CANDU: differenze tra le versioni
m Bot: Markup immagini (v. richiesta) |
|||
Riga 1: | Riga 1: | ||
{{torna a|Reattore nucleare ad acqua pesante pressurizzata}} |
{{torna a|Reattore nucleare ad acqua pesante pressurizzata}} |
||
'''CANDU''', abbreviazione per '''CAN'''adian '''D'''euterium '''U'''ranium, è una filiera di [[Reattore nucleare a fissione|reattori nucleari]] ad [[acqua pesante]] pressurizzata (cioè ''PHWR'') e [[uranio naturale]] (ossia con una concentrazione di <sup>235</sup>U di circa lo 0,7%, pari a quella presente nell'uranio estratto in natura) sviluppata dall'[[AECL]] (Atomic Energy of Canada Limited) negli anni sessanta e settanta, praticamente in contemporanea con il progetto italiano [[Reattore nucleare CIRENE|CIRENE]], che però era del tipo ''BHWR''. Il progetto CIRENE non arrivò mai ad uno sbocco pratico, perché l'impianto pilota di [[Latina]], quasi completato, non venne mai fatto entrare in funzione ed infine abbandonato a seguito del [[Referendum abrogativi del 1987|referendum antinucleare]]. |
'''CANDU''', abbreviazione per '''CAN'''adian '''D'''euterium '''U'''ranium, è una filiera di [[Reattore nucleare a fissione|reattori nucleari]] ad [[acqua pesante]] pressurizzata (cioè ''PHWR'') e [[uranio naturale]] (ossia con una concentrazione di <sup>235</sup>U di circa lo 0,7%, pari a quella presente nell'uranio estratto in natura) sviluppata dall'[[AECL]] (Atomic Energy of Canada Limited) negli anni sessanta e settanta, praticamente in contemporanea con il progetto italiano [[Reattore nucleare CIRENE|CIRENE]], che però era del tipo ''BHWR''. Il progetto CIRENE non arrivò mai ad uno sbocco pratico, perché l'impianto pilota di [[Latina]], quasi completato, non venne mai fatto entrare in funzione ed infine abbandonato a seguito del [[Referendum abrogativi del 1987|referendum antinucleare]]. |
||
[[File:CANDU fuel cycles.jpg|thumb| |
[[File:CANDU fuel cycles.jpg|thumb|upright=1.8|''Esempi di cicli del combustibile praticabili con il reattore CANDU:'' questi reattori possono funzionare con una varietà di combustibili, includendo il combustibile usato dai reattori ad acqua-leggera. Prodotto da [[Atomic Energy of Canada Limited]].]] |
||
== Introduzione == |
== Introduzione == |
||
Riga 7: | Riga 7: | ||
== Caratteristiche tecniche == |
== Caratteristiche tecniche == |
||
[[File:CANDU Reactor Schematic.svg|thumb| |
[[File:CANDU Reactor Schematic.svg|thumb|upright=1.8|'''Diagramma schematico di un reattore CANDU: '''Il circuito del raffreddamento primario è di color giallo ed arancio, il secondario in blu e rosso. L'acqua pesante fredda, contenuta nella calandria è raffigurata in rosa, sopra di essa ed all'interno si notano le barre di controllo (assorbitori di neutroni) parzialmente inseriti in tubi all'interno del fascio stesso. |
||
{| class=prettytable align=center |
{| class=prettytable align=center |
||
|+Key |
|+Key |
||
Riga 61: | Riga 61: | ||
In un reattore ad acqua leggera (LWR), il nucleo è contenuto in un singolo recipiente a pressione (vessel) nel quale è presente anche l'acqua leggera (H<sub>2</sub>O), che ha la doppia funzione di moderatore e liquido refrigerante, e il combustibile è in forma di pastiglie impilate l'una sopra l'altra e inguainate in barrette di zircaloy e assemblate in elementi (fuel bundle) che attraversano tutto il nocciolo. In alcune tipologie LWR, precisamente le più diffuse PWR e BWR, la ricarica del combustibile richiede lo spegnimento del reattore, l'apertura del coperchio del vessel e quindi la sostituzione di una parte del nocciolo, circa un terzo o un quarto a seconda della tipologia di filiera, dell'energia prodotta e da altri fattori. Il concetto del CANDU, a fascio tubiero, consente invece la rimozione di elementi di combustibile singoli senza la necessità di interrompere la produzione di energia elettrica, con un vantaggio evidente nell'economia di esercizio. Il sistema è costituito da manipolatori automatici, posti in coppia: uno estrae l'elemento di combustibile esaurito e l'altro, all'altra estremità del tubo in pressione, inserisce il nuovo elemento fresco. La possibilità di ricarica in linea è disponibile anche in altri tipi di reattori, come gli RBMK o il CIRENE, sempre per evitare l'interruzione dell'esercizio. |
