US20060210710A1 - Processes for manufacturing polymeric microspheres - Google Patents
Processes for manufacturing polymeric microspheres Download PDFInfo
- Publication number
- US20060210710A1 US20060210710A1 US11/439,680 US43968006A US2006210710A1 US 20060210710 A1 US20060210710 A1 US 20060210710A1 US 43968006 A US43968006 A US 43968006A US 2006210710 A1 US2006210710 A1 US 2006210710A1
- Authority
- US
- United States
- Prior art keywords
- polymer
- particle
- beads
- microns
- template
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/24—Crosslinking, e.g. vulcanising, of macromolecules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0004—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse
- A61F2/0031—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra
- A61F2/0036—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra implantable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/04—X-ray contrast preparations
- A61K49/0433—X-ray contrast preparations containing an organic halogenated X-ray contrast-enhancing agent
- A61K49/0447—Physical forms of mixtures of two different X-ray contrast-enhancing agents, containing at least one X-ray contrast-enhancing agent which is a halogenated organic compound
- A61K49/0452—Solutions, e.g. for injection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1635—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0036—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
- A61L24/06—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/16—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/048—Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/16—Auxiliary treatment of granules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/12—Powdering or granulating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/36—Materials or treatment for tissue regeneration for embolization or occlusion, e.g. vaso-occlusive compositions or devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
- B29B2009/125—Micropellets, microgranules, microparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/16—Auxiliary treatment of granules
- B29B2009/166—Deforming granules to give a special form, e.g. spheroidizing, rounding
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2329/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
- C08J2329/02—Homopolymers or copolymers of unsaturated alcohols
- C08J2329/04—Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2984—Microcapsule with fluid core [includes liposome]
- Y10T428/2985—Solid-walled microcapsule from synthetic polymer
Definitions
- This invention generally relates to polymeric microspheres and processes of manufacturing polymeric microspheres.
- Microparticles, microcapsules and microspheres have important applications in the medical, pharmaceutical, agricultural, textile and cosmetics industries as delivery vehicles, cell culture substrates or as embolization agents.
- Polymeric microspheres i.e., microspheres formed (at least in part) from a crosslinkable polymer
- They may be employed, for example, as drug delivery agents, tissue bulking agents, tissue engineering agents, and embolization agents. Accordingly, there are numerous methods directed toward preparing polymeric microspheres. These methods include dispersion polymerization of the monomer, potentiometric dispersion of a dissolved crosslinkable polymer within an emulsifying solution followed by solvent evaporation, electrostatically controlled extrusion, and injection of a dissolved crosslinkable polymer into an emulsifying solution through a porous membrane followed by solvent evaporation.
- Additional methods include vibratory excitation of a laminar jet of monomeric material flowing in a continuous liquid medium containing a suitable suspending agent, irradiation of slowly thawing frozen monomer drops, and continuous injection of a dissolved crosslinkable polymer into a flowing non-solvent through a needle oriented in parallel to the direction of flow of the non-solvent.
- the present invention facilitates production of small, uniformly sized polymeric microspheres in a manner not limited, in terms of obtainable size range, by the viscosity or density of the structural polymer.
- a process of the invention includes generating spherical beads or particles of a desired or predetermined size from a suitable template polymer, contacting the beads or particles with a structural polymer, such as polyvinyl alcohol, and crosslinking the structural polymer into the beads or particles.
- a structural polymer such as polyvinyl alcohol
- the template polymeric material may subsequently be removed, resulting in polymeric microspheres.
- template polymer refers to a soluble polymer that is used to create temporary particle forms (i.e., beads), which may be porous or non-porous depending on the template polymer that is selected.
- a “structural” polymer invades or surrounds the temporary form and, following crosslinking, creates the permanent structure of the particle.
- Structural polymers are generally chemically crosslinkable, i.e., crosslink through the formation of covalent bonds. Chemically crosslinkable polymers may be crosslinked through, for example, photoinitiation or other application of actinic radiation, by exposure to a chemical crosslinking agent or thermal energy or through freeze-thaw cycles.
- a process of the invention includes generating spherical beads of a desired size from a starting material including a porous template polymer and a solvent; diffusing the structural polymer into the beads; and crosslinking at least the structural polymer.
- the solidified template polymer may exhibit a porosity gradient, from the outside to the inside of the beads, which determines the manner and extent to which the structural polymer diffuses into the beads.
- the template may have homogeneous porosity.
- the template polymer is subsequently removed, leaving behind a microsphere composed of only the structural polymer. In this way, the process of the invention overcomes the problem associated with generation of smaller-sized polymeric microspheres from viscous polymer solutions, by starting with particles of a desired size and subsequently contacting the particles with a structural polymer.
- spherical beads of a desired size are generated from starting material including a template polymer and a crosslinking agent.
- the structural polymer is diffused into the beads.
- the inclusion of a crosslinking agent in the starting material causes the structural polymer to crosslink into the beads upon contact therewith.
- the template polymer is subsequently removed, resulting in the formation of polymeric microspheres.
- a process of the invention includes generating spherical particles or beads of a desired predetermined size from a starting material including a generally non-porous template polymer, such as methyacrylate, and contacting the beads with a structural polymer.
- the template polymer in this case should not dissolve in the carrier of the structural polymer.
- the latter polymer is subsequently crosslinked and the template polymeric material is removed, leaving behind intact hollow polymeric spherical particles.
- the beads are coated on the outside surface with a generally uniform layer of the structural polymer, as opposed to the structural polymer diffusing within the beads.
- the beads can be either soaked in a solution containing the structural polymer, or the structural polymer can be sprayed or otherwise applied onto the outer surfaces of the beads.
- the structural polymer can be crosslinked, whether diffused within or applied onto the outer surface of the particles or beads, by a chemical crosslinking agent such as formaldehyde or glutaraldehyde, or by exposure to actinic or thermal energy.
- the size of the beads can be determined or influenced by passing the mixture including a template polymer through a droplet generator with a nozzle adapted to generate droplets of a predetermined size, and subsequently depositing the droplets into a gelling solution to solidify the droplets, resulting in spherical beads.
- the size distribution of the beads can be improved by sieving.
- a generally non-porous template polymer such as methacrylate, can be used for generation of beads using spheronization technology known in the art.
- a desired size for the resulting polymeric microspheres is in the range 1-50 microns diameter.
- Other desirable size ranges for the polymeric microspheres include microspheres in the size range 50-100 microns diameter, microspheres in the size range 100-600 microns diameter and microspheres in the size range 600-1000 microns diameter.
- FIG. 1 is an illustrative flow diagram depicting the basic steps involved in a process of the invention.
- FIG. 2 is an illustrative flow diagram representing the steps involved in a process of the invention, where the contacting step is carried out by either diffusion or coating.
- the methods of the invention facilitate the generation of polymeric microspheres of size ranges smaller than 600 microns diameter by forming template beads or particles of a predetermined size and subsequently contacting the beads with a structural polymer.
- Polymeric microspheres of size ranges smaller than 600 microns can be generated by diffusing a structural polymer, such as polyvinyl alcohol, within spherical beads of a predetermined size made from a starting material including a template polymer such as alginate, chitosan, etc. Diffusion of the structural polymer into the beads can be achieved by, for example, soaking the beads in a solution of the structural polymer.
- the porous nature of the beads favors the diffusion of the polymer into the beads.
- this process may be carried out under conditions that enhance diffusion, e.g., the addition of a surfactant, elevated temperature and/or pressure.
- Polymeric microspheres of size ranges smaller than 600 microns diameter can also be generated by coating the outer surface of prefabricated beads or particles made from a template polymer, such as methacrylate, with a structural polymer.
- the beads are generally non-porous in morphology and receive a substantially even coating of the structural polymer either by, for example, soaking the beads in a solution or suspension of a structural polymer or by spraying the outer surface of the beads with such a solution or suspension.
- FIG. 1 shows a flow chart 100 illustrating the basic steps involved in a process of the invention.
- the prefabrication or generation step 102 includes formation of spherical beads or particles of a predetermined size from a starting material containing a template polymer.
- the starting material includes a template polymer and a solvent.
- the role of the template polymer is to act as a removable carrier to encapsulate or support the structural polymer, which is introduced in a subsequent step.
- the template polymer will be soluble in a solvent that does not attack the crosslinked structural polymer, and may be, for example, an ionically crosslinkable material. Omission of the structural polymer at this stage enables the formation of uniformly sized spherical beads of small size ranges, preferably smaller than 600 microns diameter.
- Suitable porous template polymers include, for example, alginates, polysaccharides, carrageenans, chitosan, hyaluronic acid, or other ionically crosslinkable polymers (also known as “shape-forming agents”), such as the classes of carboxylic-, sulfate-, or amine-functionalized polymers.
- the template polymer can also be generated from a blend of one or more of the above synthetic or naturally occurring materials, or derivatives thereof.
- the template polymer is an alginate, which is ionically crosslinkable.
- the solvent utilized in a process of the invention is chosen based on several considerations. Firstly, the solvent should be easily removable by evaporation, and should therefore have a relatively low boiling point. The solvent should be capable of dissolving the starting material without interfering with the structural polymer crosslinking. Absence of any environmental contaminants and ease of disposal are also worthwhile criteria in the selection of the solvent. Deionized water and saline solution are preferred as solvents; however, solvents can also be selected from polar and nonpolar laboratory solvents, such as, for example, acetone, methane and ethanol (which are polar), or hexane and benzene (nonpolar).
- the generation step 102 is followed by the contacting step 104 , which involves contacting the prefabricated spherical beads or particles with a structural polymer.
- the crosslinking step 106 involves crosslinking the structural polymer into the beads or particles.
- the last step 108 involves the removal of the template polymer from the beads, resulting in the formation of polymeric microspheres. The template polymer is removed by soaking the beads in a suitable solvent.
- the structural polymer utilized in the contacting step 104 can be selected from a wide variety of generally chemically crosslinkable polymers such as, for example, vinyl polymers, polyacrylamides, polyethylene glycol, polyamides, polyureas, polyurethranes, polyvinyl alcohols, and derivatives thereof.
- a hydrophilic polymer such as polyvinyl alcohol, will be preferred.
- the structural polymer is subsequently crosslinked in step 106 by a crosslinking agent.
- the crosslinking agent can be a chemical agent such as, for example, formaldehyde or glutaraldehyde, or the like thereof.
- the structural polymer can also be crosslinked by application of photoinitiation, an ionic agent or actinic radiation such as, for example, ultraviolet or gamma radiation, or an electron beam.
- the porosity of the outer polymeric shell can be controlled by the addition to the polymeric solution of a filler agent, such as starch, that is not crosslinked in the crosslinking step and can be removed easily by rinsing the beads.
- a filler agent such as starch
- the size of the polymeric particles depends on the method used for generating the spherical beads. Several techniques can be utilized for the generation of spherical particles or beads from a suitable starting material.
- a droplet generator can produce spherical droplets of a predetermined diameter by forcing a jet stream of a solution containing a template polymer and a solvent through a nozzle, which is subjected to a periodic disturbance to break up the laminar jet stream into droplets. This may involve the use of a nozzle having, for example, an electrostatic or piezoelectric element.
- the size of the droplets depends on the frequency at which the element is driven.
- the uniformly sized droplets fall into a solution containing a positively or a negatively charged agent, such as calcium or barium, or a charged polymer, such as polyacrylic acid, resulting in the conversion of the liquid droplets into solid beads.
- Ca 2+ is a strong gelling ion, so a high concentration of, for example, CaCl 2 will create an inwardly moving gelling zone as the droplet solidifies. This creates a high porosity gradient, with the solidified particle exhibiting a smooth exterior with minimal porosity (e.g., microporous with an average pore size of 10 microns or less) and increasing porosity (e.g., up to about 50 microns) at the particle core.
- minimal porosity e.g., microporous with an average pore size of 10 microns or less
- porosity e.g., up to about 50 microns
- non-gelling ions e.g., Na + in the form of NaCl
- the porosity of the particle affects the distribution of the structural polymer.
- a higher porosity gradient will result in concentration of the structural polymer on the surface of the particle and, following removal of the template polymer, a relatively hollow sphere.
- a lower porosity gradient by contrast, will result in a more even distribution of the structural polymer throughout the particle, and a more densely crosslinked finished sphere.
- beads are generated from a mixture of a template polymer and a crosslinking agent, such as formaldehyde or glutaraldehyde.
- a crosslinking agent such as formaldehyde or glutaraldehyde.
