Hiányos számok

szám, amely osztóinak összege kisebb magánál a számnál
Ez a közzétett változat, ellenőrizve: 2023. szeptember 18.

A számelméletben hiányos számnak nevezünk minden olyan n egészt, amelyre az osztóösszeg-függvény σ(n)<2n , vagy a valódi osztók összege s(n)<n.

A szám és az osztók összegének különbsége [más szóval 2n ‒ σ(n)] a hiányosság mértéke. Az olyan számokat, amelyek csak 1-gyel nagyobbak valódi osztóik összegénél, legkevésbé hiányos számoknak vagy majdnem tökéletes számoknak nevezzük. A természetes számok 3 osztályba sorolása (hiányos számok, tökéletes számok és bővelkedő számok) elsőként Nikomakhosz görög matematikusnál jelenik meg, 100 körül megjelent, Introductio Arithmetica („Bevezetés az aritmetikába”) című művében. Az első néhány hiányos szám:

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37,…(A005100 sorozat az OEIS-ben)

Vegyük például a 21-et. Osztói 1, 3, 7 és 21, ezek összege 32. Mivel 32 kisebb, mint 2 × 21, a 21 hiányos szám. A hiányosság mértéke 2 × 21 − 32 = 10.

Tulajdonságok

szerkesztés
  • Végtelen sok páratlan és végtelen sok páros hiányos szám létezik.
  • Minden páratlan szám, ami egy vagy két különböző prímtényezővel rendelkezik hiányos szám (tehát a prímek, félprímek, prímhatványok mind hiányos számok).
  • A tökéletes számok és a hiányos számok valódi osztói mind hiányos számok.
  • Minden kellően nagy n-re igaz, hogy legalább egy hiányos szám létezik a   intervallumban.[1]

Végtelen sok hiányos szám létezik, páros és páratlan egyaránt; többek között minden prím és prímhatvány az.

  1. Sándor et al (2006) p.108

További információk

szerkesztés

Kapcsolódó szócikkek

szerkesztés