LLVM 20.0.0git
JumpThreading.cpp
Go to the documentation of this file.
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Jump Threading pass.
10//
11//===----------------------------------------------------------------------===//
12
14#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/MapVector.h"
16#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/CFG.h"
29#include "llvm/Analysis/Loads.h"
36#include "llvm/IR/BasicBlock.h"
37#include "llvm/IR/CFG.h"
38#include "llvm/IR/Constant.h"
40#include "llvm/IR/Constants.h"
41#include "llvm/IR/DataLayout.h"
42#include "llvm/IR/DebugInfo.h"
43#include "llvm/IR/Dominators.h"
44#include "llvm/IR/Function.h"
45#include "llvm/IR/InstrTypes.h"
46#include "llvm/IR/Instruction.h"
49#include "llvm/IR/Intrinsics.h"
50#include "llvm/IR/LLVMContext.h"
51#include "llvm/IR/MDBuilder.h"
52#include "llvm/IR/Metadata.h"
53#include "llvm/IR/Module.h"
54#include "llvm/IR/PassManager.h"
57#include "llvm/IR/Type.h"
58#include "llvm/IR/Use.h"
59#include "llvm/IR/Value.h"
64#include "llvm/Support/Debug.h"
71#include <cassert>
72#include <cstdint>
73#include <iterator>
74#include <memory>
75#include <utility>
76
77using namespace llvm;
78using namespace jumpthreading;
79
80#define DEBUG_TYPE "jump-threading"
81
82STATISTIC(NumThreads, "Number of jumps threaded");
83STATISTIC(NumFolds, "Number of terminators folded");
84STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
85
87BBDuplicateThreshold("jump-threading-threshold",
88 cl::desc("Max block size to duplicate for jump threading"),
90
93 "jump-threading-implication-search-threshold",
94 cl::desc("The number of predecessors to search for a stronger "
95 "condition to use to thread over a weaker condition"),
97
99 "jump-threading-phi-threshold",
100 cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76),
101 cl::Hidden);
102
104 "jump-threading-across-loop-headers",
105 cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
106 cl::init(false), cl::Hidden);
107
109 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
110}
111
112// Update branch probability information according to conditional
113// branch probability. This is usually made possible for cloned branches
114// in inline instances by the context specific profile in the caller.
115// For instance,
116//
117// [Block PredBB]
118// [Branch PredBr]
119// if (t) {
120// Block A;
121// } else {
122// Block B;
123// }
124//
125// [Block BB]
126// cond = PN([true, %A], [..., %B]); // PHI node
127// [Branch CondBr]
128// if (cond) {
129// ... // P(cond == true) = 1%
130// }
131//
132// Here we know that when block A is taken, cond must be true, which means
133// P(cond == true | A) = 1
134//
135// Given that P(cond == true) = P(cond == true | A) * P(A) +
136// P(cond == true | B) * P(B)
137// we get:
138// P(cond == true ) = P(A) + P(cond == true | B) * P(B)
139//
140// which gives us:
141// P(A) is less than P(cond == true), i.e.
142// P(t == true) <= P(cond == true)
143//
144// In other words, if we know P(cond == true) is unlikely, we know
145// that P(t == true) is also unlikely.
146//
148 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
149 if (!CondBr)
150 return;
151
152 uint64_t TrueWeight, FalseWeight;
153 if (!extractBranchWeights(*CondBr, TrueWeight, FalseWeight))
154 return;
155
156 if (TrueWeight + FalseWeight == 0)
157 // Zero branch_weights do not give a hint for getting branch probabilities.
158 // Technically it would result in division by zero denominator, which is
159 // TrueWeight + FalseWeight.
160 return;
161
162 // Returns the outgoing edge of the dominating predecessor block
163 // that leads to the PhiNode's incoming block:
164 auto GetPredOutEdge =
165 [](BasicBlock *IncomingBB,
166 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
167 auto *PredBB = IncomingBB;
168 auto *SuccBB = PhiBB;
170 while (true) {
171 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
172 if (PredBr && PredBr->isConditional())
173 return {PredBB, SuccBB};
174 Visited.insert(PredBB);
175 auto *SinglePredBB = PredBB->getSinglePredecessor();
176 if (!SinglePredBB)
177 return {nullptr, nullptr};
178
179 // Stop searching when SinglePredBB has been visited. It means we see
180 // an unreachable loop.
181 if (Visited.count(SinglePredBB))
182 return {nullptr, nullptr};
183
184 SuccBB = PredBB;
185 PredBB = SinglePredBB;
186 }
187 };
188
189 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
190 Value *PhiOpnd = PN->getIncomingValue(i);
191 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
192
193 if (!CI || !CI->getType()->isIntegerTy(1))
194 continue;
195
198 TrueWeight, TrueWeight + FalseWeight)
200 FalseWeight, TrueWeight + FalseWeight));
201
202 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
203 if (!PredOutEdge.first)
204 return;
205
206 BasicBlock *PredBB = PredOutEdge.first;
207 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
208 if (!PredBr)
209 return;
210
211 uint64_t PredTrueWeight, PredFalseWeight;
212 // FIXME: We currently only set the profile data when it is missing.
213 // With PGO, this can be used to refine even existing profile data with
214 // context information. This needs to be done after more performance
215 // testing.
216 if (extractBranchWeights(*PredBr, PredTrueWeight, PredFalseWeight))
217 continue;
218
219 // We can not infer anything useful when BP >= 50%, because BP is the
220 // upper bound probability value.
221 if (BP >= BranchProbability(50, 100))
222 continue;
223
224 uint32_t Weights[2];
225 if (PredBr->getSuccessor(0) == PredOutEdge.second) {
226 Weights[0] = BP.getNumerator();
227 Weights[1] = BP.getCompl().getNumerator();
228 } else {
229 Weights[0] = BP.getCompl().getNumerator();
230 Weights[1] = BP.getNumerator();
231 }
232 setBranchWeights(*PredBr, Weights, hasBranchWeightOrigin(*PredBr));
233 }
234}
235
238 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
239 // Jump Threading has no sense for the targets with divergent CF
241 return PreservedAnalyses::all();
242 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
243 auto &LVI = AM.getResult<LazyValueAnalysis>(F);
244 auto &AA = AM.getResult<AAManager>(F);
245 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
246
247 bool Changed =
248 runImpl(F, &AM, &TLI, &TTI, &LVI, &AA,
249 std::make_unique<DomTreeUpdater>(
250 &DT, nullptr, DomTreeUpdater::UpdateStrategy::Lazy),
251 std::nullopt, std::nullopt);
252
253 if (!Changed)
254 return PreservedAnalyses::all();
255
256
258
259#if defined(EXPENSIVE_CHECKS)
260 assert(getDomTreeUpdater()->getDomTree().verify(
261 DominatorTree::VerificationLevel::Full) &&
262 "DT broken after JumpThreading");
263 assert((!getDomTreeUpdater()->hasPostDomTree() ||
264 getDomTreeUpdater()->getPostDomTree().verify(
266 "PDT broken after JumpThreading");
267#else
268 assert(getDomTreeUpdater()->getDomTree().verify(
269 DominatorTree::VerificationLevel::Fast) &&
270 "DT broken after JumpThreading");
271 assert((!getDomTreeUpdater()->hasPostDomTree() ||
272 getDomTreeUpdater()->getPostDomTree().verify(
274 "PDT broken after JumpThreading");
275#endif
276
277 return getPreservedAnalysis();
278}
279
281 TargetLibraryInfo *TLI_,
283 AliasAnalysis *AA_,
284 std::unique_ptr<DomTreeUpdater> DTU_,
285 std::optional<BlockFrequencyInfo *> BFI_,
286 std::optional<BranchProbabilityInfo *> BPI_) {
287 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F_.getName() << "'\n");
288 F = &F_;
289 FAM = FAM_;
290 TLI = TLI_;
291 TTI = TTI_;
292 LVI = LVI_;
293 AA = AA_;
294 DTU = std::move(DTU_);
295 BFI = BFI_;
296 BPI = BPI_;
297 auto *GuardDecl = Intrinsic::getDeclarationIfExists(
298 F->getParent(), Intrinsic::experimental_guard);
299 HasGuards = GuardDecl && !GuardDecl->use_empty();
300
301 // Reduce the number of instructions duplicated when optimizing strictly for
302 // size.
303 if (BBDuplicateThreshold.getNumOccurrences())
304 BBDupThreshold = BBDuplicateThreshold;
305 else if (F->hasFnAttribute(Attribute::MinSize))
306 BBDupThreshold = 3;
307 else
308 BBDupThreshold = DefaultBBDupThreshold;
309
310 // JumpThreading must not processes blocks unreachable from entry. It's a
311 // waste of compute time and can potentially lead to hangs.
313 assert(DTU && "DTU isn't passed into JumpThreading before using it.");
314 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
315 DominatorTree &DT = DTU->getDomTree();
316 for (auto &BB : *F)
317 if (!DT.isReachableFromEntry(&BB))
318 Unreachable.insert(&BB);
319
322
323 bool EverChanged = false;
324 bool Changed;
325 do {
326 Changed = false;
327 for (auto &BB : *F) {
328 if (Unreachable.count(&BB))
329 continue;
330 while (processBlock(&BB)) // Thread all of the branches we can over BB.
331 Changed = ChangedSinceLastAnalysisUpdate = true;
332
333 // Stop processing BB if it's the entry or is now deleted. The following
334 // routines attempt to eliminate BB and locating a suitable replacement
335 // for the entry is non-trivial.
336 if (&BB == &F->getEntryBlock() || DTU->isBBPendingDeletion(&BB))
337 continue;
338
339 if (pred_empty(&BB)) {
340 // When processBlock makes BB unreachable it doesn't bother to fix up
341 // the instructions in it. We must remove BB to prevent invalid IR.
342 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName()
343 << "' with terminator: " << *BB.getTerminator()
344 << '\n');
345 LoopHeaders.erase(&BB);
346 LVI->eraseBlock(&BB);
347 DeleteDeadBlock(&BB, DTU.get());
348 Changed = ChangedSinceLastAnalysisUpdate = true;
349 continue;
350 }
351
352 // processBlock doesn't thread BBs with unconditional TIs. However, if BB
353 // is "almost empty", we attempt to merge BB with its sole successor.
354 auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
355 if (BI && BI->isUnconditional()) {
356 BasicBlock *Succ = BI->getSuccessor(0);
357 if (
358 // The terminator must be the only non-phi instruction in BB.
359 BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
360 // Don't alter Loop headers and latches to ensure another pass can
361 // detect and transform nested loops later.
362 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
364 // BB is valid for cleanup here because we passed in DTU. F remains
365 // BB's parent until a DTU->getDomTree() event.
366 LVI->eraseBlock(&BB);
367 Changed = ChangedSinceLastAnalysisUpdate = true;
368 }
369 }
370 }
371 EverChanged |= Changed;
372 } while (Changed);
373
374 // Jump threading may have introduced redundant debug values into F which
375 // should be removed.
376 if (EverChanged)
377 for (auto &BB : *F) {
379 }
380
381 LoopHeaders.clear();
382 return EverChanged;
383}
384
385// Replace uses of Cond with ToVal when safe to do so. If all uses are
386// replaced, we can remove Cond. We cannot blindly replace all uses of Cond
387// because we may incorrectly replace uses when guards/assumes are uses of
388// of `Cond` and we used the guards/assume to reason about the `Cond` value
389// at the end of block. RAUW unconditionally replaces all uses
390// including the guards/assumes themselves and the uses before the
391// guard/assume.
393 BasicBlock *KnownAtEndOfBB) {
394 bool Changed = false;
395 assert(Cond->getType() == ToVal->getType());
396 // We can unconditionally replace all uses in non-local blocks (i.e. uses
397 // strictly dominated by BB), since LVI information is true from the
398 // terminator of BB.
399 if (Cond->getParent() == KnownAtEndOfBB)
400 Changed |= replaceNonLocalUsesWith(Cond, ToVal);
401 for (Instruction &I : reverse(*KnownAtEndOfBB)) {
402 // Replace any debug-info record users of Cond with ToVal.
403 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange()))
404 DVR.replaceVariableLocationOp(Cond, ToVal, true);
405
406 // Reached the Cond whose uses we are trying to replace, so there are no
407 // more uses.
408 if (&I == Cond)
409 break;
410 // We only replace uses in instructions that are guaranteed to reach the end
411 // of BB, where we know Cond is ToVal.
413 break;
414 Changed |= I.replaceUsesOfWith(Cond, ToVal);
415 }
416 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) {
417 Cond->eraseFromParent();
418 Changed = true;
419 }
420 return Changed;
421}
422
423/// Return the cost of duplicating a piece of this block from first non-phi
424/// and before StopAt instruction to thread across it. Stop scanning the block
425/// when exceeding the threshold. If duplication is impossible, returns ~0U.
427 BasicBlock *BB,
428 Instruction *StopAt,
429 unsigned Threshold) {
430 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
431
432 // Do not duplicate the BB if it has a lot of PHI nodes.
433 // If a threadable chain is too long then the number of PHI nodes can add up,
434 // leading to a substantial increase in compile time when rewriting the SSA.
435 unsigned PhiCount = 0;
436 Instruction *FirstNonPHI = nullptr;
437 for (Instruction &I : *BB) {
438 if (!isa<PHINode>(&I)) {
439 FirstNonPHI = &I;
440 break;
441 }
442 if (++PhiCount > PhiDuplicateThreshold)
443 return ~0U;
444 }
445
446 /// Ignore PHI nodes, these will be flattened when duplication happens.
447 BasicBlock::const_iterator I(FirstNonPHI);
448
449 // FIXME: THREADING will delete values that are just used to compute the
450 // branch, so they shouldn't count against the duplication cost.
451
452 unsigned Bonus = 0;
453 if (BB->getTerminator() == StopAt) {
454 // Threading through a switch statement is particularly profitable. If this
455 // block ends in a switch, decrease its cost to make it more likely to
456 // happen.
457 if (isa<SwitchInst>(StopAt))
458 Bonus = 6;
459
460 // The same holds for indirect branches, but slightly more so.
461 if (isa<IndirectBrInst>(StopAt))
462 Bonus = 8;
463 }
464
465 // Bump the threshold up so the early exit from the loop doesn't skip the
466 // terminator-based Size adjustment at the end.
467 Threshold += Bonus;
468
469 // Sum up the cost of each instruction until we get to the terminator. Don't
470 // include the terminator because the copy won't include it.
471 unsigned Size = 0;
472 for (; &*I != StopAt; ++I) {
473
474 // Stop scanning the block if we've reached the threshold.
475 if (Size > Threshold)
476 return Size;
477
478 // Bail out if this instruction gives back a token type, it is not possible
479 // to duplicate it if it is used outside this BB.
480 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
481 return ~0U;
482
483 // Blocks with NoDuplicate are modelled as having infinite cost, so they
484 // are never duplicated.
485 if (const CallInst *CI = dyn_cast<CallInst>(I))
486 if (CI->cannotDuplicate() || CI->isConvergent())
487 return ~0U;
488
491 continue;
492
493 // All other instructions count for at least one unit.
494 ++Size;
495
496 // Calls are more expensive. If they are non-intrinsic calls, we model them
497 // as having cost of 4. If they are a non-vector intrinsic, we model them
498 // as having cost of 2 total, and if they are a vector intrinsic, we model
499 // them as having cost 1.
500 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
501 if (!isa<IntrinsicInst>(CI))
502 Size += 3;
503 else if (!CI->getType()->isVectorTy())
504 Size += 1;
505 }
506 }
507
508 return Size > Bonus ? Size - Bonus : 0;
509}
510
511/// findLoopHeaders - We do not want jump threading to turn proper loop
512/// structures into irreducible loops. Doing this breaks up the loop nesting
513/// hierarchy and pessimizes later transformations. To prevent this from
514/// happening, we first have to find the loop headers. Here we approximate this
515/// by finding targets of backedges in the CFG.
516///
517/// Note that there definitely are cases when we want to allow threading of
518/// edges across a loop header. For example, threading a jump from outside the
519/// loop (the preheader) to an exit block of the loop is definitely profitable.
520/// It is also almost always profitable to thread backedges from within the loop
521/// to exit blocks, and is often profitable to thread backedges to other blocks
522/// within the loop (forming a nested loop). This simple analysis is not rich
523/// enough to track all of these properties and keep it up-to-date as the CFG
524/// mutates, so we don't allow any of these transformations.
527 FindFunctionBackedges(F, Edges);
528
529 for (const auto &Edge : Edges)
530 LoopHeaders.insert(Edge.second);
531}
532
533/// getKnownConstant - Helper method to determine if we can thread over a
534/// terminator with the given value as its condition, and if so what value to
535/// use for that. What kind of value this is depends on whether we want an
536/// integer or a block address, but an undef is always accepted.
537/// Returns null if Val is null or not an appropriate constant.
539 if (!Val)
540 return nullptr;
541
542 // Undef is "known" enough.
543 if (UndefValue *U = dyn_cast<UndefValue>(Val))
544 return U;
545
546 if (Preference == WantBlockAddress)
547 return dyn_cast<BlockAddress>(Val->stripPointerCasts());
548
549 return dyn_cast<ConstantInt>(Val);
550}
551
552/// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
553/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
554/// in any of our predecessors. If so, return the known list of value and pred
555/// BB in the result vector.
556///
557/// This returns true if there were any known values.
559 Value *V, BasicBlock *BB, PredValueInfo &Result,
560 ConstantPreference Preference, SmallPtrSet<Value *, 4> &RecursionSet,
561 Instruction *CxtI) {
562 const DataLayout &DL = BB->getDataLayout();
563
564 // This method walks up use-def chains recursively. Because of this, we could
565 // get into an infinite loop going around loops in the use-def chain. To
566 // prevent this, keep track of what (value, block) pairs we've already visited
567 // and terminate the search if we loop back to them
568 if (!RecursionSet.insert(V).second)
569 return false;
570
571 // If V is a constant, then it is known in all predecessors.