- the beads are contacted with a structural polymer and the template polymer is subsequently removed, resulting in the formation of polymeric spherical particles.
- FIG. 2 shows a flow chart 200 illustrating the various steps in particular embodiments of the invention, where the contacting step 104 includes diffusion 202 or coating 204 .
- the contacting step employing diffusion 202 is based on diffusing the structural polymer into the prefabricated beads, generated from a starting material including a template polymer and a solvent. Diffusion can be achieved by, for example, soaking the beads in a solution of the structural polymer.
- the contacting step employing coating 204 is based on application of a uniform layer of the structural polymer on the outer surface of the beads.
- the structural polymer can be applied by, for example, spraying the polymer on the surfaces of prefabricated beads made from a generally non-porous template polymer, such as methyacrylate, or soaking such beads in a solution of a structural polymer.
- An even spray-coating of the microspheres can be achieved by, for example, suspending the beads in air while spraying.
- the structural polymer is crosslinked into the beads in step 106 .
- the template polymer which generally comprises a porous polymer in the diffusion embodiment 202 , and a non-porous polymer in the coating embodiment 204 , is subsequently removed in step 108 .
- the end product is microspheres of a desired predetermined size and composed of the structural polymer.
- Ionically crosslinkable materials such as, for example, shape-forming agents are dissolved using suitable solvents, such as a solution of sodium hexametaphosphate or ethylene diamine tetraacetic acid (EDTA), that leave the structural polymer intact, thereby resulting in polymeric microspheres.
- suitable solvents such as a solution of sodium hexametaphosphate or ethylene diamine tetraacetic acid (EDTA), that leave the structural polymer intact, thereby resulting in polymeric microspheres.
- EDTA ethylene diamine tetraacetic acid
- the methyacrylate in the coating embodiment 204 can
- porous particles Formation of porous particles is discussed above. To form non-porous beads of suitably small diameter, techniques such as spheronization may be used. Ultimately, the size of the hollow polymeric microspheres can be controlled by the size of the preformed beads and the thickness of the polymeric layer.
- Spheronization techniques which are well-characterized in the art, generate beads that have low surface to volume ratios and smooth surfaces, to allow for the application of uniform layer of the structural polymer.
- a device called a spheronizer comprises a rotating frictional plate enclosed within a hollow cylinder with a slim clearance between the edges of the rotating base plate and the cylinder wall.
- Spheronization typically begins with damp extruded particles, such as particles generated by grinding an agglomerated mass of a soluble polymer, such as methacrylate. The extruded particles are broken into uniform lengths and gradually transformed into spherical shapes while rotating on the base plate of the spheronizer. The resulting spherical beads have low surface to volume ratios and smooth surfaces to achieve even coating of the structural polymer on the surfaces thereof.
- the beads are ice crystals.
- the ice crystals are removed simply by exposing the microspheres to elevated temperatures.
- aqueous solution of 2% sodium alginate was infused through a droplet generator directly into a 2% CaCl 2 bath.
- the parameters used for the droplet generator were a nozzle 300 microns in diameter; a flow rate of 10 ml/min; and a frequency of 260 Hz.
- the CaCl 2 solution was decanted and the resulting calcium alginate beads were soaked overnight in an 8% polyvinyl alcohol (PVA) aqueous solution accompanied by slow stirring.
- PVA-infused beads were subsequently recovered using a sieve and crosslinked by soaking the beads in a mixture of 3% formaldehyde/20% sulfuric acid at 60° C. for 20 minutes.
- the alginate was removed from the beads by soaking the beads in 5% sodium hexametaphosphate for 1 hour, resulting in PVA microspheres of 600 microns diameter.
- a solution of 2% alginate was injected through a droplet generator using a nozzle of 200 micron diameter; a frequency of 660 Hz; and a flow rate of 5 ml/min.
- the droplets were slowly stirred into a solution of 2% CaCl 2 solution.
- the resultant calcium alginate beads were soaked overnight in an 8% polyvinyl alcohol solution, sieved and recovered.
- the polyvinyl alcohol was crosslinked by soaking the beads in a solution of 4% formaldehyde/20% sulfuric acid at 60° C. for 25 minutes.
- the alginate was removed by soaking the beads in a 5% sodium hexametaphosphate solution at room temperature, resulting in PVA microspheres of 400 microns diameter.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Surgery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Dermatology (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Mechanical Engineering (AREA)
- Pharmacology & Pharmacy (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing Of Micro-Capsules (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Medicinal Preparation (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
- This invention generally relates to polymeric microspheres and processes of manufacturing polymeric microspheres.
- Microparticles, microcapsules and microspheres have important applications in the medical, pharmaceutical, agricultural, textile and cosmetics industries as delivery vehicles, cell culture substrates or as embolization agents.
- Polymeric microspheres, i.e., microspheres formed (at least in part) from a crosslinkable polymer, have found a variety of uses in the medical and industrial areas. They may be employed, for example, as drug delivery agents, tissue bulking agents, tissue engineering agents, and embolization agents. Accordingly, there are numerous methods directed toward preparing polymeric microspheres. These methods include dispersion polymerization of the monomer, potentiometric dispersion of a dissolved crosslinkable polymer within an emulsifying solution followed by solvent evaporation, electrostatically controlled extrusion, and injection of a dissolved crosslinkable polymer into an emulsifying solution through a porous membrane followed by solvent evaporation.
- Additional methods include vibratory excitation of a laminar jet of monomeric material flowing in a continuous liquid medium containing a suitable suspending agent, irradiation of slowly thawing frozen monomer drops, and continuous injection of a dissolved crosslinkable polymer into a flowing non-solvent through a needle oriented in parallel to the direction of flow of the non-solvent.
- These methods known in the art have shortcomings that may curtail the formation of uniformly sized microspheres of small diameter ranges (e.g., in the range of 100-600 microns) for various applications, particularly when the base material has a high viscosity.
- The present invention facilitates production of small, uniformly sized polymeric microspheres in a manner not limited, in terms of obtainable size range, by the viscosity or density of the structural polymer.
- In one aspect, a process of the invention includes generating spherical beads or particles of a desired or predetermined size from a suitable template polymer, contacting the beads or particles with a structural polymer, such as polyvinyl alcohol, and crosslinking the structural polymer into the beads or particles. The template polymeric material may subsequently be removed, resulting in polymeric microspheres.
- As used herein, the term “template” polymer refers to a soluble polymer that is used to create temporary particle forms (i.e., beads), which may be porous or non-porous depending on the template polymer that is selected. A “structural” polymer invades or surrounds the temporary form and, following crosslinking, creates the permanent structure of the particle. Structural polymers are generally chemically crosslinkable, i.e., crosslink through the formation of covalent bonds. Chemically crosslinkable polymers may be crosslinked through, for example, photoinitiation or other application of actinic radiation, by exposure to a chemical crosslinking agent or thermal energy or through freeze-thaw cycles.
- In a preferred embodiment, a process of the invention includes generating spherical beads of a desired size from a starting material including a porous template polymer and a solvent; diffusing the structural polymer into the beads; and crosslinking at least the structural polymer. The solidified template polymer may exhibit a porosity gradient, from the outside to the inside of the beads, which determines the manner and extent to which the structural polymer diffuses into the beads. Alternatively, the template may have homogeneous porosity. The template polymer is subsequently removed, leaving behind a microsphere composed of only the structural polymer. In this way, the process of the invention overcomes the problem associated with generation of smaller-sized polymeric microspheres from viscous polymer solutions, by starting with particles of a desired size and subsequently contacting the particles with a structural polymer.
- In an alternative embodiment of the diffusion method, spherical beads of a desired size are generated from starting material including a template polymer and a crosslinking agent. The structural polymer is diffused into the beads. The inclusion of a crosslinking agent in the starting material causes the structural polymer to crosslink into the beads upon contact therewith. The template polymer is subsequently removed, resulting in the formation of polymeric microspheres.
- In another preferred embodiment, a process of the invention includes generating spherical particles or beads of a desired predetermined size from a starting material including a generally non-porous template polymer, such as methyacrylate, and contacting the beads with a structural polymer. To prevent premature damage to the beads, the template polymer in this case should not dissolve in the carrier of the structural polymer. The latter polymer is subsequently crosslinked and the template polymeric material is removed, leaving behind intact hollow polymeric spherical particles. In this embodiment the beads are coated on the outside surface with a generally uniform layer of the structural polymer, as opposed to the structural polymer diffusing within the beads. The beads can be either soaked in a solution containing the structural polymer, or the structural polymer can be sprayed or otherwise applied onto the outer surfaces of the beads. The structural polymer can be crosslinked, whether diffused within or applied onto the outer surface of the particles or beads, by a chemical crosslinking agent such as formaldehyde or glutaraldehyde, or by exposure to actinic or thermal energy.
- The size of the beads can be determined or influenced by passing the mixture including a template polymer through a droplet generator with a nozzle adapted to generate droplets of a predetermined size, and subsequently depositing the droplets into a gelling solution to solidify the droplets, resulting in spherical beads. The size distribution of the beads can be improved by sieving.
- Alternatively, a generally non-porous template polymer, such as methacrylate, can be used for generation of beads using spheronization technology known in the art.
- In a preferred embodiment of the invention, a desired size for the resulting polymeric microspheres is in the range 1-50 microns diameter. Other desirable size ranges for the polymeric microspheres include microspheres in the size range 50-100 microns diameter, microspheres in the size range 100-600 microns diameter and microspheres in the size range 600-1000 microns diameter.
- The foregoing and other objects, aspects, features and advantages of the invention will become more apparent from the following description and from the claims.
- The foregoing and other objects of the invention and the various features thereof may be more fully understood from the following description when read together with the accompanying illustrative flowcharts in which like reference characters generally refer to the same parts throughout the different illustrations.
-
FIG. 1 is an illustrative flow diagram depicting the basic steps involved in a process of the invention. -
FIG. 2 is an illustrative flow diagram representing the steps involved in a process of the invention, where the contacting step is carried out by either diffusion or coating. - The methods of the invention facilitate the generation of polymeric microspheres of size ranges smaller than 600 microns diameter by forming template beads or particles of a predetermined size and subsequently contacting the beads with a structural polymer. Polymeric microspheres of size ranges smaller than 600 microns can be generated by diffusing a structural polymer, such as polyvinyl alcohol, within spherical beads of a predetermined size made from a starting material including a template polymer such as alginate, chitosan, etc. Diffusion of the structural polymer into the beads can be achieved by, for example, soaking the beads in a solution of the structural polymer. The porous nature of the beads favors the diffusion of the polymer into the beads. Alternatively, this process may be carried out under conditions that enhance diffusion, e.g., the addition of a surfactant, elevated temperature and/or pressure.
- Polymeric microspheres of size ranges smaller than 600 microns diameter can also be generated by coating the outer surface of prefabricated beads or particles made from a template polymer, such as methacrylate, with a structural polymer. In this case, the beads are generally non-porous in morphology and receive a substantially even coating of the structural polymer either by, for example, soaking the beads in a solution or suspension of a structural polymer or by spraying the outer surface of the beads with such a solution or suspension.
-
FIG. 1 shows aflow chart 100 illustrating the basic steps involved in a process of the invention. The prefabrication orgeneration step 102 includes formation of spherical beads or particles of a predetermined size from a starting material containing a template polymer. In one embodiment, the starting material includes a template polymer and a solvent. - In general, the role of the template polymer is to act as a removable carrier to encapsulate or support the structural polymer, which is introduced in a subsequent step. Accordingly, the template polymer will be soluble in a solvent that does not attack the crosslinked structural polymer, and may be, for example, an ionically crosslinkable material. Omission of the structural polymer at this stage enables the formation of uniformly sized spherical beads of small size ranges, preferably smaller than 600 microns diameter.
- Suitable porous template polymers include, for example, alginates, polysaccharides, carrageenans, chitosan, hyaluronic acid, or other ionically crosslinkable polymers (also known as “shape-forming agents”), such as the classes of carboxylic-, sulfate-, or amine-functionalized polymers. The template polymer can also be generated from a blend of one or more of the above synthetic or naturally occurring materials, or derivatives thereof. In one preferred embodiment of the invention, the template polymer is an alginate, which is ionically crosslinkable.