In un reattore ad acqua leggera (LWR), il nucleo è contenuto in un singolo recipiente a pressione (vessel) nel quale è presente anche l'acqua leggera (H<sub>2</sub>O), che ha la doppia funzione di moderatore e liquido refrigerante, e il combustibile è in forma di pastiglie impilate l'una sopra l'altra e inguainate in barrette di zircaloy e assemblate in elementi (fuel bundle) che attraversano tutto il nocciolo. In alcune tipologie LWR, precisamente le più diffuse PWR e BWR, la ricarica del combustibile richiede lo spegnimento del reattore, l'apertura del coperchio del vessel e quindi la sostituzione di una parte del nocciolo, circa un terzo o un quarto a seconda della tipologia di filiera, dell'energia prodotta e da altri fattori. Il concetto del CANDU, a fascio tubiero, consente invece la rimozione di elementi di combustibile singoli senza la necessità di interrompere la produzione di energia elettrica, con un vantaggio evidente nell'economia di esercizio. Il sistema è costituito da manipolatori automatici, posti in coppia: uno estrae l'elemento di combustibile esaurito e l'altro, all'altra estremità del tubo in pressione, inserisce il nuovo elemento fresco. La possibilità di ricarica in linea è disponibile anche in altri tipi di reattori, come gli RBMK o il CIRENE, sempre per evitare l'interruzione dell'esercizio. |
||
[[File:CANDU fuel bundles.jpg |
[[File:CANDU fuel bundles.jpg|thumb|upright=1.6|'''Due elementi di combustibile CANDU:''' ognuno circa 50 cm in lunghezza e 10 cm in diametro, in grado di generare circa 1 [[GWh]] d'elettricità durante la loro vita operativa nel reattore. Foto cortesia della [[Atomic Energy of Canada Limited]].]] |
||
L'elemento di combustibile di un reattore CANDU consiste in un certo numero di tubi in zircaloy contenenti pellets ceramici di combustibile, assemblati in elementi di dimensioni corrispondenti al canale di forza nel reattore. Nei progetti precedenti il sistema aveva 28 o 37 tubi di combustibile, lunghi mezzo metro, ed era composto da 12 elementi alloggiati in sequenza in ogni canale di forza. Un sistema relativamente nuovo, detto [[CANFLEX]], è costituito 43 tubi, con due dimensioni differenti di pellet. Ha un diametro di circa 10 cm (quattro inches), è lungo circa 0.5 m (20 inches), pesa circa 20 kg (44 lb) e sostituisce la barra da 37 tubi. È stato progettato specificatamente per aumentare il rendimento del combustibile utilizzando due diverse taglie (diametro) di pellet. |
L'elemento di combustibile di un reattore CANDU consiste in un certo numero di tubi in zircaloy contenenti pellets ceramici di combustibile, assemblati in elementi di dimensioni corrispondenti al canale di forza nel reattore. Nei progetti precedenti il sistema aveva 28 o 37 tubi di combustibile, lunghi mezzo metro, ed era composto da 12 elementi alloggiati in sequenza in ogni canale di forza. Un sistema relativamente nuovo, detto [[CANFLEX]], è costituito 43 tubi, con due dimensioni differenti di pellet. Ha un diametro di circa 10 cm (quattro inches), è lungo circa 0.5 m (20 inches), pesa circa 20 kg (44 lb) e sostituisce la barra da 37 tubi. È stato progettato specificatamente per aumentare il rendimento del combustibile utilizzando due diverse taglie (diametro) di pellet. |
Versione delle 20:10, 18 mar 2014
CANDU, abbreviazione per CANadian Deuterium Uranium, è una filiera di reattori nucleari ad acqua pesante pressurizzata (cioè PHWR) e uranio naturale (ossia con una concentrazione di 235U di circa lo 0,7%, pari a quella presente nell'uranio estratto in natura) sviluppata dall'AECL (Atomic Energy of Canada Limited) negli anni sessanta e settanta, praticamente in contemporanea con il progetto italiano CIRENE, che però era del tipo BHWR. Il progetto CIRENE non arrivò mai ad uno sbocco pratico, perché l'impianto pilota di Latina, quasi completato, non venne mai fatto entrare in funzione ed infine abbandonato a seguito del referendum antinucleare.