572 if (Constant *KC = getKnownConstant(V, Preference)) {
573 for (BasicBlock *Pred : predecessors(BB))
574 Result.emplace_back(KC, Pred);
575
576 return !Result.empty();
577 }
578
579 // If V is a non-instruction value, or an instruction in a different block,
580 // then it can't be derived from a PHI.
581 Instruction *I = dyn_cast<Instruction>(V);
582 if (!I || I->getParent() != BB) {
583
584 // Okay, if this is a live-in value, see if it has a known value at the any
585 // edge from our predecessors.
586 for (BasicBlock *P : predecessors(BB)) {
587 using namespace PatternMatch;
588 // If the value is known by LazyValueInfo to be a constant in a
589 // predecessor, use that information to try to thread this block.
590 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
591 // If I is a non-local compare-with-constant instruction, use more-rich
592 // 'getPredicateOnEdge' method. This would be able to handle value
593 // inequalities better, for example if the compare is "X < 4" and "X < 3"
594 // is known true but "X < 4" itself is not available.
595 CmpPredicate Pred;
596 Value *Val;
597 Constant *Cst;
598 if (!PredCst && match(V, m_Cmp(Pred, m_Value(Val), m_Constant(Cst))))
599 PredCst = LVI->getPredicateOnEdge(Pred, Val, Cst, P, BB, CxtI);
600 if (Constant *KC = getKnownConstant(PredCst, Preference))
601 Result.emplace_back(KC, P);
602 }
603
604 return !Result.empty();
605 }
606
607 /// If I is a PHI node, then we know the incoming values for any constants.
608 if (PHINode *PN = dyn_cast<PHINode>(I)) {
609 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
610 Value *InVal = PN->getIncomingValue(i);
611 if (Constant *KC = getKnownConstant(InVal, Preference)) {
612 Result.emplace_back(KC, PN->getIncomingBlock(i));
613 } else {
614 Constant *CI = LVI->getConstantOnEdge(InVal,
615 PN->getIncomingBlock(i),
616 BB, CxtI);
617 if (Constant *KC = getKnownConstant(CI, Preference))
618 Result.emplace_back(KC, PN->getIncomingBlock(i));
619 }
620 }
621
622 return !Result.empty();
623 }
624
625 // Handle Cast instructions.
626 if (CastInst *CI = dyn_cast<CastInst>(I)) {
627 Value *Source = CI->getOperand(0);
628 PredValueInfoTy Vals;
629 computeValueKnownInPredecessorsImpl(Source, BB, Vals, Preference,
630 RecursionSet, CxtI);
631 if (Vals.empty())
632 return false;
633
634 // Convert the known values.
635 for (auto &Val : Vals)
636 if (Constant *Folded = ConstantFoldCastOperand(CI->getOpcode(), Val.first,
637 CI->getType(), DL))
638 Result.emplace_back(Folded, Val.second);
639
640 return !Result.empty();
641 }
642
643 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
644 Value *Source = FI->getOperand(0);
645 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
646 RecursionSet, CxtI);
647
648 erase_if(Result, [](auto &Pair) {
649 return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
650 });
651
652 return !Result.empty();
653 }
654
655 // Handle some boolean conditions.
656 if (I->getType()->getPrimitiveSizeInBits() == 1) {
657 using namespace PatternMatch;
658 if (Preference != WantInteger)
659 return false;
660 // X | true -> true
661 // X & false -> false
662 Value *Op0, *Op1;
663 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
664 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
665 PredValueInfoTy LHSVals, RHSVals;
666
668 RecursionSet, CxtI);
670 RecursionSet, CxtI);
671
672 if (LHSVals.empty() && RHSVals.empty())
673 return false;
674
675 ConstantInt *InterestingVal;
676 if (match(I, m_LogicalOr()))
677 InterestingVal = ConstantInt::getTrue(I->getContext());
678 else
679 InterestingVal = ConstantInt::getFalse(I->getContext());
680
681 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
682
683 // Scan for the sentinel. If we find an undef, force it to the
684 // interesting value: x|undef -> true and x&undef -> false.
685 for (const auto &LHSVal : LHSVals)
686 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
687 Result.emplace_back(InterestingVal, LHSVal.second);
688 LHSKnownBBs.insert(LHSVal.second);
689 }
690 for (const auto &RHSVal : RHSVals)
691 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
692 // If we already inferred a value for this block on the LHS, don't
693 // re-add it.
694 if (!LHSKnownBBs.count(RHSVal.second))
695 Result.emplace_back(InterestingVal, RHSVal.second);
696 }
697
698 return !Result.empty();
699 }
700
701 // Handle the NOT form of XOR.
702 if (I->getOpcode() == Instruction::Xor &&
703 isa<ConstantInt>(I->getOperand(1)) &&
704 cast<ConstantInt>(I->getOperand(1))->isOne()) {
705 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
706 WantInteger, RecursionSet, CxtI);
707 if (Result.empty())
708 return false;
709
710 // Invert the known values.
711 for (auto &R : Result)
712 R.first = ConstantExpr::getNot(R.first);
713
714 return true;
715 }
716
717 // Try to simplify some other binary operator values.
718 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
719 if (Preference != WantInteger)
720 return false;
721 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
722 PredValueInfoTy LHSVals;
723 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
724 WantInteger, RecursionSet, CxtI);
725
726 // Try to use constant folding to simplify the binary operator.
727 for (const auto &LHSVal : LHSVals) {
728 Constant *V = LHSVal.first;
729 Constant *Folded =
730 ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL);
731
732 if (Constant *KC = getKnownConstant(Folded, WantInteger))
733 Result.emplace_back(KC, LHSVal.second);
734 }
735 }
736
737 return !Result.empty();
738 }
739
740 // Handle compare with phi operand, where the PHI is defined in this block.
741 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
742 if (Preference != WantInteger)
743 return false;
744 Type *CmpType = Cmp->getType();
745 Value *CmpLHS = Cmp->getOperand(0);
746 Value *CmpRHS = Cmp->getOperand(1);
747 CmpInst::Predicate Pred = Cmp->getPredicate();
748
749 PHINode *PN = dyn_cast<PHINode>(CmpLHS);
750 if (!PN)
751 PN = dyn_cast<PHINode>(CmpRHS);
752 // Do not perform phi translation across a loop header phi, because this
753 // may result in comparison of values from two different loop iterations.
754 // FIXME: This check is broken if LoopHeaders is not populated.
755 if (PN && PN->getParent() == BB && !LoopHeaders.contains(BB)) {
756 const DataLayout &DL = PN->getDataLayout();
757 // We can do this simplification if any comparisons fold to true or false.
758 // See if any do.
759 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
760 BasicBlock *PredBB = PN->getIncomingBlock(i);
761 Value *LHS, *RHS;
762 if (PN == CmpLHS) {
763 LHS = PN->getIncomingValue(i);
764 RHS = CmpRHS->DoPHITranslation(BB, PredBB);
765 } else {
766 LHS = CmpLHS->DoPHITranslation(BB, PredBB);
767 RHS = PN->getIncomingValue(i);
768 }
769 Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL});
770 if (!Res) {
771 if (!isa<Constant>(RHS))
772 continue;
773
774 // getPredicateOnEdge call will make no sense if LHS is defined in BB.
775 auto LHSInst = dyn_cast<Instruction>(LHS);
776 if (LHSInst && LHSInst->getParent() == BB)
777 continue;
778
779 Res = LVI->getPredicateOnEdge(Pred, LHS, cast<Constant>(RHS), PredBB,
780 BB, CxtI ? CxtI : Cmp);
781 }
782
783 if (Constant *KC = getKnownConstant(Res, WantInteger))
784 Result.emplace_back(KC, PredBB);
785 }
786
787 return !Result.empty();
788 }
789
790 // If comparing a live-in value against a constant, see if we know the
791 // live-in value on any predecessors.
792 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
793 Constant *CmpConst = cast<Constant>(CmpRHS);
794
795 if (!isa<Instruction>(CmpLHS) ||
796 cast<Instruction>(CmpLHS)->getParent() != BB) {
797 for (BasicBlock *P : predecessors(BB)) {
798 // If the value is known by LazyValueInfo to be a constant in a
799 // predecessor, use that information to try to thread this block.
800 Constant *Res = LVI->getPredicateOnEdge(Pred, CmpLHS, CmpConst, P, BB,
801 CxtI ? CxtI : Cmp);
802 if (Constant *KC = getKnownConstant(Res, WantInteger))
803 Result.emplace_back(KC, P);
804 }
805
806 return !Result.empty();
807 }
808
809 // InstCombine can fold some forms of constant range checks into
810 // (icmp (add (x, C1)), C2). See if we have we have such a thing with
811 // x as a live-in.
812 {
813 using namespace PatternMatch;
814
815 Value *AddLHS;
816 ConstantInt *AddConst;
817 if (isa<ConstantInt>(CmpConst) &&
818 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
819 if (!isa<Instruction>(AddLHS) ||
820 cast<Instruction>(AddLHS)->getParent() != BB) {
821 for (BasicBlock *P : predecessors(BB)) {
822 // If the value is known by LazyValueInfo to be a ConstantRange in
823 // a predecessor, use that information to try to thread this
824 // block.
826 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
827 // Propagate the range through the addition.
828 CR = CR.add(AddConst->getValue());
829
830 // Get the range where the compare returns true.
832 Pred, cast<ConstantInt>(CmpConst)->getValue());
833
834 Constant *ResC;
835 if (CmpRange.contains(CR))
836 ResC = ConstantInt::getTrue(CmpType);
837 else if (CmpRange.inverse().contains(CR))
838 ResC = ConstantInt::getFalse(CmpType);
839 else
840 continue;
841
842 Result.emplace_back(ResC, P);
843 }
844
845 return !Result.empty();
846 }
847 }
848 }
849
850 // Try to find a constant value for the LHS of a comparison,
851 // and evaluate it statically if we can.
852 PredValueInfoTy LHSVals;
853 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
854 WantInteger, RecursionSet, CxtI);
855
856 for (const auto &LHSVal : LHSVals) {
857 Constant *V = LHSVal.first;
858 Constant *Folded =
859 ConstantFoldCompareInstOperands(Pred, V, CmpConst, DL);
860 if (Constant *KC = getKnownConstant(Folded, WantInteger))
861 Result.emplace_back(KC, LHSVal.second);
862 }
863
864 return !Result.empty();
865 }
866 }
867
868 if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
869 // Handle select instructions where at least one operand is a known constant
870 // and we can figure out the condition value for any predecessor block.
871 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
872 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
873 PredValueInfoTy Conds;
874 if ((TrueVal || FalseVal) &&
875 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
876 WantInteger, RecursionSet, CxtI)) {
877 for (auto &C : Conds) {
878 Constant *Cond = C.first;
879
880 // Figure out what value to use for the condition.
881 bool KnownCond;
882 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
883 // A known boolean.
884 KnownCond = CI->isOne();
885 } else {
886 assert(isa<UndefValue>(Cond) && "Unexpected condition value");
887 // Either operand will do, so be sure to pick the one that's a known
888 // constant.
889 // FIXME: Do this more cleverly if both values are known constants?
890 KnownCond = (TrueVal != nullptr);
891 }
892
893 // See if the select has a known constant value for this predecessor.
894 if (Constant *Val = KnownCond ? TrueVal : FalseVal)
895 Result.emplace_back(Val, C.second);
896 }
897
898 return !Result.empty();
899 }
900 }
901
902 // If all else fails, see if LVI can figure out a constant value for us.
903 assert(CxtI->getParent() == BB && "CxtI should be in BB");
904 Constant *CI = LVI->getConstant(V, CxtI);
905 if (Constant *KC = getKnownConstant(CI, Preference)) {
906 for (BasicBlock *Pred : predecessors(BB))
907 Result.emplace_back(KC, Pred);
908 }
909
910 return !Result.empty();
911}
912
913/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
914/// in an undefined jump, decide which block is best to revector to.
915///
916/// Since we can pick an arbitrary destination, we pick the successor with the
917/// fewest predecessors. This should reduce the in-degree of the others.
919 Instruction *BBTerm = BB->getTerminator();
920 unsigned MinSucc = 0;
921 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
922 // Compute the successor with the minimum number of predecessors.
923 unsigned MinNumPreds = pred_size(TestBB);
924 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
925 TestBB = BBTerm->getSuccessor(i);
926 unsigned NumPreds = pred_size(TestBB);
927 if (NumPreds < MinNumPreds) {
928 MinSucc = i;
929 MinNumPreds = NumPreds;
930 }
931 }
932
933 return MinSucc;
934}
935
937 if (!BB->hasAddressTaken()) return false;
938
939 // If the block has its address taken, it may be a tree of dead constants
940 // hanging off of it. These shouldn't keep the block alive.
943 return !BA->use_empty();
944}
945
946/// processBlock - If there are any predecessors whose control can be threaded
947/// through to a successor, transform them now.
949 // If the block is trivially dead, just return and let the caller nuke it.
950 // This simplifies other transformations.
951 if (DTU->isBBPendingDeletion(BB) ||
952 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
953 return false;
954
955 // If this block has a single predecessor, and if that pred has a single
956 // successor, merge the blocks. This encourages recursive jump threading
957 // because now the condition in this block can be threaded through
958 // predecessors of our predecessor block.
960 return true;
961
963 return true;
964
965 // Look if we can propagate guards to predecessors.
966 if (HasGuards && processGuards(BB))
967 return true;
968
969 // What kind of constant we're looking for.
970 ConstantPreference Preference = WantInteger;
971
972 // Look to see if the terminator is a conditional branch, switch or indirect
973 // branch, if not we can't thread it.
974 Value *Condition;
975 Instruction *Terminator = BB->getTerminator();
976 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
977 // Can't thread an unconditional jump.
978 if (BI->isUnconditional()) return false;
979 Condition = BI->getCondition();
980 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
981 Condition = SI->getCondition();
982 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
983 // Can't thread indirect branch with no successors.
984 if (IB->getNumSuccessors() == 0) return false;
985 Condition = IB->getAddress()->stripPointerCasts();
986 Preference = WantBlockAddress;
987 } else {
988 return false; // Must be an invoke or callbr.
989 }
990
991 // Keep track if we constant folded the condition in this invocation.
992 bool ConstantFolded = false;
993
994 // Run constant folding to see if we can reduce the condition to a simple
995 // constant.
996 if (Instruction *I = dyn_cast<Instruction>(Condition)) {
997 Value *SimpleVal =
999 if (SimpleVal) {
1000 I->replaceAllUsesWith(SimpleVal);
1001 if (isInstructionTriviallyDead(I, TLI))
1002 I->eraseFromParent();
1003 Condition = SimpleVal;
1004 ConstantFolded = true;
1005 }
1006 }
1007
1008 // If the terminator is branching on an undef or freeze undef, we can pick any
1009 // of the successors to branch to. Let getBestDestForJumpOnUndef decide.
1010 auto *FI = dyn_cast<FreezeInst>(Condition);
1011 if (isa<UndefValue>(Condition) ||
1012 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1013 unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1014 std::vector<DominatorTree::UpdateType> Updates;
1015
1016 // Fold the branch/switch.
1017 Instruction *BBTerm = BB->getTerminator();
1018 Updates.reserve(BBTerm->getNumSuccessors());
1019 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1020 if (i == BestSucc) continue;
1021 BasicBlock *Succ = BBTerm->getSuccessor(i);
1022 Succ->removePredecessor(BB, true);
1023 Updates.push_back({DominatorTree::Delete, BB, Succ});
1024 }
1025
1026 LLVM_DEBUG(dbgs() << " In block '" << BB->getName()
1027 << "' folding undef terminator: " << *BBTerm << '\n');
1028 Instruction *NewBI = BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm->getIterator());
1029 NewBI->setDebugLoc(BBTerm->getDebugLoc());
1030 ++NumFolds;
1031 BBTerm->eraseFromParent();
1032 DTU->applyUpdatesPermissive(Updates);
1033 if (FI)
1034 FI->eraseFromParent();
1035 return true;
1036 }
1037
1038 // If the terminator of this block is branching on a constant, simplify the
1039 // terminator to an unconditional branch. This can occur due to threading in
1040 // other blocks.
1041 if (getKnownConstant(Condition, Preference)) {
1042 LLVM_DEBUG(dbgs() << " In block '" << BB->getName()
1043 << "' folding terminator: " << *BB->getTerminator()
1044 << '\n');
1045 ++NumFolds;
1046 ConstantFoldTerminator(BB, true, nullptr, DTU.get());
1047 if (auto *BPI = getBPI())
1048 BPI->eraseBlock(BB);
1049 return true;
1050 }
1051
1052 Instruction *CondInst = dyn_cast<Instruction>(Condition);
1053
1054 // All the rest of our checks depend on the condition being an instruction.
1055 if (!CondInst) {
1056 // FIXME: Unify this with code below.
1057 if (processThreadableEdges(Condition, BB, Preference, Terminator))
1058 return true;
1059 return ConstantFolded;
1060 }
1061
1062 // Some of the following optimization can safely work on the unfrozen cond.
1063 Value *CondWithoutFreeze = CondInst;
1064 if (auto *FI = dyn_cast<FreezeInst>(CondInst))
1065 CondWithoutFreeze = FI->getOperand(0);
1066
1067 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) {
1068 // If we're branching on a conditional, LVI might be able to determine
1069 // it's value at the branch instruction. We only handle comparisons
1070 // against a constant at this time.
1071 if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) {
1072 Constant *Res =
1073 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1074 CondConst, BB->getTerminator(),
1075 /*UseBlockValue=*/false);
1076 if (Res) {
1077 // We can safely replace *some* uses of the CondInst if it has
1078 // exactly one value as returned by LVI. RAUW is incorrect in the
1079 // presence of guards and assumes, that have the `Cond` as the use. This
1080 // is because we use the guards/assume to reason about the `Cond` value
1081 // at the end of block, but RAUW unconditionally replaces all uses
1082 // including the guards/assumes themselves and the uses before the
1083 // guard/assume.