- The solvent utilized in a process of the invention is chosen based on several considerations. Firstly, the solvent should be easily removable by evaporation, and should therefore have a relatively low boiling point. The solvent should be capable of dissolving the starting material without interfering with the structural polymer crosslinking. Absence of any environmental contaminants and ease of disposal are also worthwhile criteria in the selection of the solvent. Deionized water and saline solution are preferred as solvents; however, solvents can also be selected from polar and nonpolar laboratory solvents, such as, for example, acetone, methane and ethanol (which are polar), or hexane and benzene (nonpolar).
- The
generation step 102 is followed by the contactingstep 104, which involves contacting the prefabricated spherical beads or particles with a structural polymer. Thecrosslinking step 106 involves crosslinking the structural polymer into the beads or particles. Thelast step 108, involves the removal of the template polymer from the beads, resulting in the formation of polymeric microspheres. The template polymer is removed by soaking the beads in a suitable solvent. - The structural polymer utilized in the contacting
step 104 can be selected from a wide variety of generally chemically crosslinkable polymers such as, for example, vinyl polymers, polyacrylamides, polyethylene glycol, polyamides, polyureas, polyurethranes, polyvinyl alcohols, and derivatives thereof. For some (e.g., embolic) applications, a hydrophilic polymer, such as polyvinyl alcohol, will be preferred. - The structural polymer is subsequently crosslinked in
step 106 by a crosslinking agent. The crosslinking agent can be a chemical agent such as, for example, formaldehyde or glutaraldehyde, or the like thereof. The structural polymer can also be crosslinked by application of photoinitiation, an ionic agent or actinic radiation such as, for example, ultraviolet or gamma radiation, or an electron beam. - The porosity of the outer polymeric shell can be controlled by the addition to the polymeric solution of a filler agent, such as starch, that is not crosslinked in the crosslinking step and can be removed easily by rinsing the beads.
- The size of the polymeric particles depends on the method used for generating the spherical beads. Several techniques can be utilized for the generation of spherical particles or beads from a suitable starting material. A droplet generator can produce spherical droplets of a predetermined diameter by forcing a jet stream of a solution containing a template polymer and a solvent through a nozzle, which is subjected to a periodic disturbance to break up the laminar jet stream into droplets. This may involve the use of a nozzle having, for example, an electrostatic or piezoelectric element. The size of the droplets depends on the frequency at which the element is driven. The uniformly sized droplets fall into a solution containing a positively or a negatively charged agent, such as calcium or barium, or a charged polymer, such as polyacrylic acid, resulting in the conversion of the liquid droplets into solid beads.
- The manner in which liquid droplets are solidified affects the properties of the particles. Ca2+, for example, is a strong gelling ion, so a high concentration of, for example, CaCl2 will create an inwardly moving gelling zone as the droplet solidifies. This creates a high porosity gradient, with the solidified particle exhibiting a smooth exterior with minimal porosity (e.g., microporous with an average pore size of 10 microns or less) and increasing porosity (e.g., up to about 50 microns) at the particle core. By adding non-gelling ions (e.g., Na+ in the form of NaCl) to the solution in order to compete with the gelling ions, it is possible to limit the porosity gradient, resulting in a more uniform intermediate porosity throughout the particle. The porosity of the particle, in turn, affects the distribution of the structural polymer. A higher porosity gradient will result in concentration of the structural polymer on the surface of the particle and, following removal of the template polymer, a relatively hollow sphere. A lower porosity gradient, by contrast, will result in a more even distribution of the structural polymer throughout the particle, and a more densely crosslinked finished sphere.
- In an alternative embodiment, beads are generated from a mixture of a template polymer and a crosslinking agent, such as formaldehyde or glutaraldehyde. The beads are contacted with a structural polymer and the template polymer is subsequently removed, resulting in the formation of polymeric spherical particles. Thus, by inclusion of a crosslinking agent in the starting material for generating the beads, this embodiment eliminates the need for a
discrete crosslinking step 106. -
FIG. 2 shows aflow chart 200 illustrating the various steps in particular embodiments of the invention, where the contactingstep 104 includesdiffusion 202 orcoating 204. The contactingstep employing diffusion 202 is based on diffusing the structural polymer into the prefabricated beads, generated from a starting material including a template polymer and a solvent. Diffusion can be achieved by, for example, soaking the beads in a solution of the structural polymer. - The contacting
step employing coating 204 is based on application of a uniform layer of the structural polymer on the outer surface of the beads. The structural polymer can be applied by, for example, spraying the polymer on the surfaces of prefabricated beads made from a generally non-porous template polymer, such as methyacrylate, or soaking such beads in a solution of a structural polymer. An even spray-coating of the microspheres can be achieved by, for example, suspending the beads in air while spraying. - The structural polymer is crosslinked into the beads in
step 106. The template polymer, which generally comprises a porous polymer in thediffusion embodiment 202, and a non-porous polymer in thecoating embodiment 204, is subsequently removed instep 108. The end product is microspheres of a desired predetermined size and composed of the structural polymer. Ionically crosslinkable materials, such as, for example, shape-forming agents are dissolved using suitable solvents, such as a solution of sodium hexametaphosphate or ethylene diamine tetraacetic acid (EDTA), that leave the structural polymer intact, thereby resulting in polymeric microspheres. The methyacrylate in thecoating embodiment 204 can be removed by soaking the beads in acetone or another solvent that removes the methacrylate without dissolving the outer polymeric shell, resulting in hollow polymeric spheres. - Formation of porous particles is discussed above. To form non-porous beads of suitably small diameter, techniques such as spheronization may be used. Ultimately, the size of the hollow polymeric microspheres can be controlled by the size of the preformed beads and the thickness of the polymeric layer.
- Spheronization techniques, which are well-characterized in the art, generate beads that have low surface to volume ratios and smooth surfaces, to allow for the application of uniform layer of the structural polymer. A device called a spheronizer comprises a rotating frictional plate enclosed within a hollow cylinder with a slim clearance between the edges of the rotating base plate and the cylinder wall. Spheronization typically begins with damp extruded particles, such as particles generated by grinding an agglomerated mass of a soluble polymer, such as methacrylate. The extruded particles are broken into uniform lengths and gradually transformed into spherical shapes while rotating on the base plate of the spheronizer. The resulting spherical beads have low surface to volume ratios and smooth surfaces to achieve even coating of the structural polymer on the surfaces thereof.
- In still another embodiment, the beads are ice crystals. The ice crystals are removed simply by exposing the microspheres to elevated temperatures.
- The invention is illustrated further by the following non-limiting examples.
- An aqueous solution of 2% sodium alginate was infused through a droplet generator directly into a 2% CaCl2 bath. The parameters used for the droplet generator were a nozzle 300 microns in diameter; a flow rate of 10 ml/min; and a frequency of 260 Hz. The CaCl2 solution was decanted and the resulting calcium alginate beads were soaked overnight in an 8% polyvinyl alcohol (PVA) aqueous solution accompanied by slow stirring. The PVA-infused beads were subsequently recovered using a sieve and crosslinked by soaking the beads in a mixture of 3% formaldehyde/20% sulfuric acid at 60° C. for 20 minutes. The alginate was removed from the beads by soaking the beads in 5% sodium hexametaphosphate for 1 hour, resulting in PVA microspheres of 600 microns diameter.
- The absence of non-gelling ions resulted in a heterogeneous distribution of the PVA within the particle, with a high concentration at the surface of the particle and a relatively low concentration at the center, resulting in a hollow microsphere.
- A solution of 2% alginate was injected through a droplet generator using a nozzle of 200 micron diameter; a frequency of 660 Hz; and a flow rate of 5 ml/min. The droplets were slowly stirred into a solution of 2% CaCl2 solution. The resultant calcium alginate beads were soaked overnight in an 8% polyvinyl alcohol solution, sieved and recovered. The polyvinyl alcohol was crosslinked by soaking the beads in a solution of 4% formaldehyde/20% sulfuric acid at 60° C. for 25 minutes. The alginate was removed by soaking the beads in a 5% sodium hexametaphosphate solution at room temperature, resulting in PVA microspheres of 400 microns diameter.
- The absence of non-gelling ions resulted in a heterogeneous distribution of the PVA within the particle, with a high concentration at the surface of the particle and a relatively low concentration at the center, resulting in a hollow microsphere.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/439,680 US20060210710A1 (en) | 2002-03-29 | 2006-05-24 | Processes for manufacturing polymeric microspheres |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/109,966 US7094369B2 (en) | 2002-03-29 | 2002-03-29 | Processes for manufacturing polymeric microspheres |
US11/439,680 US20060210710A1 (en) | 2002-03-29 | 2006-05-24 | Processes for manufacturing polymeric microspheres |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/109,966 Continuation US7094369B2 (en) | 2002-03-29 | 2002-03-29 | Processes for manufacturing polymeric microspheres |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060210710A1 true US20060210710A1 (en) | 2006-09-21 |
Family
ID=28453206
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/109,966 Expired - Lifetime US7094369B2 (en) | 2002-03-29 | 2002-03-29 | Processes for manufacturing polymeric microspheres |
US10/215,594 Expired - Fee Related US7588780B2 (en) | 2002-03-29 | 2002-08-09 | Embolization |
US11/439,680 Abandoned US20060210710A1 (en) | 2002-03-29 | 2006-05-24 | Processes for manufacturing polymeric microspheres |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/109,966 Expired - Lifetime US7094369B2 (en) | 2002-03-29 | 2002-03-29 | Processes for manufacturing polymeric microspheres |