Introduzione
Il reattore nucleare CANDU è un reattore nucleare ad acqua pesante pressurizzata sviluppato nei tardi anni cinquanta e sessanta sulla base del lavoro precedente di Pontecorvo da una società congiunta tra la Atomic Energy of Canada Limited (AECL), la Hydro-Electric Power Commission della regione dell'Ontario (attualmente nota come la Ontario Power Generation), dalla General Electric canadese (attualmente GE Canada), ed altre industrie private. Il reattore, alquanto flessibile, utilizza come principale combustibile nucleare l'ossido di uranio naturale UO2, ma può sfruttare anche il diossido di torio e il diossido di plutonio e miscele di ossidi di uranio ed isotopi di plutonio di varia composizione, note come MOX. Come moderatore di neutroni impiega l'ossido di deuterio (acqua pesante, D2O). Tutti i reattori nucleari operativi attualmente in Canada sono della tipologia CANDU. Il Canada commercializza attivamente questi reattori nucleari di potenza all'estero.
Caratteristiche tecniche
1 | Fascio di cilindri portacombustibile | 7 | Pompa dell'acqua pesante |
2 | Calandria (core del reattore) | 8 | Macchine per il ricambio del combustibile |
3 | Barre di controllo | 9 | Acqua pesante (moderatore di neutroni) |
4 | Acqua pesante (serbatoio di pressurizzazione) | 10 | Tubo in pressione |
5 | Generatore di vapore | 11 | Vapore in afflusso alla turbina a vapore |
6 | Pompa dell'acqua leggera | 12 | Acqua fredda di ritorno dalla turbina |
13 | Edificio di contenimento in cemento armato |
Il reattore CANDU è concettualmente simile alla maggior parte dei tipi di reattore nucleare ad acqua leggera, anche se differisce in alcuni dettagli, come il coefficiente di vuoto positivo.
Le reazioni di fissione nel nucleo del reattore nucleare scaldano un fluido, in questo caso si tratta di acqua pesante (vedi sotto). Questo refrigerante viene mantenuto ad alta pressione per innalzare il suo punto di ebollizione ed impedire la formazione di vapore nel nocciolo. L'acqua pesante calda generata nel circuito di raffreddamento primario viene fatta passare dentro un generatore di vapore che riscalda l'acqua leggera nel circuito di raffreddamento secondario, a pressione più bassa. Quest'acqua si trasforma in vapore e aziona una turbina convenzionale, connessa ad un generatore di corrente alternata.
Il vapore, dopo la sua espansione attraverso la turbina, viene condensato. Alcune delle centrali CANDU più recenti, come la Darlington Nuclear Generating Station, nei pressi di Toronto, Ontario, utilizzano un sistema di diffusione e scarico che limita gli effetti termici a cui viene sottoposto l'ambiente nei limiti di variazioni di temperatura accettabili, consone a quelle naturali.
Tecnologie semplici ma efficaci
Negli anni in cui venne progettato il CANDU, il Canada non disponeva di un'industria pesante in grado di forgiare il grosso e pesante contenitore in pressione in acciaio utilizzato nella maggior parte dei reattori ad acqua leggera. Invece, l'acqua pesante calda del circuito primario in pressione è contenuta in tubi orizzontali più piccoli, di diametro pari a circa 10 cm, che contengono le barre di combustibile (detti tubi di forza). Questi tubi più piccoli sono più facili da fabbricare rispetto ad un grande contenitore in pressione. Per permettere una migliore economia di neutroni considerando l'impiego prevalente di uranio naturale in questa filiera, i tubi sono fabbricati in Zr2.5Nb. I tubi di forza sono coassialmente contenuti all'interno di altri tubi (tubi di calandria), saldati ad un serbatoio a bassa pressione (calandria), molto grande, che contiene la maggior parte del moderatore di neutroni (acqua pesante), separata dall'acqua pesante che funziona da refrigerante. L'acqua pesante con funzioni moderanti è quindi separata completamente da quella avente funzioni refrigeranti, al contrario di quello che accade nei reattori ad acqua leggera (LWR - Light Water Reactor), dove le due funzioni sono svolte dalla stessa acqua leggera.
Quando questa filiera fu progettata, il Canada non aveva accesso agli impianti di arricchimento dell'uranio. Il CANDU usa quindi uranio naturale come combustibile. L'acqua leggera, usata nei reattori allora esistenti, non poteva essere utilizzata per la sua elevata sezione di cattura neutronica e considerando che invece l'acqua pesante ha un assorbimento di neutroni molto ridotto, quest'ultima venne utilizzata come fluido refrigerante e moderatore.
Descrizione delle barre di combustibile
La grande massa termica del moderatore fornisce un enorme potenziale di raffreddamento (heat sink), che costituisce una caratteristica di ulteriore sicurezza intrinseca nucleare. Infatti, se uno degli elementi di combustibile dovesse surriscaldarsi, espandersi e quindi deformarsi all'interno del suo canale, il risultante cambiamento della geometria permetterebbe una maggiore conduzione al moderatore freddo, ritardando la rottura del canale del combustibile, e limitando la possibilità del meltdown nucleare. Inoltre, dal momento che la filiera utilizza ossido di uranio naturale come combustibile (oppure torio o uranio poco arricchito), questo reattore non può sostenere la reazione a catena se la geometria originale del canale del combustibile viene alterata in modo significativo.