1084 if (replaceFoldableUses(CondCmp, Res, BB))
1085 return true;
1086 }
1087
1088 // We did not manage to simplify this branch, try to see whether
1089 // CondCmp depends on a known phi-select pattern.
1090 if (tryToUnfoldSelect(CondCmp, BB))
1091 return true;
1092 }
1093 }
1094
1095 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1096 if (tryToUnfoldSelect(SI, BB))
1097 return true;
1098
1099 // Check for some cases that are worth simplifying. Right now we want to look
1100 // for loads that are used by a switch or by the condition for the branch. If
1101 // we see one, check to see if it's partially redundant. If so, insert a PHI
1102 // which can then be used to thread the values.
1103 Value *SimplifyValue = CondWithoutFreeze;
1104
1105 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1106 if (isa<Constant>(CondCmp->getOperand(1)))
1107 SimplifyValue = CondCmp->getOperand(0);
1108
1109 // TODO: There are other places where load PRE would be profitable, such as
1110 // more complex comparisons.
1111 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1113 return true;
1114
1115 // Before threading, try to propagate profile data backwards:
1116 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1117 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1119
1120 // Handle a variety of cases where we are branching on something derived from
1121 // a PHI node in the current block. If we can prove that any predecessors
1122 // compute a predictable value based on a PHI node, thread those predecessors.
1123 if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1124 return true;
1125
1126 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1127 // the current block, see if we can simplify.
1128 PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze);
1129 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1130 return processBranchOnPHI(PN);
1131
1132 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1133 if (CondInst->getOpcode() == Instruction::Xor &&
1134 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1135 return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1136
1137 // Search for a stronger dominating condition that can be used to simplify a
1138 // conditional branch leaving BB.
1140 return true;
1141
1142 return false;
1143}
1144
1146 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1147 if (!BI || !BI->isConditional())
1148 return false;
1149
1150 Value *Cond = BI->getCondition();
1151 // Assuming that predecessor's branch was taken, if pred's branch condition
1152 // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1153 // freeze(Cond) is either true or a nondeterministic value.
1154 // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1155 // without affecting other instructions.
1156 auto *FICond = dyn_cast<FreezeInst>(Cond);
1157 if (FICond && FICond->hasOneUse())
1158 Cond = FICond->getOperand(0);
1159 else
1160 FICond = nullptr;
1161
1162 BasicBlock *CurrentBB = BB;
1163 BasicBlock *CurrentPred = BB->getSinglePredecessor();
1164 unsigned Iter = 0;
1165
1166 auto &DL = BB->getDataLayout();
1167
1168 while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1169 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1170 if (!PBI || !PBI->isConditional())
1171 return false;
1172 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1173 return false;
1174
1175 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1176 std::optional<bool> Implication =
1177 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1178
1179 // If the branch condition of BB (which is Cond) and CurrentPred are
1180 // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1181 if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
1182 if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
1183 FICond->getOperand(0))
1184 Implication = CondIsTrue;
1185 }
1186
1187 if (Implication) {
1188 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1189 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1190 RemoveSucc->removePredecessor(BB);
1191 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI->getIterator());
1192 UncondBI->setDebugLoc(BI->getDebugLoc());
1193 ++NumFolds;
1194 BI->eraseFromParent();
1195 if (FICond)
1196 FICond->eraseFromParent();
1197
1198 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1199 if (auto *BPI = getBPI())
1200 BPI->eraseBlock(BB);
1201 return true;
1202 }
1203 CurrentBB = CurrentPred;
1204 CurrentPred = CurrentBB->getSinglePredecessor();
1205 }
1206
1207 return false;
1208}
1209
1210/// Return true if Op is an instruction defined in the given block.
1212 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1213 if (OpInst->getParent() == BB)
1214 return true;
1215 return false;
1216}
1217
1218/// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1219/// redundant load instruction, eliminate it by replacing it with a PHI node.
1220/// This is an important optimization that encourages jump threading, and needs
1221/// to be run interlaced with other jump threading tasks.
1223 // Don't hack volatile and ordered loads.
1224 if (!LoadI->isUnordered()) return false;
1225
1226 // If the load is defined in a block with exactly one predecessor, it can't be
1227 // partially redundant.
1228 BasicBlock *LoadBB = LoadI->getParent();
1229 if (LoadBB->getSinglePredecessor())
1230 return false;
1231
1232 // If the load is defined in an EH pad, it can't be partially redundant,
1233 // because the edges between the invoke and the EH pad cannot have other
1234 // instructions between them.
1235 if (LoadBB->isEHPad())
1236 return false;
1237
1238 Value *LoadedPtr = LoadI->getOperand(0);
1239
1240 // If the loaded operand is defined in the LoadBB and its not a phi,
1241 // it can't be available in predecessors.
1242 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1243 return false;
1244
1245 // Scan a few instructions up from the load, to see if it is obviously live at
1246 // the entry to its block.
1247 BasicBlock::iterator BBIt(LoadI);
1248 bool IsLoadCSE;
1249 BatchAAResults BatchAA(*AA);
1250 // The dominator tree is updated lazily and may not be valid at this point.
1251 BatchAA.disableDominatorTree();
1252 if (Value *AvailableVal = FindAvailableLoadedValue(
1253 LoadI, LoadBB, BBIt, DefMaxInstsToScan, &BatchAA, &IsLoadCSE)) {
1254 // If the value of the load is locally available within the block, just use
1255 // it. This frequently occurs for reg2mem'd allocas.
1256
1257 if (IsLoadCSE) {
1258 LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1259 combineMetadataForCSE(NLoadI, LoadI, false);
1260 LVI->forgetValue(NLoadI);
1261 };
1262
1263 // If the returned value is the load itself, replace with poison. This can
1264 // only happen in dead loops.
1265 if (AvailableVal == LoadI)
1266 AvailableVal = PoisonValue::get(LoadI->getType());
1267 if (AvailableVal->getType() != LoadI->getType()) {
1268 AvailableVal = CastInst::CreateBitOrPointerCast(
1269 AvailableVal, LoadI->getType(), "", LoadI->getIterator());
1270 cast<Instruction>(AvailableVal)->setDebugLoc(LoadI->getDebugLoc());
1271 }
1272 LoadI->replaceAllUsesWith(AvailableVal);
1273 LoadI->eraseFromParent();
1274 return true;
1275 }
1276
1277 // Otherwise, if we scanned the whole block and got to the top of the block,
1278 // we know the block is locally transparent to the load. If not, something
1279 // might clobber its value.
1280 if (BBIt != LoadBB->begin())
1281 return false;
1282
1283 // If all of the loads and stores that feed the value have the same AA tags,
1284 // then we can propagate them onto any newly inserted loads.
1285 AAMDNodes AATags = LoadI->getAAMetadata();
1286
1287 SmallPtrSet<BasicBlock*, 8> PredsScanned;
1288
1289 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1290
1291 AvailablePredsTy AvailablePreds;
1292 BasicBlock *OneUnavailablePred = nullptr;
1294
1295 // If we got here, the loaded value is transparent through to the start of the
1296 // block. Check to see if it is available in any of the predecessor blocks.
1297 for (BasicBlock *PredBB : predecessors(LoadBB)) {
1298 // If we already scanned this predecessor, skip it.
1299 if (!PredsScanned.insert(PredBB).second)
1300 continue;
1301
1302 BBIt = PredBB->end();
1303 unsigned NumScanedInst = 0;
1304 Value *PredAvailable = nullptr;
1305 // NOTE: We don't CSE load that is volatile or anything stronger than
1306 // unordered, that should have been checked when we entered the function.
1307 assert(LoadI->isUnordered() &&
1308 "Attempting to CSE volatile or atomic loads");
1309 // If this is a load on a phi pointer, phi-translate it and search
1310 // for available load/store to the pointer in predecessors.
1311 Type *AccessTy = LoadI->getType();
1312 const auto &DL = LoadI->getDataLayout();
1313 MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1314 LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1315 AATags);
1316 PredAvailable = findAvailablePtrLoadStore(
1317 Loc, AccessTy, LoadI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan,
1318 &BatchAA, &IsLoadCSE, &NumScanedInst);
1319
1320 // If PredBB has a single predecessor, continue scanning through the
1321 // single predecessor.
1322 BasicBlock *SinglePredBB = PredBB;
1323 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1324 NumScanedInst < DefMaxInstsToScan) {
1325 SinglePredBB = SinglePredBB->getSinglePredecessor();
1326 if (SinglePredBB) {
1327 BBIt = SinglePredBB->end();
1328 PredAvailable = findAvailablePtrLoadStore(
1329 Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1330 (DefMaxInstsToScan - NumScanedInst), &BatchAA, &IsLoadCSE,
1331 &NumScanedInst);
1332 }
1333 }
1334
1335 if (!PredAvailable) {
1336 OneUnavailablePred = PredBB;
1337 continue;
1338 }
1339
1340 if (IsLoadCSE)
1341 CSELoads.push_back(cast<LoadInst>(PredAvailable));
1342
1343 // If so, this load is partially redundant. Remember this info so that we
1344 // can create a PHI node.
1345 AvailablePreds.emplace_back(PredBB, PredAvailable);
1346 }
1347
1348 // If the loaded value isn't available in any predecessor, it isn't partially
1349 // redundant.
1350 if (AvailablePreds.empty()) return false;
1351
1352 // Okay, the loaded value is available in at least one (and maybe all!)
1353 // predecessors. If the value is unavailable in more than one unique
1354 // predecessor, we want to insert a merge block for those common predecessors.
1355 // This ensures that we only have to insert one reload, thus not increasing
1356 // code size.
1357 BasicBlock *UnavailablePred = nullptr;
1358
1359 // If the value is unavailable in one of predecessors, we will end up
1360 // inserting a new instruction into them. It is only valid if all the
1361 // instructions before LoadI are guaranteed to pass execution to its
1362 // successor, or if LoadI is safe to speculate.
1363 // TODO: If this logic becomes more complex, and we will perform PRE insertion
1364 // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1365 // It requires domination tree analysis, so for this simple case it is an
1366 // overkill.
1367 if (PredsScanned.size() != AvailablePreds.size() &&
1369 for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1371 return false;
1372
1373 // If there is exactly one predecessor where the value is unavailable, the
1374 // already computed 'OneUnavailablePred' block is it. If it ends in an
1375 // unconditional branch, we know that it isn't a critical edge.
1376 if (PredsScanned.size() == AvailablePreds.size()+1 &&
1377 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1378 UnavailablePred = OneUnavailablePred;
1379 } else if (PredsScanned.size() != AvailablePreds.size()) {
1380 // Otherwise, we had multiple unavailable predecessors or we had a critical
1381 // edge from the one.
1382 SmallVector<BasicBlock*, 8> PredsToSplit;
1383 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1384
1385 for (const auto &AvailablePred : AvailablePreds)
1386 AvailablePredSet.insert(AvailablePred.first);
1387
1388 // Add all the unavailable predecessors to the PredsToSplit list.
1389 for (BasicBlock *P : predecessors(LoadBB)) {
1390 // If the predecessor is an indirect goto, we can't split the edge.
1391 if (isa<IndirectBrInst>(P->getTerminator()))
1392 return false;
1393
1394 if (!AvailablePredSet.count(P))
1395 PredsToSplit.push_back(P);
1396 }
1397
1398 // Split them out to their own block.
1399 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1400 }
1401
1402 // If the value isn't available in all predecessors, then there will be
1403 // exactly one where it isn't available. Insert a load on that edge and add
1404 // it to the AvailablePreds list.
1405 if (UnavailablePred) {
1406 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1407 "Can't handle critical edge here!");
1408 LoadInst *NewVal = new LoadInst(
1409 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1410 LoadI->getName() + ".pr", false, LoadI->getAlign(),
1411 LoadI->getOrdering(), LoadI->getSyncScopeID(),
1412 UnavailablePred->getTerminator()->getIterator());
1413 NewVal->setDebugLoc(LoadI->getDebugLoc());
1414 if (AATags)
1415 NewVal->setAAMetadata(AATags);
1416
1417 AvailablePreds.emplace_back(UnavailablePred, NewVal);
1418 }
1419
1420 // Now we know that each predecessor of this block has a value in
1421 // AvailablePreds, sort them for efficient access as we're walking the preds.
1422 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1423
1424 // Create a PHI node at the start of the block for the PRE'd load value.
1425 PHINode *PN = PHINode::Create(LoadI->getType(), pred_size(LoadBB), "");
1426 PN->insertBefore(LoadBB->begin());
1427 PN->takeName(LoadI);
1428 PN->setDebugLoc(LoadI->getDebugLoc());
1429
1430 // Insert new entries into the PHI for each predecessor. A single block may
1431 // have multiple entries here.
1432 for (BasicBlock *P : predecessors(LoadBB)) {
1433 AvailablePredsTy::iterator I =
1434 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1435
1436 assert(I != AvailablePreds.end() && I->first == P &&
1437 "Didn't find entry for predecessor!");
1438
1439 // If we have an available predecessor but it requires casting, insert the
1440 // cast in the predecessor and use the cast. Note that we have to update the
1441 // AvailablePreds vector as we go so that all of the PHI entries for this
1442 // predecessor use the same bitcast.
1443 Value *&PredV = I->second;
1444 if (PredV->getType() != LoadI->getType())
1446 PredV, LoadI->getType(), "", P->getTerminator()->getIterator());
1447
1448 PN->addIncoming(PredV, I->first);
1449 }
1450
1451 for (LoadInst *PredLoadI : CSELoads) {
1452 combineMetadataForCSE(PredLoadI, LoadI, true);
1453 LVI->forgetValue(PredLoadI);
1454 }
1455
1456 LoadI->replaceAllUsesWith(PN);
1457 LoadI->eraseFromParent();
1458
1459 return true;
1460}
1461
1462/// findMostPopularDest - The specified list contains multiple possible
1463/// threadable destinations. Pick the one that occurs the most frequently in
1464/// the list.
1465static BasicBlock *
1467 const SmallVectorImpl<std::pair<BasicBlock *,
1468 BasicBlock *>> &PredToDestList) {
1469 assert(!PredToDestList.empty());
1470
1471 // Determine popularity. If there are multiple possible destinations, we
1472 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1473 // blocks with known and real destinations to threading undef. We'll handle
1474 // them later if interesting.
1475 MapVector<BasicBlock *, unsigned> DestPopularity;
1476
1477 // Populate DestPopularity with the successors in the order they appear in the
1478 // successor list. This way, we ensure determinism by iterating it in the
1479 // same order in llvm::max_element below. We map nullptr to 0 so that we can
1480 // return nullptr when PredToDestList contains nullptr only.
1481 DestPopularity[nullptr] = 0;
1482 for (auto *SuccBB : successors(BB))
1483 DestPopularity[SuccBB] = 0;
1484
1485 for (const auto &PredToDest : PredToDestList)
1486 if (PredToDest.second)
1487 DestPopularity[PredToDest.second]++;
1488
1489 // Find the most popular dest.
1490 auto MostPopular = llvm::max_element(DestPopularity, llvm::less_second());
1491
1492 // Okay, we have finally picked the most popular destination.
1493 return MostPopular->first;
1494}
1495
1496// Try to evaluate the value of V when the control flows from PredPredBB to
1497// BB->getSinglePredecessor() and then on to BB.
1499 BasicBlock *PredPredBB,
1500 Value *V,
1501 const DataLayout &DL) {
1502 BasicBlock *PredBB = BB->getSinglePredecessor();
1503 assert(PredBB && "Expected a single predecessor");
1504
1505 if (Constant *Cst = dyn_cast<Constant>(V)) {
1506 return Cst;
1507 }
1508
1509 // Consult LVI if V is not an instruction in BB or PredBB.
1510 Instruction *I = dyn_cast<Instruction>(V);
1511 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1512 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1513 }
1514
1515 // Look into a PHI argument.
1516 if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1517 if (PHI->getParent() == PredBB)
1518 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1519 return nullptr;
1520 }
1521
1522 // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1523 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1524 if (CondCmp->getParent() == BB) {
1525 Constant *Op0 =
1526 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0), DL);
1527 Constant *Op1 =
1528 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1), DL);
1529 if (Op0 && Op1) {
1530 return ConstantFoldCompareInstOperands(CondCmp->getPredicate(), Op0,
1531 Op1, DL);
1532 }
1533 }
1534 return nullptr;
1535 }
1536
1537 return nullptr;
1538}
1539
1541 ConstantPreference Preference,
1542 Instruction *CxtI) {
1543 // If threading this would thread across a loop header, don't even try to
1544 // thread the edge.
1545 if (LoopHeaders.count(BB))
1546 return false;
1547
1548 PredValueInfoTy PredValues;
1549 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1550 CxtI)) {
1551 // We don't have known values in predecessors. See if we can thread through
1552 // BB and its sole predecessor.
1554 }
1555
1556 assert(!PredValues.empty() &&
1557 "computeValueKnownInPredecessors returned true with no values");
1558
1559 LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1560 for (const auto &PredValue : PredValues) {
1561 dbgs() << " BB '" << BB->getName()
1562 << "': FOUND condition = " << *PredValue.first
1563 << " for pred '" << PredValue.second->getName() << "'.\n";
1564 });
1565
1566 // Decide what we want to thread through. Convert our list of known values to
1567 // a list of known destinations for each pred. This also discards duplicate
1568 // predecessors and keeps track of the undefined inputs (which are represented
1569 // as a null dest in the PredToDestList).
1572
1573 BasicBlock *OnlyDest = nullptr;
1574 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1575 Constant *OnlyVal = nullptr;
1576 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1577
1578 for (const auto &PredValue : PredValues) {
1579 BasicBlock *Pred = PredValue.second;
1580 if (!SeenPreds.insert(Pred).second)
1581 continue; // Duplicate predecessor entry.
1582
1583 Constant *Val = PredValue.first;
1584
1585 BasicBlock *DestBB;
1586 if (isa<UndefValue>(Val))
1587 DestBB = nullptr;
1588 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1589 assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1590 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1591 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1592 assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1593 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1594 } else {
1595 assert(isa<IndirectBrInst>(BB->getTerminator())
1596 && "Unexpected terminator");
1597 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1598 DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1599 }
1600
1601 // If we have exactly one destination, remember it for efficiency below.
1602 if (PredToDestList.empty()) {
1603 OnlyDest = DestBB;
1604 OnlyVal = Val;
1605 } else {
1606 if (OnlyDest != DestBB)
1607 OnlyDest = MultipleDestSentinel;
1608 // It possible we have same destination, but different value, e.g. default
1609 // case in switchinst.
1610 if (Val != OnlyVal)
1611 OnlyVal = MultipleVal;
1612 }
1613
1614 // If the predecessor ends with an indirect goto, we can't change its
1615 // destination.
1616 if (isa<IndirectBrInst>(Pred->getTerminator()))
1617 continue;
1618
1619 PredToDestList.emplace_back(Pred, DestBB);
1620 }
1621
1622 // If all edges were unthreadable, we fail.
1623 if (PredToDestList.empty())
1624 return false;
1625
1626 // If all the predecessors go to a single known successor, we want to fold,
1627 // not thread. By doing so, we do not need to duplicate the current block and
1628 // also miss potential opportunities in case we dont/cant duplicate.
1629 if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1630 if (BB->hasNPredecessors(PredToDestList.size())) {
1631 bool SeenFirstBranchToOnlyDest = false;
1632 std::vector <DominatorTree::UpdateType> Updates;
1633 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1634 for (BasicBlock *SuccBB : successors(BB)) {
1635 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1636 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1637 } else {
1638 SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1639 Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1640 }
1641 }
1642
1643 // Finally update the terminator.
1644 Instruction *Term = BB->getTerminator();
1645 Instruction *NewBI = BranchInst::Create(OnlyDest, Term->getIterator());
1646 NewBI->setDebugLoc(Term->getDebugLoc());
1647 ++NumFolds;
1648 Term->eraseFromParent();
1649 DTU->applyUpdatesPermissive(Updates);
1650 if (auto *BPI = getBPI())
1651 BPI->eraseBlock(BB);
1652
1653 // If the condition is now dead due to the removal of the old terminator,
1654 // erase it.
1655 if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1656 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1657 CondInst->eraseFromParent();
1658 // We can safely replace *some* uses of the CondInst if it has
1659 // exactly one value as returned by LVI. RAUW is incorrect in the
1660 // presence of guards and assumes, that have the `Cond` as the use. This
1661 // is because we use the guards/assume to reason about the `Cond` value
1662 // at the end of block, but RAUW unconditionally replaces all uses
1663 // including the guards/assumes themselves and the uses before the
1664 // guard/assume.
1665 else if (OnlyVal && OnlyVal != MultipleVal)
1666 replaceFoldableUses(CondInst, OnlyVal, BB);
1667 }
1668 return true;
1669 }
1670 }
1671
1672 // Determine which is the most common successor. If we have many inputs and
1673 // this block is a switch, we want to start by threading the batch that goes
1674 // to the most popular destination first. If we only know about one
1675 // threadable destination (the common case) we can avoid this.
1676 BasicBlock *MostPopularDest = OnlyDest;
1677
1678 if (MostPopularDest == MultipleDestSentinel) {
1679 // Remove any loop headers from the Dest list, threadEdge conservatively
1680 // won't process them, but we might have other destination that are eligible
1681 // and we still want to process.
1682 erase_if(PredToDestList,
1683 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1684 return LoopHeaders.contains(PredToDest.second);
1685 });
1686
1687 if (PredToDestList.empty())
1688 return false;
1689
1690 MostPopularDest = findMostPopularDest(BB, PredToDestList);
1691 }
1692
1693 // Now that we know what the most popular destination is, factor all
1694 // predecessors that will jump to it into a single predecessor.
1695 SmallVector<BasicBlock*, 16> PredsToFactor;
1696 for (const auto &PredToDest : PredToDestList)
1697 if (PredToDest.second == MostPopularDest) {
1698 BasicBlock *Pred = PredToDest.first;
1699
1700 // This predecessor may be a switch or something else that has multiple
1701 // edges to the block. Factor each of these edges by listing them
1702 // according to # occurrences in PredsToFactor.
1703 for (BasicBlock *Succ : successors(Pred))
1704 if (Succ == BB)
1705 PredsToFactor.push_back(Pred);
1706 }
1707
1708 // If the threadable edges are branching on an undefined value, we get to pick
1709 // the destination that these predecessors should get to.
1710 if (!MostPopularDest)
1711 MostPopularDest = BB->getTerminator()->
1712 getSuccessor(getBestDestForJumpOnUndef(BB));
1713
1714 // Ok, try to thread it!
1715 return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1716}
1717
1718/// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1719/// a PHI node (or freeze PHI) in the current block. See if there are any
1720/// simplifications we can do based on inputs to the phi node.
1722 BasicBlock *BB = PN->getParent();
1723
1724 // TODO: We could make use of this to do it once for blocks with common PHI
1725 // values.
1727 PredBBs.resize(1);
1728
1729 // If any of the predecessor blocks end in an unconditional branch, we can
1730 // *duplicate* the conditional branch into that block in order to further
1731 // encourage jump threading and to eliminate cases where we have branch on a
1732 // phi of an icmp (branch on icmp is much better).
1733 // This is still beneficial when a frozen phi is used as the branch condition
1734 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1735 // to br(icmp(freeze ...)).
1736 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1737 BasicBlock *PredBB = PN->getIncomingBlock(i);
1738 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1739 if (PredBr->isUnconditional()) {
1740 PredBBs[0] = PredBB;
1741 // Try to duplicate BB into PredBB.
1742 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1743 return true;
1744 }
1745 }
1746
1747 return false;
1748}
1749
1750/// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1751/// a xor instruction in the current block. See if there are any
1752/// simplifications we can do based on inputs to the xor.
1754 BasicBlock *BB = BO->getParent();
1755
1756 // If either the LHS or RHS of the xor is a constant, don't do this
1757 // optimization.
1758 if (isa<ConstantInt>(BO->getOperand(0)) ||
1759 isa<ConstantInt>(BO->getOperand(1)))
1760 return false;
1761
1762 // If the first instruction in BB isn't a phi, we won't be able to infer
1763 // anything special about any particular predecessor.
1764 if (!isa<PHINode>(BB->front()))
1765 return false;
1766
1767 // If this BB is a landing pad, we won't be able to split the edge into it.
1768 if (BB->isEHPad())
1769 return false;
1770
1771 // If we have a xor as the branch input to this block, and we know that the
1772 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1773 // the condition into the predecessor and fix that value to true, saving some
1774 // logical ops on that path and encouraging other paths to simplify.
1775 //
1776 // This copies something like this:
1777 //
1778 // BB:
1779 // %X = phi i1 [1], [%X']
1780 // %Y = icmp eq i32 %A, %B
1781 // %Z = xor i1 %X, %Y
1782 // br i1 %Z, ...
1783 //
1784 // Into:
1785 // BB':
1786 // %Y = icmp ne i32 %A, %B
1787 // br i1 %Y, ...
1788
1789 PredValueInfoTy XorOpValues;
1790 bool isLHS = true;
1791 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1792 WantInteger, BO)) {
1793 assert(XorOpValues.empty());
1794 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1795 WantInteger, BO))
1796 return false;
1797 isLHS = false;
1798 }
1799
1800 assert(!XorOpValues.empty() &&
1801 "computeValueKnownInPredecessors returned true with no values");
1802
1803 // Scan the information to see which is most popular: true or false. The
1804 // predecessors can be of the set true, false, or undef.
1805 unsigned NumTrue = 0, NumFalse = 0;
1806 for (const auto &XorOpValue : XorOpValues) {
1807 if (isa<UndefValue>(XorOpValue.first))
1808 // Ignore undefs for the count.
1809 continue;
1810 if (cast<ConstantInt>(XorOpValue.first)->isZero())
1811 ++NumFalse;
1812 else
1813 ++NumTrue;
1814 }
1815
1816 // Determine which value to split on, true, false, or undef if neither.
1817 ConstantInt *SplitVal = nullptr;
1818 if (NumTrue > NumFalse)
1819 SplitVal = ConstantInt::getTrue(BB->getContext());
1820 else if (NumTrue != 0 || NumFalse != 0)
1821 SplitVal = ConstantInt::getFalse(BB->getContext());
1822
1823 // Collect all of the blocks that this can be folded into so that we can
1824 // factor this once and clone it once.
1825 SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1826 for (const auto &XorOpValue : XorOpValues) {
1827 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1828 continue;
1829
1830 BlocksToFoldInto.push_back(XorOpValue.second);
1831 }
1832
1833 // If we inferred a value for all of the predecessors, then duplication won't
1834 // help us. However, we can just replace the LHS or RHS with the constant.
1835 if (BlocksToFoldInto.size() ==
1836 cast<PHINode>(BB->front()).getNumIncomingValues()) {
1837 if (!SplitVal) {
1838 // If all preds provide undef, just nuke the xor, because it is undef too.
1840 BO->eraseFromParent();
1841 } else if (SplitVal->isZero() && BO != BO->getOperand(isLHS)) {
1842 // If all preds provide 0, replace the xor with the other input.
1843 BO->replaceAllUsesWith(BO->getOperand(isLHS));
1844 BO->eraseFromParent();
1845 } else {
1846 // If all preds provide 1, set the computed value to 1.
1847 BO->setOperand(!isLHS, SplitVal);
1848 }
1849
1850 return true;
1851 }
1852
1853 // If any of predecessors end with an indirect goto, we can't change its
1854 // destination.
1855 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1856 return isa<IndirectBrInst>(Pred->getTerminator());
1857 }))
1858 return false;
1859
1860 // Try to duplicate BB into PredBB.
1861 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1862}
1863
1864/// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1865/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1866/// NewPred using the entries from OldPred (suitably mapped).
1868 BasicBlock *OldPred,
1869 BasicBlock *NewPred,
1871 for (PHINode &PN : PHIBB->phis()) {
1872 // Ok, we have a PHI node. Figure out what the incoming value was for the
1873 // DestBlock.
1874 Value *IV = PN.getIncomingValueForBlock(OldPred);
1875
1876 // Remap the value if necessary.
1877 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1879 if (I != ValueMap.end())
1880 IV = I->second;
1881 }
1882
1883 PN.addIncoming(IV, NewPred);
1884 }
1885}
1886
1887/// Merge basic block BB into its sole predecessor if possible.
1889 BasicBlock *SinglePred = BB->getSinglePredecessor();
1890 if (!SinglePred)
1891 return false;
1892
1893 const Instruction *TI = SinglePred->getTerminator();
1894 if (TI->isSpecialTerminator() || TI->getNumSuccessors() != 1 ||
1895 SinglePred == BB || hasAddressTakenAndUsed(BB))
1896 return false;
1897
1898 // If SinglePred was a loop header, BB becomes one.
1899 if (LoopHeaders.erase(SinglePred))
1900 LoopHeaders.insert(BB);
1901
1902 LVI->eraseBlock(SinglePred);
1903 MergeBasicBlockIntoOnlyPred(BB, DTU.get());
1904
1905 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1906 // BB code within one basic block `BB`), we need to invalidate the LVI
1907 // information associated with BB, because the LVI information need not be
1908 // true for all of BB after the merge. For example,
1909 // Before the merge, LVI info and code is as follows:
1910 // SinglePred: <LVI info1 for %p val>
1911 // %y = use of %p
1912 // call @exit() // need not transfer execution to successor.
1913 // assume(%p) // from this point on %p is true
1914 // br label %BB
1915 // BB: <LVI info2 for %p val, i.e. %p is true>
1916 // %x = use of %p
1917 // br label exit
1918 //
1919 // Note that this LVI info for blocks BB and SinglPred is correct for %p
1920 // (info2 and info1 respectively). After the merge and the deletion of the
1921 // LVI info1 for SinglePred. We have the following code:
1922 // BB: <LVI info2 for %p val>
1923 // %y = use of %p
1924 // call @exit()
1925 // assume(%p)
1926 // %x = use of %p <-- LVI info2 is correct from here onwards.
1927 // br label exit
1928 // LVI info2 for BB is incorrect at the beginning of BB.
1929
1930 // Invalidate LVI information for BB if the LVI is not provably true for
1931 // all of BB.
1933 LVI->eraseBlock(BB);
1934 return true;
1935}
1936
1937/// Update the SSA form. NewBB contains instructions that are copied from BB.
1938/// ValueMapping maps old values in BB to new ones in NewBB.
1940 ValueToValueMapTy &ValueMapping) {
1941 // If there were values defined in BB that are used outside the block, then we
1942 // now have to update all uses of the value to use either the original value,
1943 // the cloned value, or some PHI derived value. This can require arbitrary
1944 // PHI insertion, of which we are prepared to do, clean these up now.
1945 SSAUpdater SSAUpdate;
1946 SmallVector<Use *, 16> UsesToRename;
1948 SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
1949
1950 for (Instruction &I : *BB) {
1951 // Scan all uses of this instruction to see if it is used outside of its
1952 // block, and if so, record them in UsesToRename.
1953 for (Use &U : I.uses()) {
1954 Instruction *User = cast<Instruction>(U.getUser());
1955 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1956 if (UserPN->getIncomingBlock(U) == BB)
1957 continue;
1958 } else if (User->getParent() == BB)
1959 continue;
1960
1961 UsesToRename.push_back(&U);
1962 }
1963
1964 // Find debug values outside of the block
1965 findDbgValues(DbgValues, &I, &DbgVariableRecords);
1966 llvm::erase_if(DbgValues, [&](const DbgValueInst *DbgVal) {
1967 return DbgVal->getParent() == BB;
1968 });
1969 llvm::erase_if(DbgVariableRecords, [&](const DbgVariableRecord *DbgVarRec) {
1970 return DbgVarRec->getParent() == BB;
1971 });
1972
1973 // If there are no uses outside the block, we're done with this instruction.
1974 if (UsesToRename.empty() && DbgValues.empty() && DbgVariableRecords.empty())
1975 continue;
1976 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1977
1978 // We found a use of I outside of BB. Rename all uses of I that are outside
1979 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1980 // with the two values we know.
1981 SSAUpdate.Initialize(I.getType(), I.getName());
1982 SSAUpdate.AddAvailableValue(BB, &I);
1983 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1984
1985 while (!UsesToRename.empty())
1986 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1987 if (!DbgValues.empty() || !DbgVariableRecords.empty()) {
1988 SSAUpdate.UpdateDebugValues(&I, DbgValues);
1989 SSAUpdate.UpdateDebugValues(&I, DbgVariableRecords);
1990 DbgValues.clear();
1991 DbgVariableRecords.clear();
1992 }
1993
1994 LLVM_DEBUG(dbgs() << "\n");
1995 }
1996}
1997
1998/// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone
1999/// arguments that come from PredBB. Return the map from the variables in the
2000/// source basic block to the variables in the newly created basic block.
2001
2005 BasicBlock *NewBB,
2006 BasicBlock *PredBB) {
2007 // We are going to have to map operands from the source basic block to the new
2008 // copy of the block 'NewBB'. If there are PHI nodes in the source basic
2009 // block, evaluate them to account for entry from PredBB.
2010
2011 // Retargets llvm.dbg.value to any renamed variables.
2012 auto RetargetDbgValueIfPossible = [&](Instruction *NewInst) -> bool {
2013 auto DbgInstruction = dyn_cast<DbgValueInst>(NewInst);
2014 if (!DbgInstruction)
2015 return false;
2016
2017 SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap;
2018 for (auto DbgOperand : DbgInstruction->location_ops()) {
2019 auto DbgOperandInstruction = dyn_cast<Instruction>(DbgOperand);
2020 if (!DbgOperandInstruction)
2021 continue;
2022
2023 auto I = ValueMapping.find(DbgOperandInstruction);
2024 if (I != ValueMapping.end()) {
2025 OperandsToRemap.insert(
2026 std::pair<Value *, Value *>(DbgOperand, I->second));
2027 }
2028 }
2029
2030 for (auto &[OldOp, MappedOp] : OperandsToRemap)
2031 DbgInstruction->replaceVariableLocationOp(OldOp, MappedOp);
2032 return true;
2033 };
2034
2035 // Duplicate implementation of the above dbg.value code, using
2036 // DbgVariableRecords instead.
2037 auto RetargetDbgVariableRecordIfPossible = [&](DbgVariableRecord *DVR) {
2038 SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap;
2039 for (auto *Op : DVR->location_ops()) {
2040 Instruction *OpInst = dyn_cast<Instruction>(Op);
2041 if (!OpInst)
2042 continue;
2043
2044 auto I = ValueMapping.find(OpInst);
2045 if (I != ValueMapping.end())
2046 OperandsToRemap.insert({OpInst, I->second});
2047 }
2048
2049 for (auto &[OldOp, MappedOp] : OperandsToRemap)
2050 DVR->replaceVariableLocationOp(OldOp, MappedOp);
2051 };
2052
2053 BasicBlock *RangeBB = BI->getParent();
2054
2055 // Clone the phi nodes of the source basic block into NewBB. The resulting
2056 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2057 // might need to rewrite the operand of the cloned phi.
2058 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2059 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2060 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2061 ValueMapping[PN] = NewPN;
2062 }
2063
2064 // Clone noalias scope declarations in the threaded block. When threading a
2065 // loop exit, we would otherwise end up with two idential scope declarations
2066 // visible at the same time.
2067 SmallVector<MDNode *> NoAliasScopes;
2068 DenseMap<MDNode *, MDNode *> ClonedScopes;
2069 LLVMContext &Context = PredBB->getContext();
2070 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2071 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2072
2073 auto CloneAndRemapDbgInfo = [&](Instruction *NewInst, Instruction *From) {
2074 auto DVRRange = NewInst->cloneDebugInfoFrom(From);
2075 for (DbgVariableRecord &DVR : filterDbgVars(DVRRange))
2076 RetargetDbgVariableRecordIfPossible(&DVR);
2077 };
2078
2079 // Clone the non-phi instructions of the source basic block into NewBB,
2080 // keeping track of the mapping and using it to remap operands in the cloned
2081 // instructions.
2082 for (; BI != BE; ++BI) {
2083 Instruction *New = BI->clone();
2084 New->setName(BI->getName());
2085 New->insertInto(NewBB, NewBB->end());
2086 ValueMapping[&*BI] = New;
2087 adaptNoAliasScopes(New, ClonedScopes, Context);
2088
2089 CloneAndRemapDbgInfo(New, &*BI);
2090
2091 if (RetargetDbgValueIfPossible(New))
2092 continue;
2093
2094 // Remap operands to patch up intra-block references.
2095 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2096 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2097 ValueToValueMapTy::iterator I = ValueMapping.find(Inst);
2098 if (I != ValueMapping.end())
2099 New->setOperand(i, I->second);
2100 }
2101 }
2102
2103 // There may be DbgVariableRecords on the terminator, clone directly from
2104 // marker to marker as there isn't an instruction there.
2105 if (BE != RangeBB->end() && BE->hasDbgRecords()) {
2106 // Dump them at the end.
2107 DbgMarker *Marker = RangeBB->getMarker(BE);
2108 DbgMarker *EndMarker = NewBB->createMarker(NewBB->end());
2109 auto DVRRange = EndMarker->cloneDebugInfoFrom(Marker, std::nullopt);
2110 for (DbgVariableRecord &DVR : filterDbgVars(DVRRange))
2111 RetargetDbgVariableRecordIfPossible(&DVR);
2112 }
2113}
2114
2115/// Attempt to thread through two successive basic blocks.
2117 Value *Cond) {
2118 // Consider:
2119 //
2120 // PredBB:
2121 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2122 // %tobool = icmp eq i32 %cond, 0
2123 // br i1 %tobool, label %BB, label ...
2124 //
2125 // BB:
2126 // %cmp = icmp eq i32* %var, null
2127 // br i1 %cmp, label ..., label ...
2128 //
2129 // We don't know the value of %var at BB even if we know which incoming edge
2130 // we take to BB. However, once we duplicate PredBB for each of its incoming
2131 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2132 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2133
2134 // Require that BB end with a Branch for simplicity.
2135 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2136 if (!CondBr)
2137 return false;
2138
2139 // BB must have exactly one predecessor.
2140 BasicBlock *PredBB = BB->getSinglePredecessor();
2141 if (!PredBB)
2142 return false;
2143
2144 // Require that PredBB end with a conditional Branch. If PredBB ends with an
2145 // unconditional branch, we should be merging PredBB and BB instead. For
2146 // simplicity, we don't deal with a switch.
2147 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2148 if (!PredBBBranch || PredBBBranch->isUnconditional())
2149 return false;
2150
2151 // If PredBB has exactly one incoming edge, we don't gain anything by copying
2152 // PredBB.
2153 if (PredBB->getSinglePredecessor())
2154 return false;
2155
2156 // Don't thread through PredBB if it contains a successor edge to itself, in
2157 // which case we would infinite loop. Suppose we are threading an edge from
2158 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2159 // successor edge to itself. If we allowed jump threading in this case, we
2160 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since
2161 // PredBB.thread has a successor edge to PredBB, we would immediately come up
2162 // with another jump threading opportunity from PredBB.thread through PredBB
2163 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we
2164 // would keep peeling one iteration from PredBB.
2165 if (llvm::is_contained(successors(PredBB), PredBB))
2166 return false;
2167
2168 // Don't thread across a loop header.
2169 if (LoopHeaders.count(PredBB))
2170 return false;
2171
2172 // Avoid complication with duplicating EH pads.
2173 if (PredBB->isEHPad())
2174 return false;
2175
2176 // Find a predecessor that we can thread. For simplicity, we only consider a
2177 // successor edge out of BB to which we thread exactly one incoming edge into
2178 // PredBB.
2179 unsigned ZeroCount = 0;
2180 unsigned OneCount = 0;
2181 BasicBlock *ZeroPred = nullptr;
2182 BasicBlock *OnePred = nullptr;
2183 const DataLayout &DL = BB->getDataLayout();
2184 for (BasicBlock *P : predecessors(PredBB)) {
2185 // If PredPred ends with IndirectBrInst, we can't handle it.
2186 if (isa<IndirectBrInst>(P->getTerminator()))
2187 continue;
2188 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2190 if (CI->isZero()) {
2191 ZeroCount++;
2192 ZeroPred = P;
2193 } else if (CI->isOne()) {
2194 OneCount++;
2195 OnePred = P;
2196 }
2197 }
2198 }
2199
2200 // Disregard complicated cases where we have to thread multiple edges.
2201 BasicBlock *PredPredBB;
2202 if (ZeroCount == 1) {
2203 PredPredBB = ZeroPred;
2204 } else if (OneCount == 1) {
2205 PredPredBB = OnePred;
2206 } else {
2207 return false;
2208 }
2209
2210 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2211
2212 // If threading to the same block as we come from, we would infinite loop.
2213 if (SuccBB == BB) {
2214 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
2215 << "' - would thread to self!\n");
2216 return false;
2217 }
2218
2219 // If threading this would thread across a loop header, don't thread the edge.
2220 // See the comments above findLoopHeaders for justifications and caveats.
2221 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2222 LLVM_DEBUG({
2223 bool BBIsHeader = LoopHeaders.count(BB);
2224 bool SuccIsHeader = LoopHeaders.count(SuccBB);
2225 dbgs() << " Not threading across "
2226 << (BBIsHeader ? "loop header BB '" : "block BB '")
2227 << BB->getName() << "' to dest "
2228 << (SuccIsHeader ? "loop header BB '" : "block BB '")
2229 << SuccBB->getName()
2230 << "' - it might create an irreducible loop!\n";
2231 });
2232 return false;
2233 }
2234
2235 // Compute the cost of duplicating BB and PredBB.
2236 unsigned BBCost = getJumpThreadDuplicationCost(
2237 TTI, BB, BB->getTerminator(), BBDupThreshold);
2238 unsigned PredBBCost = getJumpThreadDuplicationCost(
2239 TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2240
2241 // Give up if costs are too high. We need to check BBCost and PredBBCost
2242 // individually before checking their sum because getJumpThreadDuplicationCost
2243 // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2244 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2245 BBCost + PredBBCost > BBDupThreshold) {
2246 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()
2247 << "' - Cost is too high: " << PredBBCost
2248 << " for PredBB, " << BBCost << "for BB\n");
2249 return false;
2250 }
2251
2252 // Now we are ready to duplicate PredBB.
2253 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2254 return true;
2255}
2256
2258 BasicBlock *PredBB,
2259 BasicBlock *BB,
2260 BasicBlock *SuccBB) {
2261 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '"
2262 << BB->getName() << "'\n");
2263
2264 // Build BPI/BFI before any changes are made to IR.
2265 bool HasProfile = doesBlockHaveProfileData(BB);
2266 auto *BFI = getOrCreateBFI(HasProfile);
2267 auto *BPI = getOrCreateBPI(BFI != nullptr);
2268
2269 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2270 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2271
2272 BasicBlock *NewBB =
2273 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2274 PredBB->getParent(), PredBB);
2275 NewBB->moveAfter(PredBB);
2276
2277 // Set the block frequency of NewBB.
2278 if (BFI) {
2279 assert(BPI && "It's expected BPI to exist along with BFI");
2280 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2281 BPI->getEdgeProbability(PredPredBB, PredBB);
2282 BFI->setBlockFreq(NewBB, NewBBFreq);
2283 }
2284
2285 // We are going to have to map operands from the original BB block to the new
2286 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them
2287 // to account for entry from PredPredBB.
2288 ValueToValueMapTy ValueMapping;
2289 cloneInstructions(ValueMapping, PredBB->begin(), PredBB->end(), NewBB,
2290 PredPredBB);
2291
2292 // Copy the edge probabilities from PredBB to NewBB.
2293 if (BPI)
2294 BPI->copyEdgeProbabilities(PredBB, NewBB);
2295
2296 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2297 // This eliminates predecessors from PredPredBB, which requires us to simplify
2298 // any PHI nodes in PredBB.
2299 Instruction *PredPredTerm = PredPredBB->getTerminator();
2300 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2301 if (PredPredTerm->getSuccessor(i) == PredBB) {
2302 PredBB->removePredecessor(PredPredBB, true);
2303 PredPredTerm->setSuccessor(i, NewBB);
2304 }
2305
2306 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2307 ValueMapping);
2308 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2309 ValueMapping);
2310
2311 DTU->applyUpdatesPermissive(
2312 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2313 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2314 {DominatorTree::Insert, PredPredBB, NewBB},
2315 {DominatorTree::Delete, PredPredBB, PredBB}});
2316
2317 updateSSA(PredBB, NewBB, ValueMapping);
2318
2319 // Clean up things like PHI nodes with single operands, dead instructions,
2320 // etc.
2321 SimplifyInstructionsInBlock(NewBB, TLI);
2322 SimplifyInstructionsInBlock(PredBB, TLI);
2323
2324 SmallVector<BasicBlock *, 1> PredsToFactor;
2325 PredsToFactor.push_back(NewBB);
2326 threadEdge(BB, PredsToFactor, SuccBB);
2327}
2328
2329/// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2331 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2332 BasicBlock *SuccBB) {
2333 // If threading to the same block as we come from, we would infinite loop.
2334 if (SuccBB == BB) {
2335 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
2336 << "' - would thread to self!\n");
2337 return false;
2338 }
2339
2340 // If threading this would thread across a loop header, don't thread the edge.
2341 // See the comments above findLoopHeaders for justifications and caveats.
2342 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2343 LLVM_DEBUG({
2344 bool BBIsHeader = LoopHeaders.count(BB);
2345 bool SuccIsHeader = LoopHeaders.count(SuccBB);
2346 dbgs() << " Not threading across "
2347 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2348 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2349 << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2350 });
2351 return false;
2352 }
2353
2354 unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2355 TTI, BB, BB->getTerminator(), BBDupThreshold);
2356 if (JumpThreadCost > BBDupThreshold) {
2357 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()
2358 << "' - Cost is too high: " << JumpThreadCost << "\n");
2359 return false;
2360 }
2361
2362 threadEdge(BB, PredBBs, SuccBB);
2363 return true;
2364}
2365
2366/// threadEdge - We have decided that it is safe and profitable to factor the
2367/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2368/// across BB. Transform the IR to reflect this change.
2370 const SmallVectorImpl<BasicBlock *> &PredBBs,
2371 BasicBlock *SuccBB) {
2372 assert(SuccBB != BB && "Don't create an infinite loop");
2373
2374 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2375 "Don't thread across loop headers");
2376
2377 // Build BPI/BFI before any changes are made to IR.
2378 bool HasProfile = doesBlockHaveProfileData(BB);
2379 auto *BFI = getOrCreateBFI(HasProfile);
2380 auto *BPI = getOrCreateBPI(BFI != nullptr);
2381
2382 // And finally, do it! Start by factoring the predecessors if needed.
2383 BasicBlock *PredBB;
2384 if (PredBBs.size() == 1)
2385 PredBB = PredBBs[0];
2386 else {
2387 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()
2388 << " common predecessors.\n");
2389 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2390 }
2391
2392 // And finally, do it!
2393 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName()
2394 << "' to '" << SuccBB->getName()
2395 << ", across block:\n " << *BB << "\n");
2396
2397 LVI->threadEdge(PredBB, BB, SuccBB);
2398
2400 BB->getName()+".thread",
2401 BB->getParent(), BB);
2402 NewBB->moveAfter(PredBB);
2403
2404 // Set the block frequency of NewBB.
2405 if (BFI) {
2406 assert(BPI && "It's expected BPI to exist along with BFI");
2407 auto NewBBFreq =
2408 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2409 BFI->setBlockFreq(NewBB, NewBBFreq);
2410 }
2411
2412 // Copy all the instructions from BB to NewBB except the terminator.
2413 ValueToValueMapTy ValueMapping;
2414 cloneInstructions(ValueMapping, BB->begin(), std::prev(BB->end()), NewBB,
2415 PredBB);
2416
2417 // We didn't copy the terminator from BB over to NewBB, because there is now
2418 // an unconditional jump to SuccBB. Insert the unconditional jump.
2419 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2420 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2421
2422 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2423 // PHI nodes for NewBB now.
2424 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2425
2426 // Update the terminator of PredBB to jump to NewBB instead of BB. This
2427 // eliminates predecessors from BB, which requires us to simplify any PHI
2428 // nodes in BB.
2429 Instruction *PredTerm = PredBB->getTerminator();
2430 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2431 if (PredTerm->getSuccessor(i) == BB) {
2432 BB->removePredecessor(PredBB, true);
2433 PredTerm->setSuccessor(i, NewBB);
2434 }
2435
2436 // Enqueue required DT updates.
2437 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2438 {DominatorTree::Insert, PredBB, NewBB},
2439 {DominatorTree::Delete, PredBB, BB}});
2440
2441 updateSSA(BB, NewBB, ValueMapping);
2442
2443 // At this point, the IR is fully up to date and consistent. Do a quick scan
2444 // over the new instructions and zap any that are constants or dead. This
2445 // frequently happens because of phi translation.
2446 SimplifyInstructionsInBlock(NewBB, TLI);
2447
2448 // Update the edge weight from BB to SuccBB, which should be less than before.
2449 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB, BFI, BPI, HasProfile);
2450
2451 // Threaded an edge!
2452 ++NumThreads;
2453}
2454
2455/// Create a new basic block that will be the predecessor of BB and successor of
2456/// all blocks in Preds. When profile data is available, update the frequency of
2457/// this new block.
2458BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2460 const char *Suffix) {
2462
2463 // Collect the frequencies of all predecessors of BB, which will be used to
2464 // update the edge weight of the result of splitting predecessors.
2466 auto *BFI = getBFI();
2467 if (BFI) {
2468 auto *BPI = getOrCreateBPI(true);
2469 for (auto *Pred : Preds)
2470 FreqMap.insert(std::make_pair(
2471 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2472 }
2473
2474 // In the case when BB is a LandingPad block we create 2 new predecessors
2475 // instead of just one.
2476 if (BB->isLandingPad()) {
2477 std::string NewName = std::string(Suffix) + ".split-lp";
2478 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2479 } else {
2480 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2481 }
2482
2483 std::vector<DominatorTree::UpdateType> Updates;
2484 Updates.reserve((2 * Preds.size()) + NewBBs.size());
2485 for (auto *NewBB : NewBBs) {
2486 BlockFrequency NewBBFreq(0);
2487 Updates.push_back({DominatorTree::Insert, NewBB, BB});
2488 for (auto *Pred : predecessors(NewBB)) {
2489 Updates.push_back({DominatorTree::Delete, Pred, BB});
2490 Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2491 if (BFI) // Update frequencies between Pred -> NewBB.
2492 NewBBFreq += FreqMap.lookup(Pred);
2493 }
2494 if (BFI) // Apply the summed frequency to NewBB.
2495 BFI->setBlockFreq(NewBB, NewBBFreq);
2496 }
2497
2498 DTU->applyUpdatesPermissive(Updates);
2499 return NewBBs[0];
2500}
2501
2502bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2503 const Instruction *TI = BB->getTerminator();
2504 if (!TI || TI->getNumSuccessors() < 2)
2505 return false;
2506
2507 return hasValidBranchWeightMD(*TI);
2508}
2509
2510/// Update the block frequency of BB and branch weight and the metadata on the
2511/// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2512/// Freq(PredBB->BB) / Freq(BB->SuccBB).
2513void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2514 BasicBlock *BB,
2515 BasicBlock *NewBB,
2516 BasicBlock *SuccBB,
2517 BlockFrequencyInfo *BFI,
2519 bool HasProfile) {
2520 assert(((BFI && BPI) || (!BFI && !BFI)) &&
2521 "Both BFI & BPI should either be set or unset");
2522
2523 if (!BFI) {
2524 assert(!HasProfile &&
2525 "It's expected to have BFI/BPI when profile info exists");
2526 return;
2527 }
2528
2529 // As the edge from PredBB to BB is deleted, we have to update the block
2530 // frequency of BB.
2531 auto BBOrigFreq = BFI->getBlockFreq(BB);
2532 auto NewBBFreq = BFI->getBlockFreq(NewBB);
2533 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2534 auto BBNewFreq = BBOrigFreq - NewBBFreq;
2535 BFI->setBlockFreq(BB, BBNewFreq);
2536
2537 // Collect updated outgoing edges' frequencies from BB and use them to update
2538 // edge probabilities.
2539 SmallVector<uint64_t, 4> BBSuccFreq;
2540 for (BasicBlock *Succ : successors(BB)) {
2541 auto SuccFreq = (Succ == SuccBB)
2542 ? BB2SuccBBFreq - NewBBFreq
2543 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2544 BBSuccFreq.push_back(SuccFreq.getFrequency());
2545 }
2546
2547 uint64_t MaxBBSuccFreq = *llvm::max_element(BBSuccFreq);
2548
2550 if (MaxBBSuccFreq == 0)
2551 BBSuccProbs.assign(BBSuccFreq.size(),
2552 {1, static_cast<unsigned>(BBSuccFreq.size())});
2553 else {
2554 for (uint64_t Freq : BBSuccFreq)
2555 BBSuccProbs.push_back(
2556 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2557 // Normalize edge probabilities so that they sum up to one.
2559 BBSuccProbs.end());
2560 }
2561
2562 // Update edge probabilities in BPI.
2563 BPI->setEdgeProbability(BB, BBSuccProbs);
2564
2565 // Update the profile metadata as well.
2566 //
2567 // Don't do this if the profile of the transformed blocks was statically
2568 // estimated. (This could occur despite the function having an entry
2569 // frequency in completely cold parts of the CFG.)
2570 //
2571 // In this case we don't want to suggest to subsequent passes that the
2572 // calculated weights are fully consistent. Consider this graph:
2573 //
2574 // check_1
2575 // 50% / |
2576 // eq_1 | 50%
2577 // \ |
2578 // check_2
2579 // 50% / |
2580 // eq_2 | 50%
2581 // \ |
2582 // check_3
2583 // 50% / |
2584 // eq_3 | 50%
2585 // \ |
2586 //
2587 // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2588 // the overall probabilities are inconsistent; the total probability that the
2589 // value is either 1, 2 or 3 is 150%.
2590 //
2591 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2592 // becomes 0%. This is even worse if the edge whose probability becomes 0% is
2593 // the loop exit edge. Then based solely on static estimation we would assume
2594 // the loop was extremely hot.
2595 //
2596 // FIXME this locally as well so that BPI and BFI are consistent as well. We
2597 // shouldn't make edges extremely likely or unlikely based solely on static
2598 // estimation.
2599 if (BBSuccProbs.size() >= 2 && HasProfile) {
2601 for (auto Prob : BBSuccProbs)
2602 Weights.push_back(Prob.getNumerator());
2603
2604 auto TI = BB->getTerminator();
2605 setBranchWeights(*TI, Weights, hasBranchWeightOrigin(*TI));
2606 }
2607}
2608
2609/// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2610/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2611/// If we can duplicate the contents of BB up into PredBB do so now, this
2612/// improves the odds that the branch will be on an analyzable instruction like
2613/// a compare.
2615 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2616 assert(!PredBBs.empty() && "Can't handle an empty set");
2617
2618 // If BB is a loop header, then duplicating this block outside the loop would
2619 // cause us to transform this into an irreducible loop, don't do this.
2620 // See the comments above findLoopHeaders for justifications and caveats.
2621 if (LoopHeaders.count(BB)) {
2622 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
2623 << "' into predecessor block '" << PredBBs[0]->getName()
2624 << "' - it might create an irreducible loop!\n");
2625 return false;
2626 }
2627
2628 unsigned DuplicationCost = getJumpThreadDuplicationCost(
2629 TTI, BB, BB->getTerminator(), BBDupThreshold);
2630 if (DuplicationCost > BBDupThreshold) {
2631 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
2632 << "' - Cost is too high: " << DuplicationCost << "\n");
2633 return false;
2634 }
2635
2636 // And finally, do it! Start by factoring the predecessors if needed.
2637 std::vector<DominatorTree::UpdateType> Updates;
2638 BasicBlock *PredBB;
2639 if (PredBBs.size() == 1)
2640 PredBB = PredBBs[0];
2641 else {
2642 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()
2643 << " common predecessors.\n");
2644 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2645 }
2646 Updates.push_back({DominatorTree::Delete, PredBB, BB});
2647
2648 // Okay, we decided to do this! Clone all the instructions in BB onto the end
2649 // of PredBB.
2650 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName()
2651 << "' into end of '" << PredBB->getName()
2652 << "' to eliminate branch on phi. Cost: "
2653 << DuplicationCost << " block is:" << *BB << "\n");
2654
2655 // Unless PredBB ends with an unconditional branch, split the edge so that we
2656 // can just clone the bits from BB into the end of the new PredBB.
2657 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2658
2659 if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2660 BasicBlock *OldPredBB = PredBB;
2661 PredBB = SplitEdge(OldPredBB, BB);
2662 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2663 Updates.push_back({DominatorTree::Insert, PredBB, BB});
2664 Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2665 OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2666 }
2667
2668 // We are going to have to map operands from the original BB block into the
2669 // PredBB block. Evaluate PHI nodes in BB.
2670 ValueToValueMapTy ValueMapping;
2671
2672 BasicBlock::iterator BI = BB->begin();
2673 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2674 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2675 // Clone the non-phi instructions of BB into PredBB, keeping track of the
2676 // mapping and using it to remap operands in the cloned instructions.
2677 for (; BI != BB->end(); ++BI) {
2678 Instruction *New = BI->clone();
2679 New->insertInto(PredBB, OldPredBranch->getIterator());
2680
2681 // Remap operands to patch up intra-block references.
2682 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2683 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2684 ValueToValueMapTy::iterator I = ValueMapping.find(Inst);
2685 if (I != ValueMapping.end())
2686 New->setOperand(i, I->second);
2687 }
2688
2689 // Remap debug variable operands.
2690 remapDebugVariable(ValueMapping, New);
2691
2692 // If this instruction can be simplified after the operands are updated,
2693 // just use the simplified value instead. This frequently happens due to
2694 // phi translation.
2696 New,
2697 {BB->getDataLayout(), TLI, nullptr, nullptr, New})) {
2698 ValueMapping[&*BI] = IV;
2699 if (!New->mayHaveSideEffects()) {
2700 New->eraseFromParent();
2701 New = nullptr;
2702 // Clone debug-info on the elided instruction to the destination
2703 // position.
2704 OldPredBranch->cloneDebugInfoFrom(&*BI, std::nullopt, true);
2705 }
2706 } else {
2707 ValueMapping[&*BI] = New;
2708 }
2709 if (New) {
2710 // Otherwise, insert the new instruction into the block.
2711 New->setName(BI->getName());
2712 // Clone across any debug-info attached to the old instruction.
2713 New->cloneDebugInfoFrom(&*BI);
2714 // Update Dominance from simplified New instruction operands.
2715 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2716 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2717 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2718 }
2719 }
2720
2721 // Check to see if the targets of the branch had PHI nodes. If so, we need to
2722 // add entries to the PHI nodes for branch from PredBB now.
2723 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2724 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2725 ValueMapping);
2726 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2727 ValueMapping);
2728
2729 updateSSA(BB, PredBB, ValueMapping);
2730
2731 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2732 // that we nuked.
2733 BB->removePredecessor(PredBB, true);
2734
2735 // Remove the unconditional branch at the end of the PredBB block.
2736 OldPredBranch->eraseFromParent();
2737 if (auto *BPI = getBPI())
2738 BPI->copyEdgeProbabilities(BB, PredBB);
2739 DTU->applyUpdatesPermissive(Updates);
2740
2741 ++NumDupes;
2742 return true;
2743}
2744
2745// Pred is a predecessor of BB with an unconditional branch to BB. SI is
2746// a Select instruction in Pred. BB has other predecessors and SI is used in
2747// a PHI node in BB. SI has no other use.
2748// A new basic block, NewBB, is created and SI is converted to compare and
2749// conditional branch. SI is erased from parent.
2751 SelectInst *SI, PHINode *SIUse,
2752 unsigned Idx) {
2753 // Expand the select.
2754 //
2755 // Pred --
2756 // | v
2757 // | NewBB
2758 // | |
2759 // |-----
2760 // v
2761 // BB
2762 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2763 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2764 BB->getParent(), BB);
2765 // Move the unconditional branch to NewBB.
2766 PredTerm->removeFromParent();
2767 PredTerm->insertInto(NewBB, NewBB->end());
2768 // Create a conditional branch and update PHI nodes.
2769 auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2770 BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2771 BI->copyMetadata(*SI, {LLVMContext::MD_prof});
2772 SIUse->setIncomingValue(Idx, SI->getFalseValue());
2773 SIUse->addIncoming(SI->getTrueValue(), NewBB);
2774
2775 uint64_t TrueWeight = 1;
2776 uint64_t FalseWeight = 1;
2777 // Copy probabilities from 'SI' to created conditional branch in 'Pred'.
2778 if (extractBranchWeights(*SI, TrueWeight, FalseWeight) &&
2779 (TrueWeight + FalseWeight) != 0) {
2782 TrueWeight, TrueWeight + FalseWeight));
2784 FalseWeight, TrueWeight + FalseWeight));
2785 // Update BPI if exists.
2786 if (auto *BPI = getBPI())
2787 BPI->setEdgeProbability(Pred, BP);
2788 }
2789 // Set the block frequency of NewBB.
2790 if (auto *BFI = getBFI()) {
2791 if ((TrueWeight + FalseWeight) == 0) {
2792 TrueWeight = 1;
2793 FalseWeight = 1;
2794 }
2796 TrueWeight, TrueWeight + FalseWeight);
2797 auto NewBBFreq = BFI->getBlockFreq(Pred) * PredToNewBBProb;
2798 BFI->setBlockFreq(NewBB, NewBBFreq);
2799 }
2800
2801 // The select is now dead.
2802 SI->eraseFromParent();
2803 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2804 {DominatorTree::Insert, Pred, NewBB}});
2805
2806 // Update any other PHI nodes in BB.
2807 for (BasicBlock::iterator BI = BB->begin();
2808 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2809 if (Phi != SIUse)
2810 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2811}
2812
2814 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2815
2816 if (!CondPHI || CondPHI->getParent() != BB)
2817 return false;
2818
2819 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2820 BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2821 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2822
2823 // The second and third condition can be potentially relaxed. Currently
2824 // the conditions help to simplify the code and allow us to reuse existing
2825 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2826 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2827 continue;
2828
2829 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2830 if (!PredTerm || !PredTerm->isUnconditional())
2831 continue;
2832
2833 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2834 return true;
2835 }
2836 return false;
2837}
2838
2839/// tryToUnfoldSelect - Look for blocks of the form
2840/// bb1:
2841/// %a = select
2842/// br bb2
2843///
2844/// bb2:
2845/// %p = phi [%a, %bb1] ...
2846/// %c = icmp %p
2847/// br i1 %c
2848///
2849/// And expand the select into a branch structure if one of its arms allows %c
2850/// to be folded. This later enables threading from bb1 over bb2.
2852 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2853 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2854 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2855
2856 if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2857 CondLHS->getParent() != BB)
2858 return false;
2859
2860 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2861 BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2862 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2863
2864 // Look if one of the incoming values is a select in the corresponding
2865 // predecessor.
2866 if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2867 continue;
2868
2869 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2870 if (!PredTerm || !PredTerm->isUnconditional())
2871 continue;
2872
2873 // Now check if one of the select values would allow us to constant fold the
2874 // terminator in BB. We don't do the transform if both sides fold, those
2875 // cases will be threaded in any case.
2876 Constant *LHSRes =
2877 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2878 CondRHS, Pred, BB, CondCmp);
2879 Constant *RHSRes =
2880 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2881 CondRHS, Pred, BB, CondCmp);
2882 if ((LHSRes || RHSRes) && LHSRes != RHSRes) {
2883 unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2884 return true;
2885 }
2886 }
2887 return false;
2888}
2889
2890/// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2891/// same BB in the form
2892/// bb:
2893/// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2894/// %s = select %p, trueval, falseval
2895///
2896/// or
2897///
2898/// bb:
2899/// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2900/// %c = cmp %p, 0
2901/// %s = select %c, trueval, falseval
2902///
2903/// And expand the select into a branch structure. This later enables
2904/// jump-threading over bb in this pass.
2905///
2906/// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2907/// select if the associated PHI has at least one constant. If the unfolded
2908/// select is not jump-threaded, it will be folded again in the later
2909/// optimizations.
2911 // This transform would reduce the quality of msan diagnostics.
2912 // Disable this transform under MemorySanitizer.
2913 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2914 return false;
2915
2916 // If threading this would thread across a loop header, don't thread the edge.
2917 // See the comments above findLoopHeaders for justifications and caveats.
2918 if (LoopHeaders.count(BB))
2919 return false;
2920
2921 for (BasicBlock::iterator BI = BB->begin();
2922 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2923 // Look for a Phi having at least one constant incoming value.
2924 if (llvm::all_of(PN->incoming_values(),
2925 [](Value *V) { return !isa<ConstantInt>(V); }))
2926 continue;
2927
2928 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2929 using namespace PatternMatch;
2930
2931 // Check if SI is in BB and use V as condition.
2932 if (SI->getParent() != BB)
2933 return false;
2934 Value *Cond = SI->getCondition();
2935 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2936 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2937 };
2938
2939 SelectInst *SI = nullptr;
2940 for (Use &U : PN->uses()) {
2941 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2942 // Look for a ICmp in BB that compares PN with a constant and is the
2943 // condition of a Select.
2944 if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2945 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2946 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2947 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2948 SI = SelectI;
2949 break;
2950 }
2951 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2952 // Look for a Select in BB that uses PN as condition.
2953 if (isUnfoldCandidate(SelectI, U.get())) {
2954 SI = SelectI;
2955 break;
2956 }
2957 }
2958 }
2959
2960 if (!SI)
2961 continue;
2962 // Expand the select.
2963 Value *Cond = SI->getCondition();
2964 if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI))
2965 Cond = new FreezeInst(Cond, "cond.fr", SI->getIterator());
2966 MDNode *BranchWeights = getBranchWeightMDNode(*SI);
2967 Instruction *Term =
2968 SplitBlockAndInsertIfThen(Cond, SI, false, BranchWeights);
2969 BasicBlock *SplitBB = SI->getParent();
2970 BasicBlock *NewBB = Term->getParent();
2971 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI->getIterator());
2972 NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2973 NewPN->addIncoming(SI->getFalseValue(), BB);
2974 NewPN->setDebugLoc(SI->getDebugLoc());
2975 SI->replaceAllUsesWith(NewPN);
2976 SI->eraseFromParent();
2977 // NewBB and SplitBB are newly created blocks which require insertion.
2978 std::vector<DominatorTree::UpdateType> Updates;
2979 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2980 Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2981 Updates.push_back({DominatorTree::Insert, BB, NewBB});
2982 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2983 // BB's successors were moved to SplitBB, update DTU accordingly.
2984 for (auto *Succ : successors(SplitBB)) {
2985 Updates.push_back({DominatorTree::Delete, BB, Succ});
2986 Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2987 }
2988 DTU->applyUpdatesPermissive(Updates);
2989 return true;
2990 }
2991 return false;
2992}
2993
2994/// Try to propagate a guard from the current BB into one of its predecessors
2995/// in case if another branch of execution implies that the condition of this
2996/// guard is always true. Currently we only process the simplest case that
2997/// looks like:
2998///
2999/// Start:
3000/// %cond = ...
3001/// br i1 %cond, label %T1, label %F1
3002/// T1:
3003/// br label %Merge
3004/// F1:
3005/// br label %Merge
3006/// Merge:
3007/// %condGuard = ...
3008/// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
3009///
3010/// And cond either implies condGuard or !condGuard. In this case all the
3011/// instructions before the guard can be duplicated in both branches, and the
3012/// guard is then threaded to one of them.
3014 using namespace PatternMatch;
3015
3016 // We only want to deal with two predecessors.
3017 BasicBlock *Pred1, *Pred2;
3018 auto PI = pred_begin(BB), PE = pred_end(BB);
3019 if (PI == PE)
3020 return false;
3021 Pred1 = *PI++;
3022 if (PI == PE)
3023 return false;
3024 Pred2 = *PI++;
3025 if (PI != PE)
3026 return false;
3027 if (Pred1 == Pred2)
3028 return false;
3029
3030 // Try to thread one of the guards of the block.
3031 // TODO: Look up deeper than to immediate predecessor?
3032 auto *Parent = Pred1->getSinglePredecessor();
3033 if (!Parent || Parent != Pred2->getSinglePredecessor())
3034 return false;
3035
3036 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
3037 for (auto &I : *BB)
3038 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
3039 return true;
3040
3041 return false;
3042}
3043
3044/// Try to propagate the guard from BB which is the lower block of a diamond
3045/// to one of its branches, in case if diamond's condition implies guard's
3046/// condition.
3048 BranchInst *BI) {
3049 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
3050 assert(BI->isConditional() && "Unconditional branch has 2 successors?");
3051 Value *GuardCond = Guard->getArgOperand(0);
3052 Value *BranchCond = BI->getCondition();
3053 BasicBlock *TrueDest = BI->getSuccessor(0);
3054 BasicBlock *FalseDest = BI->getSuccessor(1);
3055
3056 auto &DL = BB->getDataLayout();
3057 bool TrueDestIsSafe = false;
3058 bool FalseDestIsSafe = false;
3059
3060 // True dest is safe if BranchCond => GuardCond.
3061 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3062 if (Impl && *Impl)
3063 TrueDestIsSafe = true;
3064 else {
3065 // False dest is safe if !BranchCond => GuardCond.
3066 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3067 if (Impl && *Impl)
3068 FalseDestIsSafe = true;
3069 }
3070
3071 if (!TrueDestIsSafe && !FalseDestIsSafe)
3072 return false;
3073
3074 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3075 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3076
3077 ValueToValueMapTy UnguardedMapping, GuardedMapping;
3078 Instruction *AfterGuard = Guard->getNextNode();
3079 unsigned Cost =
3080 getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3081 if (Cost > BBDupThreshold)
3082 return false;
3083 // Duplicate all instructions before the guard and the guard itself to the
3084 // branch where implication is not proved.
3086 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3087 assert(GuardedBlock && "Could not create the guarded block?");
3088 // Duplicate all instructions before the guard in the unguarded branch.
3089 // Since we have successfully duplicated the guarded block and this block
3090 // has fewer instructions, we expect it to succeed.
3092 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3093 assert(UnguardedBlock && "Could not create the unguarded block?");
3094 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3095 << GuardedBlock->getName() << "\n");
3096 // Some instructions before the guard may still have uses. For them, we need
3097 // to create Phi nodes merging their copies in both guarded and unguarded
3098 // branches. Those instructions that have no uses can be just removed.
3100 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3101 if (!isa<PHINode>(&*BI))
3102 ToRemove.push_back(&*BI);
3103
3105 assert(InsertionPoint != BB->end() && "Empty block?");
3106 // Substitute with Phis & remove.
3107 for (auto *Inst : reverse(ToRemove)) {
3108 if (!Inst->use_empty()) {
3109 PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3110 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3111 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3112 NewPN->setDebugLoc(Inst->getDebugLoc());
3114 Inst->replaceAllUsesWith(NewPN);
3115 }
3116 Inst->dropDbgRecords();
3117 Inst->eraseFromParent();
3118 }
3119 return true;
3120}
3121
3122PreservedAnalyses JumpThreadingPass::getPreservedAnalysis() const {
3126
3127 // TODO: We would like to preserve BPI/BFI. Enable once all paths update them.
3128 // TODO: Would be nice to verify BPI/BFI consistency as well.
3129 return PA;
3130}
3131
3132template <typename AnalysisT>
3133typename AnalysisT::Result *JumpThreadingPass::runExternalAnalysis() {
3134 assert(FAM && "Can't run external analysis without FunctionAnalysisManager");
3135
3136 // If there were no changes since last call to 'runExternalAnalysis' then all
3137 // analysis is either up to date or explicitly invalidated. Just go ahead and
3138 // run the "external" analysis.
3139 if (!ChangedSinceLastAnalysisUpdate) {
3140 assert(!DTU->hasPendingUpdates() &&
3141 "Lost update of 'ChangedSinceLastAnalysisUpdate'?");
3142 // Run the "external" analysis.
3143 return &FAM->getResult<AnalysisT>(*F);
3144 }
3145 ChangedSinceLastAnalysisUpdate = false;
3146
3147 auto PA = getPreservedAnalysis();
3148 // TODO: This shouldn't be needed once 'getPreservedAnalysis' reports BPI/BFI
3149 // as preserved.
3150 PA.preserve<BranchProbabilityAnalysis>();
3151 PA.preserve<BlockFrequencyAnalysis>();
3152 // Report everything except explicitly preserved as invalid.
3153 FAM->invalidate(*F, PA);
3154 // Update DT/PDT.
3155 DTU->flush();
3156 // Make sure DT/PDT are valid before running "external" analysis.
3157 assert(DTU->getDomTree().verify(DominatorTree::VerificationLevel::Fast));
3158 assert((!DTU->hasPostDomTree() ||
3159 DTU->getPostDomTree().verify(
3161 // Run the "external" analysis.
3162 auto *Result = &FAM->getResult<AnalysisT>(*F);
3163 // Update analysis JumpThreading depends on and not explicitly preserved.
3164 TTI = &FAM->getResult<TargetIRAnalysis>(*F);
3165 TLI = &FAM->getResult<TargetLibraryAnalysis>(*F);
3166 AA = &FAM->getResult<AAManager>(*F);
3167
3168 return Result;
3169}
3170
3171BranchProbabilityInfo *JumpThreadingPass::getBPI() {
3172 if (!BPI) {
3173 assert(FAM && "Can't create BPI without FunctionAnalysisManager");
3175 }
3176 return *BPI;
3177}
3178
3179BlockFrequencyInfo *JumpThreadingPass::getBFI() {
3180 if (!BFI) {
3181 assert(FAM && "Can't create BFI without FunctionAnalysisManager");
3183 }
3184 return *BFI;
3185}
3186
3187// Important note on validity of BPI/BFI. JumpThreading tries to preserve
3188// BPI/BFI as it goes. Thus if cached instance exists it will be updated.
3189// Otherwise, new instance of BPI/BFI is created (up to date by definition).
3190BranchProbabilityInfo *JumpThreadingPass::getOrCreateBPI(bool Force) {
3191 auto *Res = getBPI();
3192 if (Res)
3193 return Res;
3194
3195 if (Force)
3196 BPI = runExternalAnalysis<BranchProbabilityAnalysis>();
3197
3198 return *BPI;
3199}
3200
3201BlockFrequencyInfo *JumpThreadingPass::getOrCreateBFI(bool Force) {
3202 auto *Res = getBFI();
3203 if (Res)
3204 return Res;
3205
3206 if (Force)
3207 BFI = runExternalAnalysis<BlockFrequencyAnalysis>();
3208
3209 return *BFI;
3210}
Rewrite undef for PHI
ReachingDefAnalysis InstSet & ToRemove
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
static const Function * getParent(const Value *V)
BlockVerifier::State From
This file contains the declarations for the subclasses of Constant, which represent the different fla...
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(...)
Definition: Debug.h:106
This file defines the DenseMap class.
uint64_t Size
This is the interface for a simple mod/ref and alias analysis over globals.
This file provides various utilities for inspecting and working with the control flow graph in LLVM I...
Module.h This file contains the declarations for the Module class.
This header defines various interfaces for pass management in LLVM.
This defines the Use class.
static unsigned getBestDestForJumpOnUndef(BasicBlock *BB)
GetBestDestForBranchOnUndef - If we determine that the specified block ends in an undefined jump,...
static cl::opt< unsigned > PhiDuplicateThreshold("jump-threading-phi-threshold", cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76), cl::Hidden)
static bool replaceFoldableUses(Instruction *Cond, Value *ToVal, BasicBlock *KnownAtEndOfBB)
static cl::opt< unsigned > BBDuplicateThreshold("jump-threading-threshold", cl::desc("Max block size to duplicate for jump threading"), cl::init(6), cl::Hidden)
static cl::opt< bool > ThreadAcrossLoopHeaders("jump-threading-across-loop-headers", cl::desc("Allow JumpThreading to thread across loop headers, for testing"), cl::init(false), cl::Hidden)
static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI, BasicBlock *BB, Instruction *StopAt, unsigned Threshold)
Return the cost of duplicating a piece of this block from first non-phi and before StopAt instruction...
static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, BasicBlock *OldPred, BasicBlock *NewPred, ValueToValueMapTy &ValueMap)
addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new predecessor to the PHIBB block.
static BasicBlock * findMostPopularDest(BasicBlock *BB, const SmallVectorImpl< std::pair< BasicBlock *, BasicBlock * > > &PredToDestList)
findMostPopularDest - The specified list contains multiple possible threadable destinations.
static Constant * getKnownConstant(Value *Val, ConstantPreference Preference)
getKnownConstant - Helper method to determine if we can thread over a terminator with the given value...
static cl::opt< unsigned > ImplicationSearchThreshold("jump-threading-implication-search-threshold", cl::desc("The number of predecessors to search for a stronger " "condition to use to thread over a weaker condition"), cl::init(3), cl::Hidden)
static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB)
Return true if Op is an instruction defined in the given block.
static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB)
static bool hasAddressTakenAndUsed(BasicBlock *BB)
See the comments on JumpThreadingPass.
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition: Lint.cpp:557
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
This file implements a map that provides insertion order iteration.
This file provides utility analysis objects describing memory locations.
This file contains the declarations for metadata subclasses.
#define P(N)
ppc ctr loops verify
This file contains the declarations for profiling metadata utility functions.
const SmallVectorImpl< MachineOperand > & Cond
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file contains some templates that are useful if you are working with the STL at all.
This file defines the SmallPtrSet class.
This file defines the SmallVector class.
This file defines the 'Statistic' class, which is designed to be an easy way to expose various metric...
#define STATISTIC(VARNAME, DESC)
Definition: Statistic.h:166
This pass exposes codegen information to IR-level passes.
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition: blake3_impl.h:78
A manager for alias analyses.
A container for analyses that lazily runs them and caches their results.
Definition: PassManager.h:253
void invalidate(IRUnitT &IR, const PreservedAnalyses &PA)
Invalidate cached analyses for an IR unit.
PassT::Result * getCachedResult(IRUnitT &IR) const
Get the cached result of an analysis pass for a given IR unit.
Definition: PassManager.h:429
PassT::Result & getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs)
Get the result of an analysis pass for a given IR unit.
Definition: PassManager.h:410
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
LLVM Basic Block Representation.
Definition: BasicBlock.h:61
iterator end()
Definition: BasicBlock.h:461
iterator begin()
Instruction iterator methods.
Definition: BasicBlock.h:448
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition: BasicBlock.h:517
const_iterator getFirstInsertionPt() const
Returns an iterator to the first instruction in this block that is suitable for inserting a non-PHI i...
Definition: BasicBlock.cpp:416
DbgMarker * createMarker(Instruction *I)
Attach a DbgMarker to the given instruction.
Definition: BasicBlock.cpp:52
bool hasAddressTaken() const
Returns true if there are any uses of this basic block other than direct branches,...
Definition: BasicBlock.h:658
InstListType::const_iterator const_iterator
Definition: BasicBlock.h:178
const Instruction & front() const
Definition: BasicBlock.h:471
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:212
void moveAfter(BasicBlock *MovePos)
Unlink this basic block from its current function and insert it right after MovePos in the function M...
Definition: BasicBlock.cpp:287
bool hasNPredecessors(unsigned N) const
Return true if this block has exactly N predecessors.
Definition: BasicBlock.cpp:481
const BasicBlock * getSinglePredecessor() const
Return the predecessor of this block if it has a single predecessor block.
Definition: BasicBlock.cpp:459
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:219
const DataLayout & getDataLayout() const
Get the data layout of the module this basic block belongs to.
Definition: BasicBlock.cpp:296
DbgMarker * getMarker(InstListType::iterator It)
Return the DbgMarker for the position given by It, so that DbgRecords can be inserted there.
InstListType::iterator iterator
Instruction iterators...
Definition: BasicBlock.h:177
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:168
bool isLandingPad() const
Return true if this basic block is a landing pad.
Definition: BasicBlock.cpp:677
bool isEHPad() const
Return true if this basic block is an exception handling block.
Definition: BasicBlock.h:675
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:239
void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
Definition: BasicBlock.cpp:516
This class is a wrapper over an AAResults, and it is intended to be used only when there are no IR ch...
void disableDominatorTree()
Disable the use of the dominator tree during alias analysis queries.
The address of a basic block.
Definition: Constants.h:893
static BlockAddress * get(Function *F, BasicBlock *BB)
Return a BlockAddress for the specified function and basic block.
Definition: Constants.cpp:1897
Analysis pass which computes BlockFrequencyInfo.
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
Conditional or Unconditional Branch instruction.
bool isConditional() const
unsigned getNumSuccessors() const
static BranchInst * Create(BasicBlock *IfTrue, InsertPosition InsertBefore=nullptr)
BasicBlock * getSuccessor(unsigned i) const
bool isUnconditional() const
Value * getCondition() const
Analysis pass which computes BranchProbabilityInfo.
Analysis providing branch probability information.
void setEdgeProbability(const BasicBlock *Src, const SmallVectorImpl< BranchProbability > &Probs)
Set the raw probabilities for all edges from the given block.
BranchProbability getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const
Get an edge's probability, relative to other out-edges of the Src.
void copyEdgeProbabilities(BasicBlock *Src, BasicBlock *Dst)
Copy outgoing edge probabilities from Src to Dst.
static BranchProbability getBranchProbability(uint64_t Numerator, uint64_t Denominator)
uint32_t getNumerator() const
BranchProbability getCompl() const
static void normalizeProbabilities(ProbabilityIter Begin, ProbabilityIter End)
Value * getArgOperand(unsigned i) const
Definition: InstrTypes.h:1286
This class represents a function call, abstracting a target machine's calling convention.
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:444
static CastInst * CreateBitOrPointerCast(Value *S, Type *Ty, const Twine &Name="", InsertPosition InsertBefore=nullptr)
Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:661
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:673
Predicate getPredicate() const
Return the predicate for this instruction.
Definition: InstrTypes.h:763
An abstraction over a floating-point predicate, and a pack of an integer predicate with samesign info...
Definition: CmpPredicate.h:22
static Constant * getNot(Constant *C)
Definition: Constants.cpp:2631
This is the shared class of boolean and integer constants.
Definition: Constants.h:83
bool isOne() const
This is just a convenience method to make client code smaller for a common case.
Definition: Constants.h:214
static ConstantInt * getTrue(LLVMContext &Context)
Definition: Constants.cpp:866
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition: Constants.h:208
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:873
const APInt & getValue() const
Return the constant as an APInt value reference.
Definition: Constants.h:148
This class represents a range of values.
Definition: ConstantRange.h:47
ConstantRange add(const ConstantRange &Other) const
Return a new range representing the possible values resulting from an addition of a value in this ran...
static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred, const APInt &Other)
Produce the exact range such that all values in the returned range satisfy the given predicate with a...
ConstantRange inverse() const
Return a new range that is the logical not of the current set.
bool contains(const APInt &Val) const
Return true if the specified value is in the set.
This is an important base class in LLVM.
Definition: Constant.h:42
void removeDeadConstantUsers() const
If there are any dead constant users dangling off of this constant, remove them.
Definition: Constants.cpp:739
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:63
Per-instruction record of debug-info.
iterator_range< simple_ilist< DbgRecord >::iterator > cloneDebugInfoFrom(DbgMarker *From, std::optional< simple_ilist< DbgRecord >::iterator > FromHere, bool InsertAtHead=false)
Clone all DbgMarkers from From into this marker.
const BasicBlock * getParent() const
This represents the llvm.dbg.value instruction.
Record of a variable value-assignment, aka a non instruction representation of the dbg....
ValueT lookup(const_arg_type_t< KeyT > Val) const
lookup - Return the entry for the specified key, or a default constructed value if no such entry exis...
Definition: DenseMap.h:194
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:211
Analysis pass which computes a DominatorTree.
Definition: Dominators.h:279
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
bool isReachableFromEntry(const Use &U) const
Provide an overload for a Use.
Definition: Dominators.cpp:321
This class represents a freeze function that returns random concrete value if an operand is either a ...
const BasicBlock & getEntryBlock() const
Definition: Function.h:809
bool hasFnAttribute(Attribute::AttrKind Kind) const
Return true if the function has the attribute.
Definition: Function.cpp:731
void flush()
Apply all pending updates to available trees and flush all BasicBlocks awaiting deletion.
Module * getParent()
Get the module that this global value is contained inside of...
Definition: GlobalValue.h:657
This instruction compares its operands according to the predicate given to the constructor.
Indirect Branch Instruction.
void removeFromParent()
This method unlinks 'this' from the containing basic block, but does not delete it.
Definition: Instruction.cpp:80
iterator_range< simple_ilist< DbgRecord >::iterator > cloneDebugInfoFrom(const Instruction *From, std::optional< simple_ilist< DbgRecord >::iterator > FromHere=std::nullopt, bool InsertAtHead=false)
Clone any debug-info attached to From onto this instruction.
unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
void insertBefore(Instruction *InsertPos)
Insert an unlinked instruction into a basic block immediately before the specified instruction.
Definition: Instruction.cpp:99
const DebugLoc & getDebugLoc() const
Return the debug location for this node as a DebugLoc.
Definition: Instruction.h:475
void setAAMetadata(const AAMDNodes &N)
Sets the AA metadata on this instruction from the AAMDNodes structure.
Definition: Metadata.cpp:1764
bool isAtomic() const LLVM_READONLY
Return true if this instruction has an AtomicOrdering of unordered or higher.
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
Definition: Instruction.cpp:94
BasicBlock * getSuccessor(unsigned Idx) const LLVM_READONLY
Return the specified successor. This instruction must be a terminator.
AAMDNodes getAAMetadata() const
Returns the AA metadata for this instruction.
Definition: Metadata.cpp:1750
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:274
void setDebugLoc(DebugLoc Loc)
Set the debug location information for this instruction.
Definition: Instruction.h:472
void setSuccessor(unsigned Idx, BasicBlock *BB)
Update the specified successor to point at the provided block.
const DataLayout & getDataLayout() const
Get the data layout of the module this instruction belongs to.
Definition: Instruction.cpp:76
bool isSpecialTerminator() const
Definition: Instruction.h:285
InstListType::iterator insertInto(BasicBlock *ParentBB, InstListType::iterator It)
Inserts an unlinked instruction into ParentBB at position It and returns the iterator of the inserted...
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:48
bool simplifyPartiallyRedundantLoad(LoadInst *LI)
simplifyPartiallyRedundantLoad - If LoadI is an obviously partially redundant load instruction,...
bool processBranchOnXOR(BinaryOperator *BO)
processBranchOnXOR - We have an otherwise unthreadable conditional branch on a xor instruction in the...
bool processGuards(BasicBlock *BB)
Try to propagate a guard from the current BB into one of its predecessors in case if another branch o...
void updateSSA(BasicBlock *BB, BasicBlock *NewBB, ValueToValueMapTy &ValueMapping)
Update the SSA form.
bool computeValueKnownInPredecessors(Value *V, BasicBlock *BB, jumpthreading::PredValueInfo &Result, jumpthreading::ConstantPreference Preference, Instruction *CxtI=nullptr)
void findLoopHeaders(Function &F)
findLoopHeaders - We do not want jump threading to turn proper loop structures into irreducible loops...
bool maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB)
Merge basic block BB into its sole predecessor if possible.
void cloneInstructions(ValueToValueMapTy &ValueMapping, BasicBlock::iterator BI, BasicBlock::iterator BE, BasicBlock *NewBB, BasicBlock *PredBB)
Clone instructions in range [BI, BE) to NewBB.