US10/215,594 Expired - Fee Related US7588780B2 (en) | 2002-03-29 | 2002-08-09 | Embolization |
Country Status (7)
Country | Link |
---|---|
US (3) | US7094369B2 (en) |
EP (1) | EP1490032B1 (en) |
JP (1) | JP4533631B2 (en) |
AU (1) | AU2003222097A1 (en) |
CA (1) | CA2480631A1 (en) |
DE (1) | DE60308159T2 (en) |
WO (1) | WO2003082250A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7947368B2 (en) | 2005-12-21 | 2011-05-24 | Boston Scientific Scimed, Inc. | Block copolymer particles |
US8007509B2 (en) | 2005-10-12 | 2011-08-30 | Boston Scientific Scimed, Inc. | Coil assemblies, components and methods |
US8101197B2 (en) | 2005-12-19 | 2012-01-24 | Stryker Corporation | Forming coils |
US8152839B2 (en) | 2005-12-19 | 2012-04-10 | Boston Scientific Scimed, Inc. | Embolic coils |
US8414927B2 (en) | 2006-11-03 | 2013-04-09 | Boston Scientific Scimed, Inc. | Cross-linked polymer particles |
US9463426B2 (en) | 2005-06-24 | 2016-10-11 | Boston Scientific Scimed, Inc. | Methods and systems for coating particles |
WO2017223315A1 (en) * | 2016-06-22 | 2017-12-28 | Tufts University | Macroporous chitosan-polyacrylamide hydrogel microspheres and preparation thereof |
US11298678B2 (en) * | 2016-03-30 | 2022-04-12 | Trustees Of Tufts College | Fabrication of macroporous polymeric hydrogel microparticles |
Families Citing this family (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8088060B2 (en) | 2000-03-15 | 2012-01-03 | Orbusneich Medical, Inc. | Progenitor endothelial cell capturing with a drug eluting implantable medical device |
US8460367B2 (en) | 2000-03-15 | 2013-06-11 | Orbusneich Medical, Inc. | Progenitor endothelial cell capturing with a drug eluting implantable medical device |
US9522217B2 (en) | 2000-03-15 | 2016-12-20 | Orbusneich Medical, Inc. | Medical device with coating for capturing genetically-altered cells and methods for using same |
US20040266983A1 (en) * | 2000-08-17 | 2004-12-30 | Reeve Lorraine E | Purified polyoxyalkylene block copolymers |
US9080146B2 (en) | 2001-01-11 | 2015-07-14 | Celonova Biosciences, Inc. | Substrates containing polyphosphazene as matrices and substrates containing polyphosphazene with a micro-structured surface |
US7462366B2 (en) | 2002-03-29 | 2008-12-09 | Boston Scientific Scimed, Inc. | Drug delivery particle |
US7053134B2 (en) * | 2002-04-04 | 2006-05-30 | Scimed Life Systems, Inc. | Forming a chemically cross-linked particle of a desired shape and diameter |
AU2003240000A1 (en) | 2002-06-12 | 2003-12-31 | Boston Scientific Limited | Bulking agents |
US7842377B2 (en) * | 2003-08-08 | 2010-11-30 | Boston Scientific Scimed, Inc. | Porous polymeric particle comprising polyvinyl alcohol and having interior to surface porosity-gradient |
US7449236B2 (en) * | 2002-08-09 | 2008-11-11 | Boston Scientific Scimed, Inc. | Porous polymeric particle comprising polyvinyl alcohol and having interior to surface porosity-gradient |
US8012454B2 (en) | 2002-08-30 | 2011-09-06 | Boston Scientific Scimed, Inc. | Embolization |
US7883490B2 (en) | 2002-10-23 | 2011-02-08 | Boston Scientific Scimed, Inc. | Mixing and delivery of therapeutic compositions |
CA2519946C (en) * | 2003-03-24 | 2011-09-06 | Biosphere Medical, Inc. | Temporary embolization using inverse thermosensitive polymers |
EP1638615B1 (en) | 2003-05-08 | 2014-10-29 | Tepha, Inc. | Polyhydroxyalkanoate medical textiles and fibers |
US7976823B2 (en) | 2003-08-29 | 2011-07-12 | Boston Scientific Scimed, Inc. | Ferromagnetic particles and methods |
US7901770B2 (en) | 2003-11-04 | 2011-03-08 | Boston Scientific Scimed, Inc. | Embolic compositions |
US7700086B2 (en) * | 2003-11-06 | 2010-04-20 | Pluromed, Inc. | Internal clamp for surgical procedures |
US20050175709A1 (en) | 2003-12-11 | 2005-08-11 | Baty Ace M.Iii | Therapeutic microparticles |
US9238127B2 (en) | 2004-02-25 | 2016-01-19 | Femasys Inc. | Methods and devices for delivering to conduit |
US8048086B2 (en) | 2004-02-25 | 2011-11-01 | Femasys Inc. | Methods and devices for conduit occlusion |
US8052669B2 (en) | 2004-02-25 | 2011-11-08 | Femasys Inc. | Methods and devices for delivery of compositions to conduits |
US8048101B2 (en) | 2004-02-25 | 2011-11-01 | Femasys Inc. | Methods and devices for conduit occlusion |
US7736671B2 (en) | 2004-03-02 | 2010-06-15 | Boston Scientific Scimed, Inc. | Embolization |
US8173176B2 (en) | 2004-03-30 | 2012-05-08 | Boston Scientific Scimed, Inc. | Embolization |
JP4655505B2 (en) * | 2004-04-28 | 2011-03-23 | 東レ株式会社 | Crosslinked biodegradable particles and method for producing the same |
US7311861B2 (en) | 2004-06-01 | 2007-12-25 | Boston Scientific Scimed, Inc. | Embolization |
US7641825B2 (en) | 2004-08-03 | 2010-01-05 | Tepha, Inc. | Method of making a polyhydroxyalkanoate filament |
WO2006046155A2 (en) | 2004-10-25 | 2006-05-04 | Polyzenix Gmbh | Loadable polyphosphazene-comprising particles for therapeutic and/or diagnostic applications and methods of preparing and using the same |
US9114162B2 (en) | 2004-10-25 | 2015-08-25 | Celonova Biosciences, Inc. | Loadable polymeric particles for enhanced imaging in clinical applications and methods of preparing and using the same |
US20210299056A9 (en) | 2004-10-25 | 2021-09-30 | Varian Medical Systems, Inc. | Color-Coded Polymeric Particles of Predetermined Size for Therapeutic and/or Diagnostic Applications and Related Methods |
US9107850B2 (en) | 2004-10-25 | 2015-08-18 | Celonova Biosciences, Inc. | Color-coded and sized loadable polymeric particles for therapeutic and/or diagnostic applications and methods of preparing and using the same |
US7780645B2 (en) * | 2004-10-26 | 2010-08-24 | Codman & Shurtleff, Inc. | Method of delivering embolic particles to an aneurysm |
US8425550B2 (en) | 2004-12-01 | 2013-04-23 | Boston Scientific Scimed, Inc. | Embolic coils |
US20060177513A1 (en) * | 2005-01-28 | 2006-08-10 | Tepha, Inc. | Embolization using poly-4-hydroxybutyrate particles |
US7727555B2 (en) | 2005-03-02 | 2010-06-01 | Boston Scientific Scimed, Inc. | Particles |
US7858183B2 (en) | 2005-03-02 | 2010-12-28 | Boston Scientific Scimed, Inc. | Particles |
TWI344969B (en) * | 2005-04-08 | 2011-07-11 | Nat Defence University | Functional composite nanoparticles and their preparation |
US7963287B2 (en) | 2005-04-28 | 2011-06-21 | Boston Scientific Scimed, Inc. | Tissue-treatment methods |
US7387813B2 (en) * | 2005-07-07 | 2008-06-17 | Specialty Coating Systems, Inc. | Methods of preparation of hollow microstructures and nanostructures |
WO2007090127A2 (en) | 2006-01-30 | 2007-08-09 | Surgica Corporation | Compressible intravascular embolization particles and related methods and delivery systems |
US7749304B2 (en) * | 2006-01-30 | 2010-07-06 | General Electric Company | Method for storing hydrogen, and related articles and systems |
EP1986706B1 (en) * | 2006-01-30 | 2011-08-17 | Biosphere Medical, Inc. | Porous intravascular embolization particles and methods of making them |
WO2008014065A1 (en) * | 2006-07-27 | 2008-01-31 | Boston Scientific Limited | Particles |
US20100311638A1 (en) * | 2006-10-27 | 2010-12-09 | Paul Tiege | Method for Altering the Shape of Polymer Particles |
US7943683B2 (en) | 2006-12-01 | 2011-05-17 | Tepha, Inc. | Medical devices containing oriented films of poly-4-hydroxybutyrate and copolymers |
US20100143439A1 (en) * | 2007-04-16 | 2010-06-10 | University Of Toledo | Hybrid Biomimetic Particles, Methods of Making Same and Uses Therefor |
JP2010528990A (en) * | 2007-05-21 | 2010-08-26 | アクエア サイエンティフィック コーポレイション | Highly charged microcapsules |
US20090092675A1 (en) * | 2007-10-05 | 2009-04-09 | Boston Scientific Scimed, Inc. | Compositions containing multiple polymers and particles made using the compositions |
KR101518090B1 (en) * | 2007-11-09 | 2015-05-06 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Porous polymeric resins |
US20090130017A1 (en) * | 2007-11-19 | 2009-05-21 | Searete Llc | Targeted short-lived drug delivery |
US20090187254A1 (en) * | 2007-12-19 | 2009-07-23 | Boston Scientific Scimed, Inc. | Urological medical devices for release of urologically beneficial agents |
US10716573B2 (en) | 2008-05-01 | 2020-07-21 | Aneuclose | Janjua aneurysm net with a resilient neck-bridging portion for occluding a cerebral aneurysm |
US10028747B2 (en) | 2008-05-01 | 2018-07-24 | Aneuclose Llc | Coils with a series of proximally-and-distally-connected loops for occluding a cerebral aneurysm |
US9820746B2 (en) | 2008-07-28 | 2017-11-21 | Incube Laboratories LLC | System and method for scaffolding anastomoses |
US20100030313A1 (en) * | 2008-07-31 | 2010-02-04 | Boston Scientific Scimed, Inc. | Medical articles comprising biodegradable block copolymers |
US8246876B2 (en) * | 2008-08-18 | 2012-08-21 | Cook Medical Technologies Llc | Embolization particles and method for making same |
US10070888B2 (en) | 2008-10-03 | 2018-09-11 | Femasys, Inc. | Methods and devices for sonographic imaging |
US9554826B2 (en) | 2008-10-03 | 2017-01-31 | Femasys, Inc. | Contrast agent injection system for sonographic imaging |
JP2012507562A (en) * | 2008-10-30 | 2012-03-29 | ダビド リウ | Microspherical porous biocompatible scaffold and manufacturing method and apparatus thereof |
US20100131001A1 (en) * | 2008-11-24 | 2010-05-27 | Medtronic Vascular, Inc. | Targeted Drug Delivery for Aneurysm Treatment |
US20100131051A1 (en) * | 2008-11-24 | 2010-05-27 | Medtronic Vascular, Inc. | Systems and Methods for Treatment of Aneurysms Using Zinc Chelator(s) |
WO2010063630A2 (en) * | 2008-12-02 | 2010-06-10 | Biocompatibles Uk Limited | Pancreatic tumour treatment |
US9358140B1 (en) | 2009-11-18 | 2016-06-07 | Aneuclose Llc | Stent with outer member to embolize an aneurysm |
US8658214B2 (en) | 2010-09-29 | 2014-02-25 | Scion Cardio-Vascular, Inc. | Methods for processing microspheres |
US8877221B2 (en) | 2010-10-27 | 2014-11-04 | Warsaw Orthopedic, Inc. | Osteoconductive matrices comprising calcium phosphate particles and statins and methods of using the same |
US9107983B2 (en) | 2010-10-27 | 2015-08-18 | Warsaw Orthopedic, Inc. | Osteoconductive matrices comprising statins |
US8394647B2 (en) | 2011-02-17 | 2013-03-12 | Siemens Healthcare Diagnostics Inc. | Reducing non-covalently bound polysaccharide on supports |
WO2012170417A2 (en) | 2011-06-06 | 2012-12-13 | Warsaw Orthopedic, Inc. | Methods and compositions to enhance bone growth comprising a statin |
KR102340388B1 (en) | 2013-09-19 | 2021-12-17 | 마이크로벤션, 인코포레이티드 | Polymer films |
CN110279885B (en) | 2013-09-19 | 2022-07-26 | 泰尔茂株式会社 | Polymer particles |
JP6599323B2 (en) | 2013-11-08 | 2019-10-30 | テルモ株式会社 | Polymer particles |
US10045786B2 (en) * | 2013-12-20 | 2018-08-14 | Microvention, Inc. | Expansile member |
CA2958747C (en) | 2014-08-15 | 2022-08-16 | Tepha, Inc. | Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof |
CA2969429C (en) | 2014-12-11 | 2020-10-27 | Tepha, Inc. | Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof |
US10626521B2 (en) | 2014-12-11 | 2020-04-21 | Tepha, Inc. | Methods of manufacturing mesh sutures from poly-4-hydroxybutyrate and copolymers thereof |
WO2016154592A1 (en) | 2015-03-26 | 2016-09-29 | Microvention, Inc. | Embiolic particles |