In un reattore ad acqua leggera (LWR), il nucleo è contenuto in un singolo recipiente a pressione (vessel) nel quale è presente anche l'acqua leggera (H2O), che ha la doppia funzione di moderatore e liquido refrigerante, e il combustibile è in forma di pastiglie impilate l'una sopra l'altra e inguainate in barrette di zircaloy e assemblate in elementi (fuel bundle) che attraversano tutto il nocciolo. In alcune tipologie LWR, precisamente le più diffuse PWR e BWR, la ricarica del combustibile richiede lo spegnimento del reattore, l'apertura del coperchio del vessel e quindi la sostituzione di una parte del nocciolo, circa un terzo o un quarto a seconda della tipologia di filiera, dell'energia prodotta e da altri fattori. Il concetto del CANDU, a fascio tubiero, consente invece la rimozione di elementi di combustibile singoli senza la necessità di interrompere la produzione di energia elettrica, con un vantaggio evidente nell'economia di esercizio. Il sistema è costituito da manipolatori automatici, posti in coppia: uno estrae l'elemento di combustibile esaurito e l'altro, all'altra estremità del tubo in pressione, inserisce il nuovo elemento fresco. La possibilità di ricarica in linea è disponibile anche in altri tipi di reattori, come gli RBMK o il CIRENE, sempre per evitare l'interruzione dell'esercizio.
L'elemento di combustibile di un reattore CANDU consiste in un certo numero di tubi in zircaloy contenenti pellets ceramici di combustibile, assemblati in elementi di dimensioni corrispondenti al canale di forza nel reattore. Nei progetti precedenti il sistema aveva 28 o 37 tubi di combustibile, lunghi mezzo metro, ed era composto da 12 elementi alloggiati in sequenza in ogni canale di forza. Un sistema relativamente nuovo, detto CANFLEX, è costituito 43 tubi, con due dimensioni differenti di pellet. Ha un diametro di circa 10 cm (quattro inches), è lungo circa 0.5 m (20 inches), pesa circa 20 kg (44 lb) e sostituisce la barra da 37 tubi. È stato progettato specificatamente per aumentare il rendimento del combustibile utilizzando due diverse taglie (diametro) di pellet.
Un certo numero di tubazioni contenenti acqua leggera opportunamente disposte (chiamati barre liquide di controllo) contribuiscono al controllo della reazione. Queste assorbono i neutroni in eccesso e diminuiscono la reattività nella zona in cui sono presenti.
Sistemi di arresto rapido
I reattori CANDU utilizzano due sistemi indipendenti di arresto rapido. Il primo sistema è costituito da barre di arresto/controllo, che attraversano verticalmente la calandria e penetrano nel nocciolo in caso di spegnimento del reattore dovuto all'intervento dei sistemi di sicurezza. Il secondo sistema, che potrebbe essere attuato in caso di fallimento del sistema precedente, prevede invece l'iniezione di una soluzione di nitrato di gadolinio direttamente nel moderatore a bassa pressione contenuto nella calandra.[1] Un ulteriore sistema consiste nel rapido svuotamento dell'acqua pesante contenuta nella calandria verso la piscina inferiore dell'edificio reattore, interrompendo così la reazione nucleare di fissione per mancanza di moderatore.
Scopo dell'utilizzo dell'acqua pesante
- Vedere neutronica, fissione nucleare ed acqua pesante per i dettagli completi.
La chiave per mantenere una reazione nucleare all'interno di un reattore nucleare è quella di rallentare (moderare) il flusso di neutroni che vengono rilasciati durante la fissione per aumentare la probabilità di causare la fissione in altri nuclei. Con un attento controllo sulla geometria ed i tassi di reazione, si può giungere alla reazione nucleare a catena, condizione in grado di auto-mantenersi, uno stato noto come "criticità".
L'uranio naturale è costituito da una miscela di vari isotopi, principalmente 238U ed una quantità molto inferiore (circa lo 0,72% in peso) di 235U. 238U può essere fissionato da neutroni che sono altamente energetici, con energie di 1 MeV o superiori. Nonostante tutto, nessun quantitativo di 238U può essere reso "critico", dal momento che tende, in modo "parassitario" ad assorbire più neutroni rispetto a quelli che rilascia nel processo. D'altro canto lo 235U può sostenere una reazione a catena automantenentesi ma, a causa della scarsità di 235U nell'uranio naturale, questo è separabile con difficoltà e costi elevati.
Il "trucco" per accendere e mantenere operativo un reattore nucleare è quello di rallentare alcuni dei neutroni in modo di aumentare la possibilità di innescare la fissione nucleare nello 235U, che aumenta sino ad un livello che consente una reazione a catena dell'uranio auto-sostenuta in toto. Questo richiede l'utilizzo di un moderatore di neutroni, che possa assorbire una parte dell'energia cinetica dei neutroni, rallentandoli fino ad un livello di energia paragonabile all'energia termica degli stessi nuclei del moderatore (questo conduce alla terminologia di "neutrone termico" e di "reattori termici"). Durante questo processo di rallentamento è utile separare fisicamente il flusso di neutroni dall'uranio, dal momento che i nuclei di 238U hanno una enorme affinità parassitaria per i neutroni in questo spettro intermedio di energie (una reazione nucleare nota come assorbimento da "risonanza"). Esistono buone ragioni, basate sui fondamenti della fisica del reattore nucleare, per progettare reattori con elementi discreti di combustibile separati da un moderatore, piuttosto che l'impiego di una miscela più omogenea dei due materiali.
L'acqua è un eccellente moderatore. Gli atomi di idrogeno nelle molecole d'acqua sono molto vicine nella loro massa a quella del singolo neutrone e dunque hanno il potenziale per un alto trasferimento di energia, cosa simile concettualmente alla collisione di due palle da biliardo uguali. Comunque, in aggiunta all'essere un buon moderatore, l'acqua è, però, anche efficace nell'assorbire i neutroni. L'utilizzo dell'acqua come moderatore comporta un certo assorbimento di neutroni, tale da impedire il raggiungimento della criticità con la piccola quantità di 235U contenuta nell'uranio naturale. In questo modo, il reattore nucleare ad acqua leggera richiede combustibile arricchito in uranio 235U. Questo viene definito uranio arricchito che in genere, nei reattori nucleari ad uso civile, contiene tra il 3% ed il 5% di 235U in peso (il sottoprodotto di questo processo è noto come uranio impoverito, consistendo principalmente di 238U). In questa forma arricchita l'abbondanza di 235U permette di reagire con i neutroni moderati dall'acqua leggera in modo di mantenere le condizioni "critiche".
Una complicazione di questo approccio è il requisito di costruire impianti per l'arricchimento dell'uranio che sono generalmente costosi da costruire e operare. Presentano anche un problema di proliferazione nucleare poiché gli stessi sistemi usati per arricchire il 235U possono essere usati anche per produrre un materiale molto più "puro", detto weapons-grade (90% o più di 235U), adatto per fabbricare una bomba atomica. Gli operatori possono ridurre questo rischio acquistando elementi di combustibile pronti all'uso dal fornitore del reattore, e restituendo allo stesso fornitore gli elementi di combustibile esaurito
Una soluzione alternativa al problema è usare un moderatore che non assorba neutroni così facilmente come l'acqua. In tal caso potenzialmente tutti i neutroni rilasciati possono essere moderati e usati in reazioni con 235U, nel qual caso ci sarebbe abbastanza 235U nell'uranio naturale da sostenere la condizione di "criticità". Un moderatore di questo tipo è l'acqua pesante o ossido di deuterio. Questo reagisce dinamicamente con i neutroni in modo simile all'acqua leggera, pur con minor efficienza nel rallentamento. Il vantaggio è che possedendo già un neutrone in più rispetto all'idrogeno dell'acqua leggera, che tenderebbe normalmente ad assorbire, riduce così il tasso di assorbimento (sezione d'urto).
L'uso di acqua pesante come moderatore è la caratteristica principale dei reattori CANDU, consentendo l'uso di uranio naturale come combustibile (sotto forma di UO2 ceramico). Questo significa che il reattore può essere tenuto in esercizio senza bisogno di essere affiancato da impianti di arricchimento di uranio. Un'altra caratteristica, dovuta alla struttura del reattore CANDU, è che la maggior parte del moderatore si trova a una temperatura minore rispetto ai tradizionali reattori, dove il moderatore invece raggiunge temperature elevate. Questo rende il reattore CANDU particolarmente efficiente, in quanto i neutroni termalizzati dal moderatore sono più "termici", cioè hanno una minore energia. Per questo il reattore CANDU non solo può sfruttare uranio naturale e altri combustibili, ma li può sfruttare in modo più efficiente.
Cicli del combustibile
A confronto dei reattori nucleari ad "acqua leggera", un reattore ad "acqua pesante" ha un core "ricco di neutroni" termici. Questo rende il progetto CANDU in grado di "bruciare" diversi tipi di "combustibili nucleari" alternativi. Attualmente, il combustibile più interessante allo studio è il mixed oxide fuel (MOX).
Utilizzo dei MOX
Il MOX è una miscela di uranio naturale e plutonio, come quello che si estrae da molte armi nucleari dismesse in seguito ai trattati START e SORT. Attualmente esiste un'abbondante quantità di plutonio proveniente dallo smantellamento delle testate nucleari in base ai molti accordi contratti dagli Stati Uniti e dall'Unione Sovietica.
La sicurezza di questi depositi di plutonio, estremamente pericoloso per la sua radioattività, ed impiegabile per costruire le bombe (soprattutto calcolando i tempi plurisecolari del dimezzamento della radioattività), è attualmente considerato una minaccia a lungo termine che pesa sulle generazioni future.
Quando si "brucia" il plutonio nel reattore CANDU, si pone fine alla sua esistenza, dal momento che si ha la fissione in elementi più leggeri, non impiegabili ad uso bellico, con emivite radioattive più brevi, e con un'ottima resa energetica. Il plutonio si può estrarre anche dal riprocessamento del combustibile nucleare "esaurito" dai reattori convenzionali. Anche se il plutonio che si genera nei reattori nucleari ad acqua leggera consiste abitualmente di una miscela di isotopi non adeguata alla fabbricazione di armi nucleari, può essere convenientemente impiegato nella miscele MOX, per ridurre sia la quantità che la radioattività netta dei rifiuti nucleari che devono essere immagazzinati per essere "raffreddati" ed in seguito vetrificati e rinchiusi in contenitori inossidabili sigillati, posti all'interno di siti geologicamente stabili.
Utilizzo dell'uranio "recuperato"
Ma il plutonio non è il materiale fissile di scelta per i reattori CANDU. Dal momento che questo reattore è stato progettato per fissionare l'uranio naturale, il combustibile per i CANDU può essere estratto dalle barre d'uranio impoverito (depleted) che si estraggono quando il reattore nucleare ad acqua leggera (LWR) ha esaurito il combustibile. Questo combustibile, industrialmente noto come "Recovered Uranium" (RU), tipicamente ha un arricchimento in U-235 attorno allo 0,9%, che lo rende inadatto all'uso negli LWR (se non a basse densità di potenza), ma che ancora costituisce una ricca fonte di combustibile per il reattore CANDU (l'uranio naturale ha un'abbondanza in U-235 di circa lo 0,7% ). Si stima che un reattore CANDU possa estrarre un ulteriore 30-40% d'energia dal combustibile LWR "spento" grazie al riprocessamento chimico[2][3] (per separazione di elementi ed isotopi radioattivi non fissionabili, come cesio, stronzio, iodio, ecc.).
Ad esempio, riciclando l'uranio utilizzato nei reattori francesi, l'Italia potrebbe fissionare uranio "quasi esaurito" (al 2%), restituendo alla Francia un uranio impoverito (1-0,7%) in minori quantità perché fissionato, evitando così di dover smaltire le scorie nucleari d'uranio nel proprio territorio.[senza fonte]
Il reattore CANDU produce come sottoprodotto il trizio, che un giorno potrebbe essere utilizzato nei reattori a fusione, attualmente sotto studio e sperimentazione.
Utilizzo diretto del combustibile con il ciclo "DUPIC"
Il riciclaggio delle barre di combustibile proveniente da reattori convenzionali LWR non comporta necessariamente uno stadio di riprocessamento chimico. In alcuni test del ciclo di combustibile (fuel cycle) è stata provata la metodologia DUPIC (direct use of spent PWR fuel in CANDU), dove il combustibile utilizzato nel reattore nucleare ad acqua pressurizzata viene re-impacchettato nei fusti di combustibile CANDU, con il semplice taglio in pezzetti, ma senza alcun tipo di riprocessamento chimico. Di nuovo, mentre i reattori ad acqua leggera necessitano della grande reattività nucleare associata al combustibile arricchito, l'economia di neutroni presente all'interno di un reattore ad acqua pesante CANDU, permette di svolgere la reazione di fissione anche in presenza della bassa reattività dell'uranio naturale e dell'uranio "impoverito" proveniente dal ciclo "DUPIC".[4]
Utilizzo di combustibile a matrice inerte
Sono stati proposti anche alcuni combustibili a matrice inerte (come zirconio o berillio). Questi consentono di bruciare plutonio e altri attinidi derivati dal combustibile esaurito in maniera molto più efficiente che nei combustibili MOX. Questa caratteristica è dovuta alla natura "inerte" del combustibile, così detto in quanto non contiene uranio, quindi non crea altro plutonio nel momento in cui questo viene consumato.