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM)
bool runImpl(Function &F, FunctionAnalysisManager *FAM, TargetLibraryInfo *TLI, TargetTransformInfo *TTI, LazyValueInfo *LVI, AAResults *AA, std::unique_ptr< DomTreeUpdater > DTU, std::optional< BlockFrequencyInfo * > BFI, std::optional< BranchProbabilityInfo * > BPI)
Constant * evaluateOnPredecessorEdge(BasicBlock *BB, BasicBlock *PredPredBB, Value *cond, const DataLayout &DL)
bool processBranchOnPHI(PHINode *PN)
processBranchOnPHI - We have an otherwise unthreadable conditional branch on a PHI node (or freeze PH...
bool maybethreadThroughTwoBasicBlocks(BasicBlock *BB, Value *Cond)
Attempt to thread through two successive basic blocks.
bool computeValueKnownInPredecessorsImpl(Value *V, BasicBlock *BB, jumpthreading::PredValueInfo &Result, jumpthreading::ConstantPreference Preference, SmallPtrSet< Value *, 4 > &RecursionSet, Instruction *CxtI=nullptr)
computeValueKnownInPredecessors - Given a basic block BB and a value V, see if we can infer that the ...
void unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, SelectInst *SI, PHINode *SIUse, unsigned Idx)
DomTreeUpdater * getDomTreeUpdater() const
bool processThreadableEdges(Value *Cond, BasicBlock *BB, jumpthreading::ConstantPreference Preference, Instruction *CxtI=nullptr)
bool processBlock(BasicBlock *BB)
processBlock - If there are any predecessors whose control can be threaded through to a successor,...
bool processImpliedCondition(BasicBlock *BB)
bool duplicateCondBranchOnPHIIntoPred(BasicBlock *BB, const SmallVectorImpl< BasicBlock * > &PredBBs)
duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch to BB which contains an i1...
void threadThroughTwoBasicBlocks(BasicBlock *PredPredBB, BasicBlock *PredBB, BasicBlock *BB, BasicBlock *SuccBB)
bool tryThreadEdge(BasicBlock *BB, const SmallVectorImpl< BasicBlock * > &PredBBs, BasicBlock *SuccBB)
tryThreadEdge - Thread an edge if it's safe and profitable to do so.
bool tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB)
tryToUnfoldSelect - Look for blocks of the form bb1: a = select br bb2
bool tryToUnfoldSelectInCurrBB(BasicBlock *BB)
tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the same BB in the form bb: p = ...
void threadEdge(BasicBlock *BB, const SmallVectorImpl< BasicBlock * > &PredBBs, BasicBlock *SuccBB)
threadEdge - We have decided that it is safe and profitable to factor the blocks in PredBBs to one pr...
bool threadGuard(BasicBlock *BB, IntrinsicInst *Guard, BranchInst *BI)
Try to propagate the guard from BB which is the lower block of a diamond to one of its branches,...
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
Analysis to compute lazy value information.
This pass computes, caches, and vends lazy value constraint information.
Definition: LazyValueInfo.h:32
void eraseBlock(BasicBlock *BB)
Inform the analysis cache that we have erased a block.
void threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, BasicBlock *NewSucc)
Inform the analysis cache that we have threaded an edge from PredBB to OldSucc to be from PredBB to N...
Constant * getPredicateOnEdge(CmpInst::Predicate Pred, Value *V, Constant *C, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI=nullptr)
Determine whether the specified value comparison with a constant is known to be true or false on the ...
Constant * getConstantOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI=nullptr)
Determine whether the specified value is known to be a constant on the specified edge.
ConstantRange getConstantRangeOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, Instruction *CxtI=nullptr)
Return the ConstantRage constraint that is known to hold for the specified value on the specified edg...
Constant * getConstant(Value *V, Instruction *CxtI)
Determine whether the specified value is known to be a constant at the specified instruction.
void forgetValue(Value *V)
Remove information related to this value from the cache.
Constant * getPredicateAt(CmpInst::Predicate Pred, Value *V, Constant *C, Instruction *CxtI, bool UseBlockValue)
Determine whether the specified value comparison with a constant is known to be true or false at the ...
An instruction for reading from memory.
Definition: Instructions.h:176
AtomicOrdering getOrdering() const
Returns the ordering constraint of this load instruction.
Definition: Instructions.h:220
bool isUnordered() const
Definition: Instructions.h:249
SyncScope::ID getSyncScopeID() const
Returns the synchronization scope ID of this load instruction.
Definition: Instructions.h:230
Align getAlign() const
Return the alignment of the access that is being performed.
Definition: Instructions.h:211
static LocationSize precise(uint64_t Value)
Metadata node.
Definition: Metadata.h:1073
This class implements a map that also provides access to all stored values in a deterministic order.
Definition: MapVector.h:36
Representation for a specific memory location.
void addIncoming(Value *V, BasicBlock *BB)
Add an incoming value to the end of the PHI list.
void setIncomingValue(unsigned i, Value *V)
Value * getIncomingValueForBlock(const BasicBlock *BB) const
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
static PHINode * Create(Type *Ty, unsigned NumReservedValues, const Twine &NameStr="", InsertPosition InsertBefore=nullptr)
Constructors - NumReservedValues is a hint for the number of incoming edges that this phi node will h...
static PoisonValue * get(Type *T)
Static factory methods - Return an 'poison' object of the specified type.
Definition: Constants.cpp:1878
A set of analyses that are preserved following a run of a transformation pass.
Definition: Analysis.h:111
static PreservedAnalyses all()
Construct a special preserved set that preserves all passes.
Definition: Analysis.h:117
void preserve()
Mark an analysis as preserved.
Definition: Analysis.h:131
Helper class for SSA formation on a set of values defined in multiple blocks.
Definition: SSAUpdater.h:40
void RewriteUse(Use &U)
Rewrite a use of the symbolic value.
Definition: SSAUpdater.cpp:187
void Initialize(Type *Ty, StringRef Name)
Reset this object to get ready for a new set of SSA updates with type 'Ty'.
Definition: SSAUpdater.cpp:52
void UpdateDebugValues(Instruction *I)
Rewrite debug value intrinsics to conform to a new SSA form.
Definition: SSAUpdater.cpp:199
void AddAvailableValue(BasicBlock *BB, Value *V)
Indicate that a rewritten value is available in the specified block with the specified value.
Definition: SSAUpdater.cpp:69
This class represents the LLVM 'select' instruction.
size_type size() const
Definition: SmallPtrSet.h:94
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:452
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:384
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:519
SmallSet - This maintains a set of unique values, optimizing for the case when the set is small (less...
Definition: SmallSet.h:132
std::pair< const_iterator, bool > insert(const T &V)
insert - Insert an element into the set if it isn't already there.
Definition: SmallSet.h:181
bool empty() const
Definition: SmallVector.h:81
size_t size() const
Definition: SmallVector.h:78
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:573
void assign(size_type NumElts, ValueParamT Elt)
Definition: SmallVector.h:704
reference emplace_back(ArgTypes &&... Args)
Definition: SmallVector.h:937
void resize(size_type N)
Definition: SmallVector.h:638
void push_back(const T &Elt)
Definition: SmallVector.h:413
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1196
Multiway switch.
Analysis pass providing the TargetTransformInfo.
Analysis pass providing the TargetLibraryInfo.
Provides information about what library functions are available for the current target.
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
bool hasBranchDivergence(const Function *F=nullptr) const
Return true if branch divergence exists.
@ TCK_SizeAndLatency
The weighted sum of size and latency.
@ TCC_Free
Expected to fold away in lowering.
InstructionCost getInstructionCost(const User *U, ArrayRef< const Value * > Operands, TargetCostKind CostKind) const
Estimate the cost of a given IR user when lowered.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isVectorTy() const
True if this is an instance of VectorType.
Definition: Type.h:270
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:237
'undef' values are things that do not have specified contents.
Definition: Constants.h:1412
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Definition: Constants.cpp:1859
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
void setOperand(unsigned i, Value *Val)
Definition: User.h:233
Value * getOperand(unsigned i) const
Definition: User.h:228
iterator find(const KeyT &Val)
Definition: ValueMap.h:155
iterator end()
Definition: ValueMap.h:135
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
const Value * DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) const
Translate PHI node to its predecessor from the given basic block.
Definition: Value.cpp:1067
bool hasOneUse() const
Return true if there is exactly one use of this value.
Definition: Value.h:434
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
const Value * stripPointerCasts() const
Strip off pointer casts, all-zero GEPs and address space casts.
Definition: Value.cpp:694
bool use_empty() const
Definition: Value.h:344
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:383
const ParentTy * getParent() const
Definition: ilist_node.h:32
self_iterator getIterator()
Definition: ilist_node.h:132
NodeTy * getNextNode()
Get the next node, or nullptr for the list tail.
Definition: ilist_node.h:353
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
Function * getDeclarationIfExists(Module *M, ID id, ArrayRef< Type * > Tys, FunctionType *FT=nullptr)
This version supports overloaded intrinsics.
Definition: Intrinsics.cpp:746
BinaryOp_match< LHS, RHS, Instruction::Add > m_Add(const LHS &L, const RHS &R)
class_match< Constant > m_Constant()
Match an arbitrary Constant and ignore it.
Definition: PatternMatch.h:165
bool match(Val *V, const Pattern &P)
Definition: PatternMatch.h:49
class_match< ConstantInt > m_ConstantInt()
Match an arbitrary ConstantInt and ignore it.
Definition: PatternMatch.h:168
auto m_LogicalOr()
Matches L || R where L and R are arbitrary values.
class_match< CmpInst > m_Cmp()
Matches any compare instruction and ignore it.
Definition: PatternMatch.h:105
class_match< Value > m_Value()
Match an arbitrary value and ignore it.
Definition: PatternMatch.h:92
auto m_LogicalAnd()
Matches L && R where L and R are arbitrary values.
match_combine_or< LTy, RTy > m_CombineOr(const LTy &L, const RTy &R)
Combine two pattern matchers matching L || R.
Definition: PatternMatch.h:239
initializer< Ty > init(const Ty &Val)
Definition: CommandLine.h:443
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
bool RemoveRedundantDbgInstrs(BasicBlock *BB)
Try to remove redundant dbg.value instructions from given basic block.
bool all_of(R &&range, UnaryPredicate P)
Provide wrappers to std::all_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1739
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions=false, const TargetLibraryInfo *TLI=nullptr, DomTreeUpdater *DTU=nullptr)
If a terminator instruction is predicated on a constant value, convert it into an unconditional branc...
Definition: Local.cpp:136
auto pred_end(const MachineBasicBlock *BB)
unsigned replaceNonLocalUsesWith(Instruction *From, Value *To)
Definition: Local.cpp:3565
auto successors(const MachineBasicBlock *BB)
MDNode * getBranchWeightMDNode(const Instruction &I)
Get the branch weights metadata node.
Value * findAvailablePtrLoadStore(const MemoryLocation &Loc, Type *AccessTy, bool AtLeastAtomic, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan, BatchAAResults *AA, bool *IsLoadCSE, unsigned *NumScanedInst)
Scan backwards to see if we have the value of the given pointer available locally within a small numb...
Definition: Loads.cpp:622
void remapDebugVariable(ValueToValueMapTy &Mapping, Instruction *Inst)
Remap the operands of the debug records attached to Inst, and the operands of Inst itself if it's a d...
Definition: Local.cpp:3787
Constant * ConstantFoldCompareInstOperands(unsigned Predicate, Constant *LHS, Constant *RHS, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr, const Instruction *I=nullptr)
Attempt to constant fold a compare instruction (icmp/fcmp) with the specified operands.
auto pred_size(const MachineBasicBlock *BB)
bool SimplifyInstructionsInBlock(BasicBlock *BB, const TargetLibraryInfo *TLI=nullptr)
Scan the specified basic block and try to simplify any instructions in it and recursively delete dead...
Definition: Local.cpp:737
void DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU=nullptr, bool KeepOneInputPHIs=false)
Delete the specified block, which must have no predecessors.
Value * FindAvailableLoadedValue(LoadInst *Load, BasicBlock *ScanBB, BasicBlock::iterator &ScanFrom, unsigned MaxInstsToScan=DefMaxInstsToScan, BatchAAResults *AA=nullptr, bool *IsLoadCSE=nullptr, unsigned *NumScanedInst=nullptr)
Scan backwards to see if we have the value of the given load available locally within a small number ...
Definition: Loads.cpp:493
bool hasBranchWeightOrigin(const Instruction &I)
Check if Branch Weight Metadata has an "expected" field from an llvm.expect* intrinsic.
BasicBlock * DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU)
Split edge between BB and PredBB and duplicate all non-Phi instructions from BB between its beginning...
void findDbgValues(SmallVectorImpl< DbgValueInst * > &DbgValues, Value *V, SmallVectorImpl< DbgVariableRecord * > *DbgVariableRecords=nullptr)
Finds the llvm.dbg.value intrinsics describing a value.
Definition: DebugInfo.cpp:155
Value * simplifyInstruction(Instruction *I, const SimplifyQuery &Q)
See if we can compute a simplified version of this instruction.
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1746
bool isInstructionTriviallyDead(Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction is not used, and the instruction will return.
Definition: Local.cpp:406
bool isGuard(const User *U)
Returns true iff U has semantics of a guard expressed in a form of call of llvm.experimental....
Definition: GuardUtils.cpp:18
bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, DomTreeUpdater *DTU=nullptr)
BB is known to contain an unconditional branch, and contains no instructions other than PHI nodes,...
Definition: Local.cpp:1156
auto reverse(ContainerTy &&C)
Definition: STLExtras.h:420
void setBranchWeights(Instruction &I, ArrayRef< uint32_t > Weights, bool IsExpected)
Create a new branch_weights metadata node and add or overwrite a prof metadata reference to instructi...
bool hasValidBranchWeightMD(const Instruction &I)
Checks if an instructions has valid Branch Weight Metadata.
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool isSafeToSpeculativelyExecute(const Instruction *I, const Instruction *CtxI=nullptr, AssumptionCache *AC=nullptr, const DominatorTree *DT=nullptr, const TargetLibraryInfo *TLI=nullptr, bool UseVariableInfo=true)
Return true if the instruction does not have any effects besides calculating the result and does not ...
Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
void cloneNoAliasScopes(ArrayRef< MDNode * > NoAliasDeclScopes, DenseMap< MDNode *, MDNode * > &ClonedScopes, StringRef Ext, LLVMContext &Context)
Duplicate the specified list of noalias decl scopes.
cl::opt< unsigned > DefMaxInstsToScan
The default number of maximum instructions to scan in the block, used by FindAvailableLoadedValue().
void SplitLandingPadPredecessors(BasicBlock *OrigBB, ArrayRef< BasicBlock * > Preds, const char *Suffix, const char *Suffix2, SmallVectorImpl< BasicBlock * > &NewBBs, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method transforms the landing pad, OrigBB, by introducing two new basic blocks into the function...
Constant * ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, Constant *RHS, const DataLayout &DL)
Attempt to constant fold a binary operation with the specified operands.
void combineMetadataForCSE(Instruction *K, const Instruction *J, bool DoesKMove)
Combine the metadata of two instructions so that K can replace J.
Definition: Local.cpp:3439
BasicBlock * SplitBlockPredecessors(BasicBlock *BB, ArrayRef< BasicBlock * > Preds, const char *Suffix, DominatorTree *DT, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, bool PreserveLCSSA=false)
This method introduces at least one new basic block into the function and moves some of the predecess...
void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DomTreeUpdater *DTU=nullptr)
BB is a block with one predecessor and its predecessor is known to have one successor (BB!...
Definition: Local.cpp:777
auto lower_bound(R &&Range, T &&Value)
Provide wrappers to std::lower_bound which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:1978
void adaptNoAliasScopes(llvm::Instruction *I, const DenseMap< MDNode *, MDNode * > &ClonedScopes, LLVMContext &Context)
Adapt the metadata for the specified instruction according to the provided mapping.
auto max_element(R &&Range)
Provide wrappers to std::max_element which take ranges instead of having to pass begin/end explicitly...
Definition: STLExtras.h:2014
Constant * ConstantFoldInstruction(Instruction *I, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstruction - Try to constant fold the specified instruction.
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I)
Return true if this function can prove that the instruction I will always transfer execution to one o...
bool extractBranchWeights(const MDNode *ProfileData, SmallVectorImpl< uint32_t > &Weights)
Extract branch weights from MD_prof metadata.
auto pred_begin(const MachineBasicBlock *BB)
void erase_if(Container &C, UnaryPredicate P)
Provide a container algorithm similar to C++ Library Fundamentals v2's erase_if which is equivalent t...
Definition: STLExtras.h:2099
auto predecessors(const MachineBasicBlock *BB)
bool is_contained(R &&Range, const E &Element)
Returns true if Element is found in Range.
Definition: STLExtras.h:1903
bool pred_empty(const BasicBlock *BB)
Definition: CFG.h:118
Instruction * SplitBlockAndInsertIfThen(Value *Cond, BasicBlock::iterator SplitBefore, bool Unreachable, MDNode *BranchWeights=nullptr, DomTreeUpdater *DTU=nullptr, LoopInfo *LI=nullptr, BasicBlock *ThenBlock=nullptr)
Split the containing block at the specified instruction - everything before SplitBefore stays in the ...
Value * simplifyCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a CmpInst, fold the result or return null.
void array_pod_sort(IteratorTy Start, IteratorTy End)
array_pod_sort - This sorts an array with the specified start and end extent.
Definition: STLExtras.h:1624
void identifyNoAliasScopesToClone(ArrayRef< BasicBlock * > BBs, SmallVectorImpl< MDNode * > &NoAliasDeclScopes)
Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified basic blocks and extract ...
BasicBlock * SplitEdge(BasicBlock *From, BasicBlock *To, DominatorTree *DT=nullptr, LoopInfo *LI=nullptr, MemorySSAUpdater *MSSAU=nullptr, const Twine &BBName="")
Split the edge connecting the specified blocks, and return the newly created basic block between From...
static auto filterDbgVars(iterator_range< simple_ilist< DbgRecord >::iterator > R)
Filter the DbgRecord range to DbgVariableRecord types only and downcast.
void FindFunctionBackedges(const Function &F, SmallVectorImpl< std::pair< const BasicBlock *, const BasicBlock * > > &Result)
Analyze the specified function to find all of the loop backedges in the function and return them.
Definition: CFG.cpp:34
std::optional< bool > isImpliedCondition(const Value *LHS, const Value *RHS, const DataLayout &DL, bool LHSIsTrue=true, unsigned Depth=0)
Return true if RHS is known to be implied true by LHS.
A collection of metadata nodes that might be associated with a memory access used by the alias-analys...
Definition: Metadata.h:764
Function object to check whether the second component of a container supported by std::get (like std:...
Definition: STLExtras.h:1476