EP3518994B1 (en) | 2016-09-28 | 2024-02-07 | Terumo Corporation | Polymer particles |
US10857020B2 (en) | 2017-09-14 | 2020-12-08 | Olympus Corporation | Gastrointestinal track constricting method |
CN108261561B (en) * | 2018-01-30 | 2021-04-23 | 杭州协合医疗用品有限公司 | Developable hyaluronic acid microsphere embolic agent as well as preparation method and application thereof |
US10561489B2 (en) | 2018-03-05 | 2020-02-18 | Olympus Corporation | Gastrointestinal-tract constricting method |
US10555801B2 (en) | 2018-03-05 | 2020-02-11 | Olympus Corporation | Gastrointestinal-tract constricting method |
US10918454B2 (en) | 2018-04-02 | 2021-02-16 | Olympus Corporation | Gastrointestinal tract constricting method |
US20210228766A1 (en) * | 2018-05-31 | 2021-07-29 | T-ACE Medical Co., Ltd. | Microsphere for embolization, preparation method thereof, and method for embolizing tumor using the same |
CN109517225B (en) * | 2018-11-26 | 2021-04-02 | 温州生物材料与工程研究所 | Hole-hole composite micro-nano structure polysaccharide microsphere and preparation method thereof |
CN110327300B (en) * | 2019-07-23 | 2020-08-07 | 赵修文 | Drug-loaded polyvinyl alcohol microspheres |
US11707351B2 (en) | 2019-08-19 | 2023-07-25 | Encompass Technologies, Inc. | Embolic protection and access system |
KR20210129346A (en) | 2020-04-20 | 2021-10-28 | 삼성전자주식회사 | Semiconductor device |
Citations (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2275154A (en) * | 1940-07-10 | 1942-03-03 | United Drug Company | Method for making capsules |
US4076640A (en) * | 1975-02-24 | 1978-02-28 | Xerox Corporation | Preparation of spheroidized particles |
US4191672A (en) * | 1976-10-25 | 1980-03-04 | Berger Jenson & Nicholson Ltd. | Polymer aggregates |
US4198318A (en) * | 1978-11-24 | 1980-04-15 | Conoco, Inc. | Production of high strength alumina spheres by hydrogelling corresponding slurries |
US4243794A (en) * | 1978-10-10 | 1981-01-06 | Minnesota Mining And Manufacturing Company | Mixture of rough and spheroidized resin particles |
US4246208A (en) * | 1979-03-22 | 1981-01-20 | Xerox Corporation | Dust-free plasma spheroidization |
US4427794A (en) * | 1980-08-22 | 1984-01-24 | Bayer Aktiengesellschaft | Process for the preparation of bead polymers of uniform particle size by polymerization of microencapsulated monomer |
US4429062A (en) * | 1980-02-18 | 1984-01-31 | Emil Pasztor | Pharmaceutically acceptable silicon rubber and therapeutical set and the use thereof for surgical embolization |
US4428869A (en) * | 1981-08-20 | 1984-01-31 | International Flavors & Fragrances Inc. | Cologne consisting of microcapsule suspension |
US4442843A (en) * | 1980-11-17 | 1984-04-17 | Schering, Ag | Microbubble precursors and methods for their production and use |
US4444961A (en) * | 1980-10-30 | 1984-04-24 | The Dow Chemical Company | Process and apparatus for preparing uniform size polymer beads |
US4492720A (en) * | 1983-11-15 | 1985-01-08 | Benjamin Mosier | Method of preparing microspheres for intravascular delivery |
US4573967A (en) * | 1983-12-06 | 1986-03-04 | Eli Lilly And Company | Vacuum vial infusion system |
US4640807A (en) * | 1984-08-02 | 1987-02-03 | Shell Oil Company | Process for the preparation of silica spheres |
US4657756A (en) * | 1980-11-17 | 1987-04-14 | Schering Aktiengesellschaft | Microbubble precursors and apparatus for their production and use |
US4661137A (en) * | 1984-06-21 | 1987-04-28 | Saint Gobain Vitrage | Process for producing glass microspheres |
US4795741A (en) * | 1987-05-06 | 1989-01-03 | Biomatrix, Inc. | Compositions for therapeutic percutaneous embolization and the use thereof |
US4801458A (en) * | 1985-06-24 | 1989-01-31 | Teijin Limited | Sustained release pharmaceutical plaster |
US4804366A (en) * | 1987-10-29 | 1989-02-14 | Baxter International Inc. | Cartridge and adapter for introducing a beneficial agent into an intravenous delivery system |
US4819637A (en) * | 1987-09-01 | 1989-04-11 | Interventional Therapeutics Corporation | System for artificial vessel embolization and devices for use therewith |
US4822535A (en) * | 1985-07-12 | 1989-04-18 | Norsk Hydro A.S. | Method for producing small, spherical polymer particles |
US4897255A (en) * | 1985-01-14 | 1990-01-30 | Neorx Corporation | Metal radionuclide labeled proteins for diagnosis and therapy |
US4981625A (en) * | 1988-03-14 | 1991-01-01 | California Institute Of Technology | Monodisperse, polymeric microspheres produced by irradiation of slowly thawing frozen drops |
US4990340A (en) * | 1986-01-22 | 1991-02-05 | Teijin Limited | Sustained release pharmaceutical preparation |
US4999188A (en) * | 1983-06-30 | 1991-03-12 | Solodovnik Valentin D | Methods for embolization of blood vessels |
US5007940A (en) * | 1989-06-09 | 1991-04-16 | American Medical Systems, Inc. | Injectable polymeric bodies |
US5011677A (en) * | 1984-11-19 | 1991-04-30 | The Curators Of The University Of Missouri | Radioactive glass microspheres |
US5079274A (en) * | 1989-03-15 | 1992-01-07 | The Dow Chemical Company | Process for preparing absorptive porous resin beads |
US5091205A (en) * | 1989-01-17 | 1992-02-25 | Union Carbide Chemicals & Plastics Technology Corporation | Hydrophilic lubricious coatings |
US5106903A (en) * | 1984-12-17 | 1992-04-21 | Lehigh University | Preparation of large particle size monodisperse latexes |
US5181921A (en) * | 1990-05-25 | 1993-01-26 | Kaken Co., Ltd. | Detachable balloon with two self-sealing valves |
US5190760A (en) * | 1989-07-08 | 1993-03-02 | Coopers Animal Health Limited | Solid pharmaceutical composition |
US5190766A (en) * | 1990-04-16 | 1993-03-02 | Ken Ishihara | Method of controlling drug release by resonant sound wave |
US5192301A (en) * | 1989-01-17 | 1993-03-09 | Nippon Zeon Co., Ltd. | Closing plug of a defect for medical use and a closing plug device utilizing it |
US5202352A (en) * | 1990-08-08 | 1993-04-13 | Takeda Chemical Industries, Ltd. | Intravascular embolizing agent containing angiogenesis-inhibiting substance |
US5292814A (en) * | 1987-04-29 | 1994-03-08 | Ernst Bayer | Process for the preparation of monodispersed polymer beads |
US5382260A (en) * | 1992-10-30 | 1995-01-17 | Interventional Therapeutics Corp. | Embolization device and apparatus including an introducer cartridge and method for delivering the same |
US5384124A (en) * | 1988-07-21 | 1995-01-24 | Farmalyoc | Solid porous unitary form comprising micro-particles and/or nano-particles, and its preparation |
US5396133A (en) * | 1993-10-01 | 1995-03-07 | Cirrus Logic, Inc. | High speed CMOS current switching circuits |
US5397303A (en) * | 1993-08-06 | 1995-03-14 | River Medical, Inc. | Liquid delivery device having a vial attachment or adapter incorporated therein |
US5398851A (en) * | 1993-08-06 | 1995-03-21 | River Medical, Inc. | Liquid delivery device |
US5403870A (en) * | 1989-05-31 | 1995-04-04 | Kimberly-Clark Corporation | Process for forming a porous particle of an absorbent polymer |
US5484584A (en) * | 1990-10-02 | 1996-01-16 | Board Of Regents, The University Of Texas System | Therapeutic and diagnostic use of modified polymeric microcapsules |
US5490984A (en) * | 1992-02-28 | 1996-02-13 | Jsf Consulants Ltd. | Use of injectable biomaterials for the repair and augmentation of the anal sphincters |
US5494940A (en) * | 1991-12-20 | 1996-02-27 | Alliedsignal Inc. | Low density materials having high surface areas and articles formed therefrom |
US5494682A (en) * | 1990-10-05 | 1996-02-27 | Massachusetts Institute Of Technology | Ionically cross-linked polymeric microcapsules |
US5512604A (en) * | 1992-08-28 | 1996-04-30 | The Dow Chemical Company | Porous copolymers having a cellular polymeric structure suitable for preparing ion-exchange resins and adsorbents |
US5595821A (en) * | 1994-05-04 | 1997-01-21 | Minnesota Mining And Manufacturing Company | Repulpable plastic films |
US5622657A (en) * | 1991-10-01 | 1997-04-22 | Takeda Chemical Industries, Ltd. | Prolonged release microparticle preparation and production of the same |
US5624685A (en) * | 1991-10-16 | 1997-04-29 | Terumo Kabushiki Kaisha | High polymer gel and vascular lesion embolizing material comprising the same |
US5716981A (en) * | 1993-07-19 | 1998-02-10 | Angiogenesis Technologies, Inc. | Anti-angiogenic compositions and methods of use |
US5715824A (en) * | 1989-12-22 | 1998-02-10 | Imarx Pharmaceutical Corp. | Methods of preparing gas-filled liposomes |
US5718884A (en) * | 1992-09-16 | 1998-02-17 | Nycomed Imaging As | Microbubble-based contrast agents with crosslinked and reduced proteinaceous shells |
US5723269A (en) * | 1992-07-24 | 1998-03-03 | Takeda Chemical Industries, Ltd. | Microparticle preparation and production thereof |
US5725534A (en) * | 1995-01-03 | 1998-03-10 | William Cook Europe A/S | Method of manufacturing an assembly for positioning an embolization coil in the vascular system, and such an assembly |
US5733925A (en) * | 1993-01-28 | 1998-03-31 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US5741331A (en) * | 1996-07-29 | 1998-04-21 | Corvita Corporation | Biostable elastomeric polymers having quaternary carbons |
US5855615A (en) * | 1996-06-07 | 1999-01-05 | Menlo Care, Inc. | Controller expansion sphincter augmentation media |
US5863957A (en) * | 1994-06-06 | 1999-01-26 | Biopore Corporation | Polymeric microbeads |
US5876372A (en) * | 1995-03-22 | 1999-03-02 | Abbott Laboratories | Syringe system accomodating seperate prefilled barrels for two constituents |
US5877224A (en) * | 1995-07-28 | 1999-03-02 | Rutgers, The State University Of New Jersey | Polymeric drug formulations |
US5885547A (en) * | 1994-01-21 | 1999-03-23 | Paragon Medical Ltd. | Particulate material |
US5885216A (en) * | 1993-10-28 | 1999-03-23 | Medrad, Inc. | Total system for contrast delivery |
US5888930A (en) * | 1989-03-27 | 1999-03-30 | Bend Research, Inc. | Asymmetric microporous beads for controlled release |
US5888546A (en) * | 1995-08-28 | 1999-03-30 | The Regents Of The University Of California | Embolic material for endovascular occlusion of abnormal vasculature and method for using the same |
US5891155A (en) * | 1995-01-27 | 1999-04-06 | Scimed Life Systems, Inc. | Embolizing system |
US5895398A (en) * | 1996-02-02 | 1999-04-20 | The Regents Of The University Of California | Method of using a clot capture coil |
US6015546A (en) * | 1992-10-10 | 2000-01-18 | Quadrant Healthcare (Uk) Limited | Preparation of further diagnostic agents |
US6028066A (en) * | 1997-05-06 | 2000-02-22 | Imarx Pharmaceutical Corp. | Prodrugs comprising fluorinated amphiphiles |
US6027472A (en) * | 1992-08-13 | 2000-02-22 | Science Incorporated | Mixing and delivery syringe assembly |
US6047861A (en) * | 1998-04-15 | 2000-04-11 | Vir Engineering, Inc. | Two component fluid dispenser |
US6048908A (en) * | 1997-06-27 | 2000-04-11 | Biopore Corporation | Hydrophilic polymeric material |
US6051247A (en) * | 1996-05-30 | 2000-04-18 | University Of Florida Research Foundation, Inc. | Moldable bioactive compositions |
US6214384B1 (en) * | 1995-03-28 | 2001-04-10 | Fidia Advanced Biopolymers S.R.L. | Nanosheres comprising a biocompatible polysaccharide |
US6214331B1 (en) * | 1995-06-06 | 2001-04-10 | C. R. Bard, Inc. | Process for the preparation of aqueous dispersions of particles of water-soluble polymers and the particles obtained |
US6335384B1 (en) * | 1996-01-31 | 2002-01-01 | Micro Therapeutics, Inc. | Methods for embolizing blood vessels |
US6355275B1 (en) * | 2000-06-23 | 2002-03-12 | Carbon Medical Technologies, Inc. | Embolization using carbon coated microparticles |
US6364823B1 (en) * | 1999-03-17 | 2002-04-02 | Stereotaxis, Inc. | Methods of and compositions for treating vascular defects |
US6368658B1 (en) * | 1999-04-19 | 2002-04-09 | Scimed Life Systems, Inc. | Coating medical devices using air suspension |
US6379373B1 (en) * | 1998-08-14 | 2002-04-30 | Confluent Surgical, Inc. | Methods and apparatus for intraluminal deposition of hydrogels |
US20030007928A1 (en) * | 2000-10-25 | 2003-01-09 | Gray Bruce Nathaniel | Polymer based radionuclide containing particulate material |
US20030032935A1 (en) * | 2001-08-10 | 2003-02-13 | Scimed Life Systems, Inc. | Packages facilitating convenient mixing and delivery of liquids |
US6544544B2 (en) * | 1993-07-19 | 2003-04-08 | Angiotech Pharmaceuticals, Inc. | Anti-angiogenic compositions and methods of use |
US6545097B2 (en) * | 2000-12-12 | 2003-04-08 | Scimed Life Systems, Inc. | Drug delivery compositions and medical devices containing block copolymer |
US6680046B1 (en) * | 1998-10-16 | 2004-01-20 | Biosphere Medical, S.A. | Method of embolization using polyvinyl alcohol microspheres |
US6699222B1 (en) * | 1997-06-13 | 2004-03-02 | Micro Therapeutics, Inc. | Contoured syringe and novel luer hub and methods for embolizing blood vessels |
US20040076582A1 (en) * | 2002-08-30 | 2004-04-22 | Dimatteo Kristian | Agent delivery particle |
US20050025800A1 (en) * | 2003-07-31 | 2005-02-03 | Tan Sharon Mi Lyn | Latex medical articles for release of antimicrobial agents |
US20050037047A1 (en) * | 2003-08-11 | 2005-02-17 | Young-Ho Song | Medical devices comprising spray dried microparticles |
US20060045900A1 (en) * | 2004-08-27 | 2006-03-02 | Robert Richard | Embolization |
US20070004973A1 (en) * | 2005-06-15 | 2007-01-04 | Tan Sharon M L | Tissue treatment methods |
US20070059375A1 (en) * | 2002-03-29 | 2007-03-15 | Scimed Life Systems, Inc., A Minnesota Corporation | Tissue treatment |
US20070083219A1 (en) * | 2005-10-12 | 2007-04-12 | Buiser Marcia S | Embolic coil introducer sheath locking mechanisms |
US20070083226A1 (en) * | 2005-10-12 | 2007-04-12 | Buiser Marcia S | Coil assemblies, components and methods |
Family Cites Families (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2609347A (en) | 1948-05-27 | 1952-09-02 | Wilson Christopher Lumley | Method of making expanded polyvinyl alcohol-formaldehyde reaction product and product resulting therefrom |
JPS4820019B1 (en) | 1969-06-05 | 1973-06-18 | ||
US3737398A (en) | 1969-11-13 | 1973-06-05 | D Yamaguchi | Method of making a polyvinyl acetal sponge buff |
JPS5146133B2 (en) * | 1972-06-08 | 1976-12-07 | ||
CS179075B1 (en) | 1974-11-26 | 1977-10-31 | Stoy Vladimir | Mode of manufacture of spherical particles from polymer |
US3957933A (en) | 1975-03-05 | 1976-05-18 | General Atomic Company | Apparatus for producing microspherical particles and method for operating such apparatus |
JPS51135958A (en) | 1975-05-20 | 1976-11-25 | Fuji Photo Film Co Ltd | Method of making fine powder polymer having pores |
US4025686A (en) | 1975-06-26 | 1977-05-24 | Owens-Corning Fiberglas Corporation | Molded composite article and method for making the article |
US4034759A (en) | 1975-08-27 | 1977-07-12 | Xomed, Inc. | Moisture-expandable prosthesis |
US4098728A (en) | 1976-01-02 | 1978-07-04 | Solomon Rosenblatt | Medical surgical sponge and method of making same |
US4055377A (en) | 1976-08-03 | 1977-10-25 | Minnesota Mining And Manufacturing Company | Magnetically orientable retroreflectorization particles |
US4159719A (en) | 1977-05-09 | 1979-07-03 | Xomed, Inc. | Moisture-expandable ear wick |
DE2964688D1 (en) | 1978-03-23 | 1983-03-17 | Hoechst Ag | Polyvinyl alcohol pellets containing a plasticizer, and method for their preparation |
DE2834539A1 (en) | 1978-08-07 | 1980-02-21 | Basf Ag | MACROPOROUS POLYMERS AS CARRIER MATERIAL FOR THE COVALENT BINDING OF PROTEINS |
US4793980A (en) | 1978-09-21 | 1988-12-27 | Torobin Leonard B | Hollow porous microspheres as substrates and containers for catalyst |
US4268495A (en) | 1979-01-08 | 1981-05-19 | Ethicon, Inc. | Injectable embolization and occlusion solution |
US4346712A (en) | 1979-04-06 | 1982-08-31 | Kuraray Company, Ltd. | Releasable balloon catheter |
US4271281A (en) | 1980-05-29 | 1981-06-02 | American Hoechst Corporation | Process for preparing styrenic polymer particles |
US4681119A (en) | 1980-11-17 | 1987-07-21 | Schering Aktiengesellschaft | Method of production and use of microbubble precursors |
NZ199916A (en) | 1981-03-11 | 1985-07-12 | Unilever Plc | Low density polymeric block material for use as carrier for included liquids |
US4678814A (en) | 1981-03-30 | 1987-07-07 | California Institute Of Technology | Polyacrolein microspheres |
US4413070A (en) | 1981-03-30 | 1983-11-01 | California Institute Of Technology | Polyacrolein microspheres |
US4622362A (en) | 1981-03-30 | 1986-11-11 | California Institute Of Technology | Polyacrolein microspheres |
US4456693A (en) | 1982-03-08 | 1984-06-26 | W. R. Grace & Co. | Hydrocracking catalyst |
US4452773A (en) | 1982-04-05 | 1984-06-05 | Canadian Patents And Development Limited | Magnetic iron-dextran microspheres |
US4472552A (en) | 1982-09-27 | 1984-09-18 | W. R. Grace & Co. | Continuous process for making solid, free-flowing water dispersible PVA-aldehyde reaction product |
US4459145A (en) | 1982-09-30 | 1984-07-10 | The United States Of America As Represented By The United States Department Of Energy | Fabrication of glass microspheres with conducting surfaces |
JPS59131355A (en) | 1983-01-17 | 1984-07-28 | 森下仁丹株式会社 | Multiple soft capsule |
US4671954A (en) | 1983-12-13 | 1987-06-09 | University Of Florida | Microspheres for incorporation of therapeutic substances and methods of preparation thereof |
US4551436A (en) | 1984-04-11 | 1985-11-05 | General Electric Company | Fabrication of small dense silicon carbide spheres |
DE3414924A1 (en) | 1984-04-19 | 1985-10-31 | Klaus Dr.med. Dr.med.habil. 8000 München Draenert | COATED ANCHORAGE PART FOR IMPLANTS |
US4674480A (en) | 1984-05-25 | 1987-06-23 | Lemelson Jerome H | Drug compositions and methods of applying same |
DE3527482A1 (en) | 1984-07-31 | 1986-02-06 | Fuji Spinning Co., Ltd., Tokio/Tokyo | METHOD FOR PRODUCING GRAINY POROUS CHITOSAN |
US4623706A (en) | 1984-08-23 | 1986-11-18 | The Dow Chemical Company | Process for preparing uniformly sized polymer particles by suspension polymerization of vibratorily excited monomers in a gaseous or liquid stream |
JPS61101242A (en) * | 1984-10-22 | 1986-05-20 | Showa Denko Kk | Production of coated substance |
US4675113A (en) | 1984-11-28 | 1987-06-23 | University Patents, Inc. | Affinity chromatography using dried calcium alginate-magnetite separation media in a magnetically stabilized fluidized bed |
DE3568442D1 (en) | 1984-12-06 | 1989-04-06 | Kanegafuchi Chemical Ind | A method of preparation of droplets |
JPH0678460B2 (en) | 1985-05-01 | 1994-10-05 | 株式会社バイオマテリアル・ユニバース | Porous transparent polyvinyl alcohol gel |
USH915H (en) | 1985-07-22 | 1991-05-07 | Gibbs Marylu B | Controlled macroporous copolymer properties by removal of impurities in the diluent |
US4742086A (en) | 1985-11-02 | 1988-05-03 | Lion Corporation | Process for manufacturing porous polymer |
DE3543348A1 (en) | 1985-12-07 | 1987-06-11 | Bayer Ag | PEARL-SHAPED CROSS-NETWORKED MIXED POLYMERS WITH EPOXY AND BASIC AMINO GROUPS, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE |
US4929400A (en) | 1986-04-28 | 1990-05-29 | California Institute Of Technology | Production of monodisperse, polymeric microspheres |
JPS6317904A (en) | 1986-07-09 | 1988-01-25 | Mitsubishi Chem Ind Ltd | Production of crosslinked porous polyvinyl alcohol particle |
US4743507A (en) | 1986-09-12 | 1988-05-10 | Franses Elias I | Nonspherical microparticles and method therefor |
ATE71293T1 (en) | 1986-09-18 | 1992-01-15 | London Pharmacy Innovation | DRUG FORMULATION. |
US5114421A (en) | 1986-09-22 | 1992-05-19 | Polak Robert B | Medicament container/dispenser assembly |
US4859711A (en) | 1986-10-01 | 1989-08-22 | Alcan International Limited | Hollow microspheres |
CA1287459C (en) | 1986-10-01 | 1991-08-13 | Mukesh Jain | Process for the preparation of hollow microspheres |
EP0265924B2 (en) | 1986-10-29 | 1998-04-22 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Uniform polymer particles |
JPH0612993B2 (en) | 1987-08-10 | 1994-02-23 | 株式会社クラレ | Method for producing spherical microbe-immobilized moldings |
JPH0762054B2 (en) | 1987-10-13 | 1995-07-05 | 倉敷紡績株式会社 | Crosslinked polymer particles |
US4850978A (en) | 1987-10-29 | 1989-07-25 | Baxter International Inc. | Drug delivery cartridge with protective cover |
US4933372A (en) | 1988-09-26 | 1990-06-12 | Supelco, Inc. | Porous rigid resins and process of preparation |
US5047438A (en) | 1988-09-26 | 1991-09-10 | Supelco, Inc. | Porous rigid resins and process of preparation |
US5258028A (en) * | 1988-12-12 | 1993-11-02 | Ersek Robert A | Textured micro implants |
US4946899A (en) | 1988-12-16 | 1990-08-07 | The University Of Akron | Thermoplastic elastomers of isobutylene and process of preparation |
US5032117A (en) | 1989-01-30 | 1991-07-16 | Motta Louis J | Tandem syringe |
US5116387A (en) | 1989-06-09 | 1992-05-26 | American Medical Systems, Inc. | Preparation of injectable polymeric bodies |
US5158573A (en) | 1989-06-09 | 1992-10-27 | American Medical Systems, Inc. | Injectable polymeric bodies |
US5585112A (en) * | 1989-12-22 | 1996-12-17 | Imarx Pharmaceutical Corp. | Method of preparing gas and gaseous precursor-filled microspheres |
US5580575A (en) * | 1989-12-22 | 1996-12-03 | Imarx Pharmaceutical Corp. | Therapeutic drug delivery systems |
US5147937A (en) | 1990-03-22 | 1992-09-15 | Rohm And Haas Company | Process for making controlled, uniform-sized particles in the 1 to 50 micrometer range |
CA2016870C (en) | 1990-05-15 | 1994-03-29 | Arnie Drudik | Dispenser for storing and mixing several components |
JP3286315B2 (en) * | 1990-06-20 | 2002-05-27 | アドバンスト ポリマー システムズ,インコーポレイティド | Compositions and methods for controlled release of soluble actives |
JPH04192030A (en) * | 1990-11-27 | 1992-07-10 | Canon Inc | Printer buffer device |
US5120349A (en) | 1990-12-07 | 1992-06-09 | Landec Labs, Inc. | Microcapsule having temperature-dependent permeability profile |
US5171214A (en) | 1990-12-26 | 1992-12-15 | Abbott Laboratories | Drug storage and delivery system |
US5171217A (en) | 1991-02-28 | 1992-12-15 | Indiana University Foundation | Method for delivery of smooth muscle cell inhibitors |
US5147631A (en) | 1991-04-30 | 1992-09-15 | Du Pont Merck Pharmaceutical Company | Porous inorganic ultrasound contrast agents |
FR2676927B1 (en) * | 1991-05-29 | 1995-06-23 | Ibf | MICROSPHERES FOR USE IN THERAPEUTIC VASCULAR OCCLUSIONS AND INJECTABLE SOLUTIONS CONTAINING THEM. |
US5216096A (en) * | 1991-09-24 | 1993-06-01 | Japan Synthetic Rubber Co., Ltd. | Process for the preparation of cross-linked polymer particles |
JP3256583B2 (en) * | 1992-12-10 | 2002-02-12 | 株式会社リコー | Electrophotographic toner and method for producing the same |
