAME:027850/0340 Effective date: 20120307 |
|
AS | Assignment |
Owner name: KALA PHARMACEUTICALS, INC., MASSACHUSETTS Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF THE ASSIGNOR PREVIOUSLY RECORDED ON REEL 027850 FRAME 0340. ASSIGNOR(S) HEREBY CONFIRMS THE CORRECT NAME OF THE ASSIGNOR IS LIGHTHOUSE CAPITAL PARTNERS VI, L.P;ASSIGNOR:LIGHTHOUSE CAPITAL PARTNERS VI, L.P.;REEL/FRAME:027870/0777 Effective date: 20120307 |
|
AS | Assignment |
Owner name: KALA PHARMACEUTICALS, INC., MASSACHUSETTS Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNORS:HANES, JUSTIN;FU, JIE;SIGNING DATES FROM 20100309 TO 20100310;REEL/FRAME:029013/0893 Owner name: FU, JIE, MARYLAND Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:THE JOHNS HOPKINS UNIVERSITY;REEL/FRAME:029013/0882 Effective date: 20120828 Owner name: THE JOHNS HOPKINS UNIVERSITY, MARYLAND Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNORS:HANES, JUSTIN;FU, JIE;REEL/FRAME:029013/0866 Effective date: 20100409 Owner name: HANES, JUSTIN, MARYLAND Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:THE JOHNS HOPKINS UNIVERSITY;REEL/FRAME:029013/0882 Effective date: 20120828 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: ATHYRIUM OPPORTUNITIES III ACQUISITION LP, NEW YORK Free format text: SECURITY INTEREST;ASSIGNOR:KALA PHARMACEUTICALS, INC.;REEL/FRAME:047172/0481 Effective date: 20181001 Owner name: ATHYRIUM OPPORTUNITIES III ACQUISITION LP, NEW YOR Free format text: SECURITY INTEREST;ASSIGNOR:KALA PHARMACEUTICALS, INC.;REEL/FRAME:047172/0481 Effective date: 20181001 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: KALA PHARMACEUTICALS, INC, MASSACHUSETTS Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS AT REEL AND FRAME: 047602 / 0480 & 047172 / 0481;ASSIGNOR:ATHYRIUM OPPORTUNITIES III ACQUISITION LP;REEL/FRAME:056151/0092 Effective date: 20210504 |
|
AS | Assignment |
Owner name: OXFORD FINANCE LLC, VIRGINIA Free format text: SECURITY INTEREST;ASSIGNOR:KALA PHARMACEUTICALS, INC.;REEL/FRAME:056168/0602 Effective date: 20210504 |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |