proposed
approved
proposed
approved
editing
proposed
nn=10^4; lim=Floor[Sqrt[nn]]; mx=Table[0, {lim}]; Do[c=n-EulerPhi[n]; If[0<c<=lim, mx[[c]]=n], {n, nn}]; Rest[mx] (* _T. D. Noe_ *)
Table[Module[{k = n^2}, While[And[k - EulerPhi@ k != n, k > 0], k--];
k], {n, 2, 62}] (* Michael De Vlieger, Mar 17 2017 *)
approved
editing
_Labos E. (labos(AT)ana.sote.hu), Elemer_, Aug 13 2001
Corrected and edited by _T. D. Noe (noe(AT)sspectra.com), _, Oct 30 2006
T. D. Noe, <a href="/A063748/b063748.txt">Table of n, a(n) for n=2..1000</a>
nonn,new
nonn
T. D. Noe, <a href="http://www.research.att.com/~njas/sequences/b063748.txt">Table of n, a(n) for n=2..1000</a>
nonn,new
nonn
nn=10^4; lim=Floor[Sqrt[nn]]; mx=Table[0, {lim}]; Do[c=n-EulerPhi[n]; If[0<c<=lim, mx[[c]]=n], {n, nn}]; Rest[mx] (Tony T. D. Noe)
nonn,new
nonn
Inverse cototientGreatest x that is a solution to x-phi(A051853x) sets represented by their largest term =n or by 0 zero if set there is no solution, where phi(x) is emptyEuler's totient function.
4, 9, 8, 25, 10, 49, 16, 27, 0, 121, 22, 169, 26, 55, 32, 289, 34, 361, 38, 85, 30, 529, 46, 133, 0, 187, 52, 841, 58, 961, 64, 253, 0, 323, 68, 1369, 74, 391, 76, 1681, 82, 1849, 86, 493, 70, 2209, 94, 589, 0, 667, 0, 2809, 106, 703, 104, 697, 0, 3481, 118, 3721, 122
See A051953 for x-phi(x), the cototient function. Note that a(n)=0 for n in A005278. Also note that n=1 has an infinite number of solutions. If n is prime, then a(n)=n^2. If n is even, then a(n)<=2n. In particular, if n=p+1 for a prime p, then a(n)=2n-2. Also, if n=2^k, then a(n)=2n. If n>9 is odd and composite, then a(n)=pq, with p>q odd primes with p+q=n+1 and p-q minimal. We can take p=A078496((n+1)/2) and q=A078587((n+1)/2).
T. D. Noe, <a href="http://www.research.att.com/~njas/sequences/b063748.txt">Table of n, a(n) for n=2..1000</a>
For m = 1, InvCot[1] = {primes} so no max term exists. For m = nonprime m-Phi[m]>= Sqrt[m] so Max{Cototient[m]} <= m^2. If m = prime, then Max{InvCototient[p]} = p^2. m = 23, InvCototient(23) = {95,119,143,529},a(29) = 529. m = 24, InvCototient(24) = {36,40,44,46},a(24) = 46.
For n=15, the solutions are x=39 and x=55, so a(15)=55. Note that 55=5*11 and 5+11=n+1.
nn=10^4; lim=Floor[Sqrt[nn]]; mx=Table[0, {lim}]; Do[c=n-EulerPhi[n]; If[0<c<=lim, mx[[c]]=n], {n, nn}]; Rest[mx] (Tony Noe)
nonn,new
nonn
Corrected and edited by T. D. Noe (noe(AT)sspectra.com), Oct 30 2006
nonn,new
nonn
Labos E. (labos(AT)ana1ana.sote.hu), Aug 13 2001