US5288763A (en) * | 1992-12-23 | 1994-02-22 | The Johns Hopkins University School Of Medicine | Porous, polymer beads and process of their preparation |
US6482436B1 (en) * | 1993-01-29 | 2002-11-19 | Ferx Incorporated | Magnetically responsive composition |
US5328936A (en) * | 1993-02-01 | 1994-07-12 | Rohm And Haas Company | Polymerization process for making porous polymeric particles |
US5320639A (en) * | 1993-03-12 | 1994-06-14 | Meadox Medicals, Inc. | Vascular plug delivery system |
DK0763064T3 (en) * | 1994-05-15 | 2001-11-05 | Apbiotech Aktiebolag | Process for the preparation of particles and particles which can be prepared by the process |
US5639710A (en) * | 1994-07-06 | 1997-06-17 | Zeneca Limited | Solid microspheres for agriculturally active compounds and process for their production |
US6179817B1 (en) * | 1995-02-22 | 2001-01-30 | Boston Scientific Corporation | Hybrid coating for medical devices |
US6428771B1 (en) * | 1995-05-15 | 2002-08-06 | Pharmaceutical Discovery Corporation | Method for drug delivery to the pulmonary system |
EP1607429A3 (en) * | 1995-06-06 | 2006-01-04 | C.R.Bard, Inc. | Process for the preparation of aqueous dispersions of particles of water-soluble polymers |
US6143211A (en) * | 1995-07-21 | 2000-11-07 | Brown University Foundation | Process for preparing microparticles through phase inversion phenomena |
JPH09157433A (en) * | 1995-12-07 | 1997-06-17 | Unitika Chem Kk | Production of polyvinyl alcohol-based gel molding and microorganism-immobilized molding |
US5752974A (en) * | 1995-12-18 | 1998-05-19 | Collagen Corporation | Injectable or implantable biomaterials for filling or blocking lumens and voids of the body |
JPH09316271A (en) * | 1996-05-31 | 1997-12-09 | Kuraray Co Ltd | Spherical hydrous gel |
JPH10204204A (en) * | 1996-07-31 | 1998-08-04 | Kanebo Ltd | Porous spherical particles and production thereof |
WO1998004616A1 (en) * | 1996-07-31 | 1998-02-05 | Kanebo Limited | Porous spherical polyvinyl acetal particles, process for producing the same, and microbial carriers |
US5756127A (en) * | 1996-10-29 | 1998-05-26 | Wright Medical Technology, Inc. | Implantable bioresorbable string of calcium sulfate beads |
US6056844A (en) * | 1997-06-06 | 2000-05-02 | Triton Systems, Inc. | Temperature-controlled induction heating of polymeric materials |
JP2933580B2 (en) * | 1997-07-22 | 1999-08-16 | 鐘紡株式会社 | Sponge-like spherical particles and method for producing the same |
US6056721A (en) * | 1997-08-08 | 2000-05-02 | Sunscope International, Inc. | Balloon catheter and method |
WO1999023954A1 (en) * | 1997-11-07 | 1999-05-20 | Salviac Limited | Implantable occluder devices for medical use |
US5885112A (en) * | 1997-11-17 | 1999-03-23 | Adc Telecommunications, Inc. | Coax connector bay and drawer |
CA2316945A1 (en) * | 1998-02-23 | 1999-08-26 | Mnemoscience Gmbh | Shape memory polymers |
US6660301B1 (en) * | 1998-03-06 | 2003-12-09 | Biosphere Medical, Inc. | Injectable microspheres for dermal augmentation and tissue bulking |
US6224794B1 (en) * | 1998-05-06 | 2001-05-01 | Angiotech Pharmaceuticals, Inc. | Methods for microsphere production |
US6165193A (en) * | 1998-07-06 | 2000-12-26 | Microvention, Inc. | Vascular embolization with an expansible implant |
US6238335B1 (en) * | 1998-12-11 | 2001-05-29 | Enteric Medical Technologies, Inc. | Method for treating gastroesophageal reflux disease and apparatus for use therewith |
JP2000204190A (en) * | 1999-01-08 | 2000-07-25 | Eagle Kasei:Kk | Production of polyvinyl alcohol-based sponge |
US6238403B1 (en) * | 1999-10-04 | 2001-05-29 | Microvention, Inc. | Filamentous embolic device with expansible elements |
KR100335866B1 (en) * | 2000-01-06 | 2002-05-10 | 박호군 | Microspheric Embolic Materials Having Duel Structure of Poly(Vinyl Acetate) Core/Poly(Vinyl Alcohol) Shell, and Method for Preparing The Same |
US6652883B2 (en) * | 2000-03-13 | 2003-11-25 | Biocure, Inc. | Tissue bulking and coating compositions |
JP2001302840A (en) * | 2000-04-24 | 2001-10-31 | Rengo Co Ltd | Polyvinyl alcohol sponge, immobilized support using the same, and method of producing the sponge |
DE10026620A1 (en) * | 2000-05-29 | 2002-03-07 | Gerhard Quelle | Biocompatible material for cell and tissue implantation, useful e.g. for drug release or cosmetic tissue augmentation, consisting of spherical particles having (semi-)permeable or porous outer shell and internal cavity |
WO2002026911A1 (en) * | 2000-09-27 | 2002-04-04 | Microtek Laboratories, Inc. | Macrocapsules containing microencapsulated phase change materials |
US7462366B2 (en) * | 2002-03-29 | 2008-12-09 | Boston Scientific Scimed, Inc. | Drug delivery particle |
US7152880B1 (en) * | 2005-10-17 | 2006-12-26 | Key Safety Systems, Inc. | Grooved air bag |
-
2002
- 2002-03-29 US US10/109,966 patent/US7094369B2/en not_active Expired - Lifetime
- 2002-08-09 US US10/215,594 patent/US7588780B2/en not_active Expired - Fee Related
-
2003
- 2003-03-28 EP EP03718083A patent/EP1490032B1/en not_active Expired - Lifetime
- 2003-03-28 AU AU2003222097A patent/AU2003222097A1/en not_active Abandoned
- 2003-03-28 CA CA002480631A patent/CA2480631A1/en not_active Abandoned
- 2003-03-28 WO PCT/US2003/009471 patent/WO2003082250A1/en active IP Right Grant
- 2003-03-28 JP JP2003579788A patent/JP4533631B2/en not_active Expired - Fee Related
- 2003-03-28 DE DE60308159T patent/DE60308159T2/en not_active Expired - Lifetime
-
2006
- 2006-05-24 US US11/439,680 patent/US20060210710A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2275154A (en) * | 1940-07-10 | 1942-03-03 | United Drug Company | Method for making capsules |
US4076640A (en) * | 1975-02-24 | 1978-02-28 | Xerox Corporation | Preparation of spheroidized particles |
US4191672A (en) * | 1976-10-25 | 1980-03-04 | Berger Jenson & Nicholson Ltd. | Polymer aggregates |
US4243794A (en) * | 1978-10-10 | 1981-01-06 | Minnesota Mining And Manufacturing Company | Mixture of rough and spheroidized resin particles |
US4198318A (en) * | 1978-11-24 | 1980-04-15 | Conoco, Inc. | Production of high strength alumina spheres by hydrogelling corresponding slurries |
US4246208A (en) * | 1979-03-22 | 1981-01-20 | Xerox Corporation | Dust-free plasma spheroidization |
US4429062A (en) * | 1980-02-18 | 1984-01-31 | Emil Pasztor | Pharmaceutically acceptable silicon rubber and therapeutical set and the use thereof for surgical embolization |
US4427794A (en) * | 1980-08-22 | 1984-01-24 | Bayer Aktiengesellschaft | Process for the preparation of bead polymers of uniform particle size by polymerization of microencapsulated monomer |
US4444961A (en) * | 1980-10-30 | 1984-04-24 | The Dow Chemical Company | Process and apparatus for preparing uniform size polymer beads |
US4442843A (en) * | 1980-11-17 | 1984-04-17 | Schering, Ag | Microbubble precursors and methods for their production and use |
US4657756A (en) * | 1980-11-17 | 1987-04-14 | Schering Aktiengesellschaft | Microbubble precursors and apparatus for their production and use |
US4428869A (en) * | 1981-08-20 | 1984-01-31 | International Flavors & Fragrances Inc. | Cologne consisting of microcapsule suspension |
US4999188A (en) * | 1983-06-30 | 1991-03-12 | Solodovnik Valentin D | Methods for embolization of blood vessels |
US4492720A (en) * | 1983-11-15 | 1985-01-08 | Benjamin Mosier | Method of preparing microspheres for intravascular delivery |
US4573967A (en) * | 1983-12-06 | 1986-03-04 | Eli Lilly And Company | Vacuum vial infusion system |
US4661137A (en) * | 1984-06-21 | 1987-04-28 | Saint Gobain Vitrage | Process for producing glass microspheres |
US4640807A (en) * | 1984-08-02 | 1987-02-03 | Shell Oil Company | Process for the preparation of silica spheres |
US5011677A (en) * | 1984-11-19 | 1991-04-30 | The Curators Of The University Of Missouri | Radioactive glass microspheres |
US5302369A (en) * | 1984-11-19 | 1994-04-12 | The Curators Of The University Of Missouri | Microspheres for radiation therapy |
US5106903A (en) * | 1984-12-17 | 1992-04-21 | Lehigh University | Preparation of large particle size monodisperse latexes |
US4897255A (en) * | 1985-01-14 | 1990-01-30 | Neorx Corporation | Metal radionuclide labeled proteins for diagnosis and therapy |
US4801458A (en) * | 1985-06-24 | 1989-01-31 | Teijin Limited | Sustained release pharmaceutical plaster |
US4822535A (en) * | 1985-07-12 | 1989-04-18 | Norsk Hydro A.S. | Method for producing small, spherical polymer particles |
US4990340A (en) * | 1986-01-22 | 1991-02-05 | Teijin Limited | Sustained release pharmaceutical preparation |
US5292814A (en) * | 1987-04-29 | 1994-03-08 | Ernst Bayer | Process for the preparation of monodispersed polymer beads |
US4795741A (en) * | 1987-05-06 | 1989-01-03 | Biomatrix, Inc. | Compositions for therapeutic percutaneous embolization and the use thereof |
US4819637A (en) * | 1987-09-01 | 1989-04-11 | Interventional Therapeutics Corporation | System for artificial vessel embolization and devices for use therewith |
US4804366A (en) * | 1987-10-29 | 1989-02-14 | Baxter International Inc. | Cartridge and adapter for introducing a beneficial agent into an intravenous delivery system |
US4981625A (en) * | 1988-03-14 | 1991-01-01 | California Institute Of Technology | Monodisperse, polymeric microspheres produced by irradiation of slowly thawing frozen drops |
US5384124A (en) * | 1988-07-21 | 1995-01-24 | Farmalyoc | Solid porous unitary form comprising micro-particles and/or nano-particles, and its preparation |
US5091205A (en) * | 1989-01-17 | 1992-02-25 | Union Carbide Chemicals & Plastics Technology Corporation | Hydrophilic lubricious coatings |
US5192301A (en) * | 1989-01-17 | 1993-03-09 | Nippon Zeon Co., Ltd. | Closing plug of a defect for medical use and a closing plug device utilizing it |
US5079274A (en) * | 1989-03-15 | 1992-01-07 | The Dow Chemical Company | Process for preparing absorptive porous resin beads |
US5888930A (en) * | 1989-03-27 | 1999-03-30 | Bend Research, Inc. | Asymmetric microporous beads for controlled release |
US5403870A (en) * | 1989-05-31 | 1995-04-04 | Kimberly-Clark Corporation | Process for forming a porous particle of an absorbent polymer |
US5007940A (en) * | 1989-06-09 | 1991-04-16 | American Medical Systems, Inc. | Injectable polymeric bodies |
US5190760A (en) * | 1989-07-08 | 1993-03-02 | Coopers Animal Health Limited | Solid pharmaceutical composition |
US5715824A (en) * | 1989-12-22 | 1998-02-10 | Imarx Pharmaceutical Corp. | Methods of preparing gas-filled liposomes |
US5190766A (en) * | 1990-04-16 | 1993-03-02 | Ken Ishihara | Method of controlling drug release by resonant sound wave |
US5181921A (en) * | 1990-05-25 | 1993-01-26 | Kaken Co., Ltd. | Detachable balloon with two self-sealing valves |
US5202352A (en) * | 1990-08-08 | 1993-04-13 | Takeda Chemical Industries, Ltd. | Intravascular embolizing agent containing angiogenesis-inhibiting substance |
US5484584A (en) * | 1990-10-02 | 1996-01-16 | Board Of Regents, The University Of Texas System | Therapeutic and diagnostic use of modified polymeric microcapsules |
US5494682A (en) * | 1990-10-05 | 1996-02-27 | Massachusetts Institute Of Technology | Ionically cross-linked polymeric microcapsules |
