login

Revision History for A063748

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Greatest x that is a solution to x-phi(x)=n or zero if there is no solution, where phi(x) is Euler's totient function.
(history; published version)
#12 by N. J. A. Sloane at Sat Mar 18 08:46:23 EDT 2017
STATUS

proposed

approved

#11 by Michael De Vlieger at Sat Mar 18 08:35:16 EDT 2017
STATUS

editing

proposed

#10 by Michael De Vlieger at Fri Mar 17 08:58:48 EDT 2017
MATHEMATICA

nn=10^4; lim=Floor[Sqrt[nn]]; mx=Table[0, {lim}]; Do[c=n-EulerPhi[n]; If[0<c<=lim, mx[[c]]=n], {n, nn}]; Rest[mx] (* _T. D. Noe_ *)

Table[Module[{k = n^2}, While[And[k - EulerPhi@ k != n, k > 0], k--];

k], {n, 2, 62}] (* Michael De Vlieger, Mar 17 2017 *)

STATUS

approved

editing

#9 by N. J. A. Sloane at Tue Oct 15 22:31:05 EDT 2013
AUTHOR

_Labos E. (labos(AT)ana.sote.hu), Elemer_, Aug 13 2001

Discussion
Tue Oct 15
22:31
OEIS Server: https://oeis.org/edit/global/2029
#8 by Russ Cox at Fri Mar 30 17:22:24 EDT 2012
EXTENSIONS

Corrected and edited by _T. D. Noe (noe(AT)sspectra.com), _, Oct 30 2006

Discussion
Fri Mar 30
17:22
OEIS Server: https://oeis.org/edit/global/120
#7 by N. J. A. Sloane at Thu Nov 11 07:34:06 EST 2010
LINKS

T. D. Noe, <a href="/A063748/b063748.txt">Table of n, a(n) for n=2..1000</a>

KEYWORD

nonn,new

nonn

#6 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
LINKS

T. D. Noe, <a href="http://www.research.att.com/~njas/sequences/b063748.txt">Table of n, a(n) for n=2..1000</a>

KEYWORD

nonn,new

nonn

#5 by N. J. A. Sloane at Sat Nov 10 03:00:00 EST 2007
MATHEMATICA

nn=10^4; lim=Floor[Sqrt[nn]]; mx=Table[0, {lim}]; Do[c=n-EulerPhi[n]; If[0<c<=lim, mx[[c]]=n], {n, nn}]; Rest[mx] (Tony T. D. Noe)

KEYWORD

nonn,new

nonn

#4 by N. J. A. Sloane at Wed Dec 06 03:00:00 EST 2006
NAME

Inverse cototientGreatest x that is a solution to x-phi(A051853x) sets represented by their largest term =n or by 0 zero if set there is no solution, where phi(x) is emptyEuler's totient function.

DATA

4, 9, 8, 25, 10, 49, 16, 27, 0, 121, 22, 169, 26, 55, 32, 289, 34, 361, 38, 85, 30, 529, 46, 133, 0, 187, 52, 841, 58, 961, 64, 253, 0, 323, 68, 1369, 74, 391, 76, 1681, 82, 1849, 86, 493, 70, 2209, 94, 589, 0, 667, 0, 2809, 106, 703, 104, 697, 0, 3481, 118, 3721, 122

COMMENTS

See A051953 for x-phi(x), the cototient function. Note that a(n)=0 for n in A005278. Also note that n=1 has an infinite number of solutions. If n is prime, then a(n)=n^2. If n is even, then a(n)<=2n. In particular, if n=p+1 for a prime p, then a(n)=2n-2. Also, if n=2^k, then a(n)=2n. If n>9 is odd and composite, then a(n)=pq, with p>q odd primes with p+q=n+1 and p-q minimal. We can take p=A078496((n+1)/2) and q=A078587((n+1)/2).

LINKS

T. D. Noe, <a href="http://www.research.att.com/~njas/sequences/b063748.txt">Table of n, a(n) for n=2..1000</a>

EXAMPLE

For m = 1, InvCot[1] = {primes} so no max term exists. For m = nonprime m-Phi[m]>= Sqrt[m] so Max{Cototient[m]} <= m^2. If m = prime, then Max{InvCototient[p]} = p^2. m = 23, InvCototient(23) = {95,119,143,529},a(29) = 529. m = 24, InvCototient(24) = {36,40,44,46},a(24) = 46.

For n=15, the solutions are x=39 and x=55, so a(15)=55. Note that 55=5*11 and 5+11=n+1.

MATHEMATICA

nn=10^4; lim=Floor[Sqrt[nn]]; mx=Table[0, {lim}]; Do[c=n-EulerPhi[n]; If[0<c<=lim, mx[[c]]=n], {n, nn}]; Rest[mx] (Tony Noe)

CROSSREFS

Cf. A000010, A051953, A063507.

Cf. A063507 (least solution to x-phi(x)=n), A063740 (number of solutions to x-phi(x)=n).

KEYWORD

nonn,new

nonn

EXTENSIONS

Corrected and edited by T. D. Noe (noe(AT)sspectra.com), Oct 30 2006

#3 by N. J. A. Sloane at Tue Jan 24 03:00:00 EST 2006
KEYWORD

nonn,new

nonn

AUTHOR

Labos E. (labos(AT)ana1ana.sote.hu), Aug 13 2001