Utilizzo del biossido di torio
I reattori CANDU possono essere anche alimentati con torio naturale[5], metallo attinide molto economico, perché tre-quattro volte più diffuso rispetto all'uranio, e non impiegabile per uso bellico. Attualmente il più vasto programma di sfruttamento del torio nell'ambito del nucleare di pace, si svolge in India, paese molto ricco di tale minerale.
Il grande vantaggio dell'uso del torio al posto dell'uranio è la possibilità di rendere "autofertilizzante" il reattore anche senza usare neutroni veloci (che comportano numerosi problemi a livello di materiali con cui costruire il reattore), cosa invece generalmente necessaria nei reattori all'uranio. In altre parole anche un reattore a neutroni termici (cioè più "lenti") può produrre da sé il proprio "combustibile" evitando problemi dovuti agli alti irraggiamenti neutronici.
Inoltre le scorie prodotte, rispetto ai reattori utilizzanti uranio, hanno una vita molto più breve e sono molto meno radiotossiche: dopo meno di un secolo sono infatti meno pericolose dell'uranio che si trova in natura. Si ritiene pertanto che le scorie andrebbero confinate solamente per circa 300 anni complessivi. A titolo di confronto il "combustibile" esausto di un reattore all'uranio di 3º generazione, per ridurre la propria radiotossicità a livelli inferiori a quelli dell'uranio naturale di partenza, impiega circa un milione di anni, mentre il combustibile di un reattore autofertilizzante all'uranio-plutonio (come alcuni di 4º generazione) impiega decine di migliaia di anni.[6]
Localizzazione
I reattori nucleari del tipo CANDU sono stati realizzati in 32 centrali, tra cui in ordine di potenza effettiva decrescente:
- Bruce: 6 unità attive da Errore in {{M}}: parametro 2 non è un numero valido.e e 2 in ristrutturazione da Errore in {{M}}: parametro 2 non è un numero valido.e
- Pickering: 6 unità attive da Errore in {{M}}: parametro 2 non è un numero valido.e e 2 in ristrutturazione da Errore in {{M}}: parametro 2 non è un numero valido.e
- Darlington: 4 unità attive da Errore in {{M}}: parametro 2 non è un numero valido.e totali ed altre 2 EC6 d 1.5 GWe in costruzione
- Wolsong: 4 unità attive da Errore in {{M}}: parametro 2 non è un numero valido.e totali
- Atucha: 2 unità CANDU-6 da Errore in {{M}}: parametro 2 non è un numero valido.e in costruzione
- Cernavodă: 2 unità CANDU-6 da Errore in {{M}}: parametro 2 non è un numero valido.e completate ed altre 3 in costruzione.
- Bruce: 2 unità da Errore in {{M}}: parametro 2 non è un numero valido.e
- Pickering: 4 unità da Errore in {{M}}: parametro 2 non è un numero valido.e
- Point Lepreau: 1 unità attiva CANDU 6 da Errore in {{M}}: parametro 2 non è un numero valido.e e 1 in progetto da Errore in {{M}}: parametro 2 non è un numero valido.e
- Gentilly: 1 unità attiva CANDU 6 da Errore in {{M}}: parametro 2 non è un numero valido.e e 1 prototipo dismesso CANDU-BWR da Errore in {{M}}: parametro 2 non è un numero valido.e
- Embalse: 1 unità attiva CANDU 6 da Errore in {{M}}: parametro 2 non è un numero valido.e
- Rajasthan, 2 unità attive (le uniche in India) da Errore in {{M}}: parametro 2 non è un numero valido.e
- Douglas Point: 1 unità semi-industriale da Errore in {{M}}: parametro 2 non è un numero valido.e
- Kanupp: 1 unità CANDU 1.37 da Errore in {{M}}: parametro 2 non è un numero valido.e
Il reattore italiano CIRENE
Attualmente in Italia non esistono reattori nucleari del tipo CANDU. Comunque l'Italia, aveva in progetto di dotarsi di reattori ad acqua pesante simili al CANDU (il reattore nucleare "a nebbia" CIRENE), che possono funzionare con uranio naturale, con uranio arricchito di "seconda mano" e con torio.
In futuro, se si decidesse di costruire reattori CANDU, che possono riciclare l'uranio utilizzato nei reattori francesi, l'Italia potrebbe fissionare uranio "quasi esaurito" (al 2,5%), restituendo alla Francia un uranio impoverito (~1,1%) in minori quantità perché fissionato, evitando così di dover smaltire le scorie nucleari d'uranio nel proprio territorio. Il reattore CANDU produce come sottoprodotto il trizio, che un giorno potrebbe essere utilizzato nei reattori nucleari a fusione, attualmente sotto studio e sperimentazione.
Emissioni di Trizio
Il Trizio, il cui pericolo biologico maggiore è l'ingresso nell'organismo (inalazione, ingestione o assorbimento), è generato dai CANDU nel refrigerante e moderatore maggiormente che dalle filiere ad acqua leggera, a causa della cattura neutronica da parte dell'idrogeno pesante. Parte di questo trizio sfugge nell'edificio di contenimento ed è generalmente recuperato; ma una piccola percentuale (circa 1%) sfugge dalle strutture di contenimento e costituisce una emissione radioattiva di routine negli impianti CANDU (oltre tutto più grande che in un LWR di dimensioni simili). L'esercizio di una centrale CANDU comprende il controllo di questo effluente nell'ambiente circostante (e la pubblicazione dei risultati), per assicurare che queste emissioni siano inferiori a quelle permesse dalle normative.
In alcuni reattori CANDU la concentrazione di trizio nel moderatore viene periodicamente ridotta con un processo estrattivo, per ridurre questo rischio. Le emissioni tipiche degli impianti CANDU canadesi sono meno che dello 1% dei limiti normativi nazionale, che sono basati sulle linee guida dello International Commission on Radiological Protection (ICRP)[7] (per esempio, la massima concentrazione di trizio nell'acqua potabile in Canada,[8] Errore in {{M}}: parametro 2 non è un numero valido./m3, corrisponde a 1/10 del limite di dose al pubblico dell'ICRP'). Emissioni di trizio da altre centrali CANDU sono ugualmente basse.[9][10]
Generalmente ci sono significativi dibattiti pubblici riguardo alle emissioni radioattive dalle centrali nucleari, e per gli impianti CANDU il trizio rappresenta una delle maggiori preoccupazioni. Nel 2009 Greenpeace pubblicò un rapporto sulle emissioni di trizio dalle centrali nucleari Canadesi scritto dal Ian Fairlie. Questo documento fu verificato da Richard Osborne e venne criticato per gli errori contenuti.
Note
- ^ Canadian Nuclear FAQ, in The Canadian Nuclear FAQ by Dr. Jeremy Whitlock. URL consultato il 5 marzo. A. CANDU Nuclear Power Technology A.12 Come vengono controllati i reattori CANDU? Shutdown System 2 (SDS 2), in most CANDU designs, works by high-pressure injection of a liquid poison (gadolinium nitrate) into the low-pressure moderator.
- ^ THE EVOLUTION OF CANDU FUEL CYCLES AND THEIR POTENTIAL CONTRIBUTION TO WORLD PEACE
- ^ DUPIC Fuel Cycle : Direct Use of Pressurized Water Reactor Spent Fuel in CANDU (2010)
- ^ DUPIC The Evolution of CANDU Fuel Cycles and Their Potential Contribution to World Peace
- ^ Risorse, Economia e Ambiente: Analisi sulla Scelta Energetica
- ^ R. Brissot, D. Heuer, E. Huffer, C. Le Brun, J.-M. Loiseaux, H. Nifenecker, A. Nuttin, "Nuclear Energy With (Almost) No Radioactive Waste?", Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, luglio 2001
- ^ Ontario Power Generation: Safety, su opg.com. URL consultato il 1º dicembre 2008.
- ^ Canadian Drinking Water Guidelines, su hc-sc.gc.ca. URL consultato il 1º dicembre 2008.
- ^ OVERVIEW OF THE TRITIUM-IN-AIR MONITORING OF THE CERNAVODA NPP U1 ROMANIA – MODERNIZATION AND IMPROVEMENT PROJECT
- ^ Microsoft Word - Tritiumstudyfinal-11-06-07.doc (PDF), su nirs.org. URL consultato il 1º dicembre 2008.
Voci correlate
- Reattore nucleare a fissione
- Reattore nucleare di II generazione
- Reattore nucleare di III generazione
- Reattori nucleari di IV generazione
- Risorse e consumo di energia nel mondo
Altri progetti
- Wikimedia Commons contiene immagini o altri file su CANDU
Collegamenti esterni
- The Evolution of CANDU Fuel Cycles and Their Potential Contribution to World Peace
- CANDU Owner's Group
- A history of the CANDU reactor
- CANTEACH - Educational and Reference Library on Candu Technology
- Ontario Power Generation
- Bruce Power
- New Brunswick Power
- Hydro Quebec
- Atomic Energy of Canada Limited
- Canadian Nuclear Safety Commission
- Canadian Nuclear Society
- Canadian Nuclear Association
- Canadian Nuclear FAQ
- CBC Digital Archives - Candu: The Canadian Nuclear Reactor
- Chernobyl – A Canadian Perspective
- Will CANDU do? Walrus Magazine