US5622657A (en) * | 1991-10-01 | 1997-04-22 | Takeda Chemical Industries, Ltd. | Prolonged release microparticle preparation and production of the same |
US5624685A (en) * | 1991-10-16 | 1997-04-29 | Terumo Kabushiki Kaisha | High polymer gel and vascular lesion embolizing material comprising the same |
US5494940A (en) * | 1991-12-20 | 1996-02-27 | Alliedsignal Inc. | Low density materials having high surface areas and articles formed therefrom |
US5490984A (en) * | 1992-02-28 | 1996-02-13 | Jsf Consulants Ltd. | Use of injectable biomaterials for the repair and augmentation of the anal sphincters |
US5723269A (en) * | 1992-07-24 | 1998-03-03 | Takeda Chemical Industries, Ltd. | Microparticle preparation and production thereof |
US6027472A (en) * | 1992-08-13 | 2000-02-22 | Science Incorporated | Mixing and delivery syringe assembly |
US5512604A (en) * | 1992-08-28 | 1996-04-30 | The Dow Chemical Company | Porous copolymers having a cellular polymeric structure suitable for preparing ion-exchange resins and adsorbents |
US5718884A (en) * | 1992-09-16 | 1998-02-17 | Nycomed Imaging As | Microbubble-based contrast agents with crosslinked and reduced proteinaceous shells |
US6344182B1 (en) * | 1992-10-10 | 2002-02-05 | Quadrant Healthcare (Uk) Limited | Preparation of diagnostic agents by spray drying |
US6015546A (en) * | 1992-10-10 | 2000-01-18 | Quadrant Healthcare (Uk) Limited | Preparation of further diagnostic agents |
US5382260A (en) * | 1992-10-30 | 1995-01-17 | Interventional Therapeutics Corp. | Embolization device and apparatus including an introducer cartridge and method for delivering the same |
US5733925A (en) * | 1993-01-28 | 1998-03-31 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells |
US5716981A (en) * | 1993-07-19 | 1998-02-10 | Angiogenesis Technologies, Inc. | Anti-angiogenic compositions and methods of use |
US6544544B2 (en) * | 1993-07-19 | 2003-04-08 | Angiotech Pharmaceuticals, Inc. | Anti-angiogenic compositions and methods of use |
US5398851A (en) * | 1993-08-06 | 1995-03-21 | River Medical, Inc. | Liquid delivery device |
US5397303A (en) * | 1993-08-06 | 1995-03-14 | River Medical, Inc. | Liquid delivery device having a vial attachment or adapter incorporated therein |
US5396133A (en) * | 1993-10-01 | 1995-03-07 | Cirrus Logic, Inc. | High speed CMOS current switching circuits |
US5885216A (en) * | 1993-10-28 | 1999-03-23 | Medrad, Inc. | Total system for contrast delivery |
US5885547A (en) * | 1994-01-21 | 1999-03-23 | Paragon Medical Ltd. | Particulate material |
US5595821A (en) * | 1994-05-04 | 1997-01-21 | Minnesota Mining And Manufacturing Company | Repulpable plastic films |
US5863957A (en) * | 1994-06-06 | 1999-01-26 | Biopore Corporation | Polymeric microbeads |
US5725534A (en) * | 1995-01-03 | 1998-03-10 | William Cook Europe A/S | Method of manufacturing an assembly for positioning an embolization coil in the vascular system, and such an assembly |
US5891155A (en) * | 1995-01-27 | 1999-04-06 | Scimed Life Systems, Inc. | Embolizing system |
US5895411A (en) * | 1995-01-27 | 1999-04-20 | Scimed Life Systems Inc. | Embolizing system |
US5876372A (en) * | 1995-03-22 | 1999-03-02 | Abbott Laboratories | Syringe system accomodating seperate prefilled barrels for two constituents |
US6214384B1 (en) * | 1995-03-28 | 2001-04-10 | Fidia Advanced Biopolymers S.R.L. | Nanosheres comprising a biocompatible polysaccharide |
US6544503B1 (en) * | 1995-06-06 | 2003-04-08 | C. R. Bard, Inc. | Process for the preparation of aqueous dispersions of particles of water-soluble polymers and the particles obtained |
US6214331B1 (en) * | 1995-06-06 | 2001-04-10 | C. R. Bard, Inc. | Process for the preparation of aqueous dispersions of particles of water-soluble polymers and the particles obtained |
US5877224A (en) * | 1995-07-28 | 1999-03-02 | Rutgers, The State University Of New Jersey | Polymeric drug formulations |
US5894022A (en) * | 1995-08-28 | 1999-04-13 | The Regents Of The University Of California | Embolic material for endovascular occlusion of abnormal vasculature and method of using the same |
US5888546A (en) * | 1995-08-28 | 1999-03-30 | The Regents Of The University Of California | Embolic material for endovascular occlusion of abnormal vasculature and method for using the same |
US6335384B1 (en) * | 1996-01-31 | 2002-01-01 | Micro Therapeutics, Inc. | Methods for embolizing blood vessels |
US5895398A (en) * | 1996-02-02 | 1999-04-20 | The Regents Of The University Of California | Method of using a clot capture coil |
US6051247A (en) * | 1996-05-30 | 2000-04-18 | University Of Florida Research Foundation, Inc. | Moldable bioactive compositions |
US5855615A (en) * | 1996-06-07 | 1999-01-05 | Menlo Care, Inc. | Controller expansion sphincter augmentation media |
US5741331A (en) * | 1996-07-29 | 1998-04-21 | Corvita Corporation | Biostable elastomeric polymers having quaternary carbons |
US6028066A (en) * | 1997-05-06 | 2000-02-22 | Imarx Pharmaceutical Corp. | Prodrugs comprising fluorinated amphiphiles |
US6699222B1 (en) * | 1997-06-13 | 2004-03-02 | Micro Therapeutics, Inc. | Contoured syringe and novel luer hub and methods for embolizing blood vessels |
US6048908A (en) * | 1997-06-27 | 2000-04-11 | Biopore Corporation | Hydrophilic polymeric material |
US6047861A (en) * | 1998-04-15 | 2000-04-11 | Vir Engineering, Inc. | Two component fluid dispenser |
US6379373B1 (en) * | 1998-08-14 | 2002-04-30 | Confluent Surgical, Inc. | Methods and apparatus for intraluminal deposition of hydrogels |
US6680046B1 (en) * | 1998-10-16 | 2004-01-20 | Biosphere Medical, S.A. | Method of embolization using polyvinyl alcohol microspheres |
US6364823B1 (en) * | 1999-03-17 | 2002-04-02 | Stereotaxis, Inc. | Methods of and compositions for treating vascular defects |
US6368658B1 (en) * | 1999-04-19 | 2002-04-09 | Scimed Life Systems, Inc. | Coating medical devices using air suspension |
US6355275B1 (en) * | 2000-06-23 | 2002-03-12 | Carbon Medical Technologies, Inc. | Embolization using carbon coated microparticles |
US20030007928A1 (en) * | 2000-10-25 | 2003-01-09 | Gray Bruce Nathaniel | Polymer based radionuclide containing particulate material |
US6545097B2 (en) * | 2000-12-12 | 2003-04-08 | Scimed Life Systems, Inc. | Drug delivery compositions and medical devices containing block copolymer |
US20030032935A1 (en) * | 2001-08-10 | 2003-02-13 | Scimed Life Systems, Inc. | Packages facilitating convenient mixing and delivery of liquids |
US20070059375A1 (en) * | 2002-03-29 | 2007-03-15 | Scimed Life Systems, Inc., A Minnesota Corporation | Tissue treatment |
US20040076582A1 (en) * | 2002-08-30 | 2004-04-22 | Dimatteo Kristian | Agent delivery particle |
US20050025800A1 (en) * | 2003-07-31 | 2005-02-03 | Tan Sharon Mi Lyn | Latex medical articles for release of antimicrobial agents |
US20050037047A1 (en) * | 2003-08-11 | 2005-02-17 | Young-Ho Song | Medical devices comprising spray dried microparticles |
US20060045900A1 (en) * | 2004-08-27 | 2006-03-02 | Robert Richard | Embolization |
US20070004973A1 (en) * | 2005-06-15 | 2007-01-04 | Tan Sharon M L | Tissue treatment methods |
US20070083219A1 (en) * | 2005-10-12 | 2007-04-12 | Buiser Marcia S | Embolic coil introducer sheath locking mechanisms |
US20070083226A1 (en) * | 2005-10-12 | 2007-04-12 | Buiser Marcia S | Coil assemblies, components and methods |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9463426B2 (en) | 2005-06-24 | 2016-10-11 | Boston Scientific Scimed, Inc. | Methods and systems for coating particles |
US8007509B2 (en) | 2005-10-12 | 2011-08-30 | Boston Scientific Scimed, Inc. | Coil assemblies, components and methods |
US8101197B2 (en) | 2005-12-19 | 2012-01-24 | Stryker Corporation | Forming coils |
US8152839B2 (en) | 2005-12-19 | 2012-04-10 | Boston Scientific Scimed, Inc. | Embolic coils |
US7947368B2 (en) | 2005-12-21 | 2011-05-24 | Boston Scientific Scimed, Inc. | Block copolymer particles |
US8414927B2 (en) | 2006-11-03 | 2013-04-09 | Boston Scientific Scimed, Inc. | Cross-linked polymer particles |
US11298678B2 (en) * | 2016-03-30 | 2022-04-12 | Trustees Of Tufts College | Fabrication of macroporous polymeric hydrogel microparticles |
WO2017223315A1 (en) * | 2016-06-22 | 2017-12-28 | Tufts University | Macroporous chitosan-polyacrylamide hydrogel microspheres and preparation thereof |
US11161958B2 (en) | 2016-06-22 | 2021-11-02 | Trustees Of Tufts College | Macroporous chitosan-polyacrylamide hydrogel microspheres and preparation thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2005529193A (en) | 2005-09-29 |
US20030185896A1 (en) | 2003-10-02 |
JP4533631B2 (en) | 2010-09-01 |
US20030183962A1 (en) | 2003-10-02 |
EP1490032B1 (en) | 2006-09-06 |
AU2003222097A1 (en) | 2003-10-13 |
US7588780B2 (en) | 2009-09-15 |
WO2003082250A1 (en) | 2003-10-09 |
CA2480631A1 (en) | 2003-10-09 |
DE60308159T2 (en) | 2007-08-09 |
DE60308159D1 (en) | 2006-10-19 |
US7094369B2 (en) | 2006-08-22 |
EP1490032A1 (en) | 2004-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7094369B2 (en) | Processes for manufacturing polymeric microspheres | |
JP4704039B2 (en) | Porous beads and method for producing the same | |
US7053134B2 (en) | Forming a chemically cross-linked particle of a desired shape and diameter | |
US5015423A (en) | Method of making uniform polymer particles | |
EP0303259B1 (en) | Multi-cellular cellulose particle and process for preparation thereof | |
EP3995206B1 (en) | Preparation method of a drug-carrying microsphere | |
WO1993012875A1 (en) | Method and apparatus for producing uniform polymeric spheres | |
CN107198791A (en) | The method that electrostatic spraying prepares cross linked porous starch hemostatic microsphere | |
CA2557107C (en) | Process for production of ionically crosslinked polysaccharide microspheres | |
US5990183A (en) | Porous particles, porous hollow particles and method of preparing such particles | |
JP3634110B2 (en) | Method for producing sustained release particles | |
JPH06102730B2 (en) | Bimodal particles for separation materials | |
JPH01278541A (en) | Production of cellular homogeneous polymer particle | |
Dzierzkowska et al. | Electrospinning for drug delivery systems: potential of the technique | |
JPH07108165A (en) | High polymer porous particles and production therefor and pulp molding material | |
CN116477770A (en) | Laccase-loaded porous microcarrier, preparation method and application | |
JP2000107591A (en) | Production of microcapsule | |
JPH01275641A (en) | Polymer particle | |
JP2000344931A (en) | Porous polyvinyl alcohol particle and its production | |
JPS60255836A (en) | Production of porous body | |
JPS63117039A (en) | Production of uniform polymer particle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868 Effective date: 20050101 Owner name: BOSTON SCIENTIFIC SCIMED, INC.,MINNESOTA Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:018505/0868 Effective date: 20050101 |
|
AS | Assignment |
Owner name: SCIMED LIFE SYSTEMS, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BUISER, MARCIA S.;BALDWIN, SAMUEL P.;REEL/FRAME:019394/0851;SIGNING DATES FROM 20020314 TO 20020315 |
|
AS | Assignment |
Owner name: BOSTON SCIENTIFIC SCIMED, INC., MASSACHUSETTS Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:019396/0252 Effective date: 20041222 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |