Studentverdeling
De t-verdeling, ook wel studentverdeling genoemd (naar het pseudoniem "Student" van William Sealy Gosset), is een kansverdeling die is afgeleid van de normale verdeling en verbonden met de verdeling van het geschaalde steekproefgemiddelde van een aselecte steekproef uit een normale verdeling. Het is de verdeling van de toetsingsgrootheid van de t-toets. Als een aselecte steekproef is uit een normale verdeling met verwachtingswaarde en standaardafwijking , dan is:
De verdeling van noemt men een t-verdeling met zogenaamde vrijheidsgraden.
Merk op dat sterk lijkt op het gestandaardiseerde steekproefgemiddelde :
dat standaardnormaal verdeeld is, en waarin als het ware de standaardafwijking vervangen is door de steekproefstandaardafwijking . Nu is
chi-kwadraatverdeeld met vrijheidsgraden, en zijn en de steekproefvariantie onderling onafhankelijk. Daarom definieert men algemeen:
Definitie
[bewerken | brontekst bewerken]De t-verdeling met vrijheidsgraden is de verdeling van de grootheid:
- ,
waarin en onderling onafhankelijke stochastische variabelen zijn, respectievelijk standaardnormaal verdeeld en chi-kwadraatverdeeld met vrijheidsgraden.
Kansdichtheid
[bewerken | brontekst bewerken]De grafiek van de kansdichtheid van de t-verdeling lijkt wat vorm betreft sterk op de standaardnormale verdeling, maar is wat 'breder'. Hoe kleiner het aantal vrijheidsgraden is, hoe 'breder' de grafiek van de kansdichtheid.
Voor vrijheidsgraden wordt deze kansdichtheid gegeven door:
Daarin is de gammafunctie.
Het bijzondere geval heet Cauchyverdeling.
De verwachtingswaarde bestaat voor en is gelijk aan 0. De variantie bestaat voor en is gelijk aan .
Tabel van kritieke t-waarden
[bewerken | brontekst bewerken]De onderstaande tabel geeft voor verschillende aantallen vrijheidsgraden en een aantal rechter overschrijdingskansen , de bijbehorende kritieke waarde , volgens:
waarin t-verdeeld is met vrijheidsgraden.
Voor grote aantallen vrijheidsgraden geeft de laatste rij van de tabel als benadering de kritieke waarden van de standaard normale verdeling, die beschouwd kunnen worden als de kritieke waarden bij oneindig veel vrijheidsgraden.
De waarden uit de tabel kunnen ook berekend worden met spreadsheets (Office Excel, OpenOffice Calc, etc.). De relevante spreadsheet functie is T.INV(α2-zijdig,ν).
ν α 25% 20% 15% 10% 5% 2,5% 1% 0,5% 0,25% 0,1% 0,05% 1 1,000 1,376 1,963 3,078 6,314 12,71 31,82 63,66 127,3 318,3 636,6 2 0,816 1,061 1,386 1,886 2,920 4,303 6,965 9,925 14,09 22,33 31,60 3 0,765 0,978 1,250 1,638 2,353 3,182 4,541 5,841 7,453 10,21 12,92 4 0,741 0,941 1,190 1,533 2,132 2,776 3,747 4,604 5,598 7,173 8,610 5 0,727 0,920 1,156 1,476 2,015 2,571 3,365 4,032 4,773 5,893 6,869 6 0,718 0,906 1,134 1,440 1,943 2,447 3,143 3,707 4,317 5,208 5,959 7 0,711 0,896 1,119 1,415 1,895 2,365 2,998 3,499 4,029 4,785 5,408 8 0,706 0,889 1,108 1,397 1,860 2,306 2,896 3,355 3,833 4,501 5,041 9 0,703 0,883 1,100 1,383 1,833 2,262 2,821 3,250 3,690 4,297 4,781 10 0,700 0,879 1,093 1,372 1,812 2,228 2,764 3,169 3,581 4,144 4,587 11 0,697 0,876 1,088 1,363 1,796 2,201 2,718 3,106 3,497 4,025 4,437 12 0,695 0,873 1,083 1,356 1,782 2,179 2,681 3,055 3,428 3,930 4,318 13 0,694 0,870 1,079 1,350 1,771 2,160 2,650 3,012 3,372 3,852 4,221 14 0,692 0,868 1,076 1,345 1,761 2,145 2,624 2,977 3,326 3,787 4,140 15 0,691 0,866 1,074 1,341 1,753 2,131 2,602 2,947 3,286 3,733 4,073 16 0,690 0,865 1,071 1,337 1,746 2,120 2,583 2,921 3,252 3,686 4,015 17 0,689 0,863 1,069 1,333 1,740 2,110 2,567 2,898 3,222 3,646 3,965 18 0,688 0,862 1,067 1,330 1,734 2,101 2,552 2,878 3,197 3,610 3,922 19 0,688 0,861 1,066 1,328 1,729 2,093 2,539 2,861 3,174 3,579 3,883 20 0,687 0,860 1,064 1,325 1,725 2,086 2,528 2,845 3,153 3,552 3,850 21 0,686 0,859 1,063 1,323 1,721 2,080 2,518 2,831 3,135 3,527 3,819 22 0,686 0,858 1,061 1,321 1,717 2,074 2,508 2,819 3,119 3,505 3,792 23 0,685 0,858 1,060 1,319 1,714 2,069 2,500 2,807 3,104 3,485 3,767 24 0,685 0,857 1,059 1,318 1,711 2,064 2,492 2,797 3,091 3,467 3,745 25 0,684 0,856 1,058 1,316 1,708 2,060 2,485 2,787 3,078 3,450 3,725 26 0,684 0,856 1,058 1,315 1,706 2,056 2,479 2,779 3,067 3,435 3,707 27 0,684 0,855 1,057 1,314 1,703 2,052 2,473 2,771 3,057 3,421 3,690 28 0,683 0,855 1,056 1,313 1,701 2,048 2,467 2,763 3,047 3,408 3,674 29 0,683 0,854 1,055 1,311 1,699 2,045 2,462 2,756 3,038 3,396 3,659 30 0,683 0,854 1,055 1,310 1,697 2,042 2,457 2,750 3,030 3,385 3,646 40 0,681 0,851 1,050 1,303 1,684 2,021 2,423 2,704 2,971 3,307 3,551 50 0,679 0,849 1,047 1,299 1,676 2,009 2,403 2,678 2,937 3,261 3,496 60 0,679 0,848 1,045 1,296 1,671 2,000 2,390 2,660 2,915 3,232 3,460 80 0,678 0,846 1,043 1,292 1,664 1,990 2,374 2,639 2,887 3,195 3,416 100 0,677 0,845 1,042 1,290 1,660 1,984 2,364 2,626 2,871 3,174 3,390 120 0,677 0,845 1,041 1,289 1,658 1,980 2,358 2,617 2,860 3,160 3,373 ∞ 0,674 0,842 1,036 1,282 1,645 1,960 2,326 2,576 2,807 3,090 3,291
Uit de tabel kunnen ook de kritieke waarden voor tweezijdige overschrijdingskansen worden afgelezen. Elke kolom correspondeert dan met een tweemaal zo grote overschrijdingskans.