Skip to content

sschepis/tinyaleph

Repository files navigation

@aleph-ai/tinyaleph

Prime-resonant semantic computing framework

A novel computational paradigm that encodes meaning as prime number signatures, embeds them in hypercomplex space, and performs reasoning through entropy minimization and oscillator synchronization.

npm version License: MIT

Features

  • Prime Semantics: Encode concepts as unique prime number signatures
  • Hypercomplex Algebra: 16-dimensional sedenion space with non-commutative multiplication, exp/log/slerp
  • Oscillator Dynamics: Kuramoto-model synchronization for coherent reasoning
  • Stochastic Dynamics: Noise-robust Kuramoto with Langevin, colored, and thermal noise models
  • Prime Entanglement: Graph-based tracking of prime relationships and co-occurrences
  • Event Streaming: Real-time monitoring with EventEmitter pattern and async iteration
  • Entropy Minimization: Reasoning as reduction of semantic uncertainty
  • Multiple Backends: Semantic (NLP), Cryptographic (hashing), Scientific (quantum-inspired), Bioinformatics (DNA/protein)
  • Formal Type System: Typed term calculus with N(p)/A(p)/S types and ordering constraints
  • Reduction Semantics: Strong normalization with prime-preserving operators
  • Lambda Translation: Model-theoretic semantics via λ-calculus embedding
  • Enochian Vocabulary: 21-letter angelic alphabet with prime basis and sedenion operations
  • ResoFormer Architecture: Complete prime-indexed transformer with multi-head attention
  • Multi-Z Memory: Hierarchical memory with fast/slow/permanent channels
  • Symbolic AI: 184+ emoji symbols with cultural tags, resonance-enhanced inference
  • Golden Ratio Resonance: Harmony measurement using φ ≈ 1.618 ratio detection
  • Topological Invariants: 108 invariant (2²×3³), Trefoil complexity, physical constant derivation
  • Gauge Symmetry: Standard Model SU(3)×SU(2)×U(1) from 108 factorization
  • Observer Hierarchy: Multi-scale observers from quantum to cosmic
  • Free Energy Dynamics: Cubic FEP model for consciousness and curiosity
  • Discrete Dynamics: Integer sine tables, histogram coherence, tick-based gating
  • Codebook Tunneling: 64-attractor SMF codebook for controlled state transitions
  • Canonical Fusion: Deterministic FUSE(p,q,r) triad selection
  • CRT-Homology: Chinese Remainder Theorem for semantic reconstruction with homology-based consistency detection
  • Birkhoff Attention: Doubly-stochastic attention via Sinkhorn-Knopp projection

Installation

npm install @aleph-ai/tinyaleph

Quick Start

const { createEngine, SemanticBackend } = require('@aleph-ai/tinyaleph');

// Load configuration
const config = require('@aleph-ai/tinyaleph/data.json');

// Create a semantic engine
const engine = createEngine('semantic', config);

// Process a query
const result = engine.run('What is the relationship between wisdom and truth?');

console.log('Output:', result.output);
console.log('Entropy:', result.entropy);
console.log('Steps:', result.steps.length);

Core Concepts

Prime Encoding

Every concept maps to a unique set of prime numbers:

const backend = new SemanticBackend(config);

const primes = backend.encode('love and wisdom');
console.log(primes);  // [2, 3, 5, 7, 11, ...]

Hypercomplex States

Primes embed into 16-dimensional sedenion space:

const { Hypercomplex } = require('@aleph-ai/tinyaleph');

// Create a state
const state = new Hypercomplex(16);
state.excite([2, 3, 5]);  // Excite with primes

// States support multiplication (non-commutative!)
const combined = state1.multiply(state2);
console.log(state1.multiply(state2) !== state2.multiply(state1));  // true

Entropy-Based Reasoning

Reasoning reduces entropy through semantic transforms:

const engine = createEngine('semantic', config);
const result = engine.run('Confused question here');

// Watch entropy decrease through reasoning steps
for (const step of result.steps) {
  console.log(`Step ${step.step}: entropy ${step.entropyAfter.toFixed(3)}`);
}

Backends

Semantic Backend

Natural language understanding and concept mapping:

const { SemanticBackend } = require('@aleph-ai/tinyaleph');

const backend = new SemanticBackend(config);

// Tokenize
const tokens = backend.tokenize('Love is truth');

// Encode to primes
const primes = backend.encode('Love is truth');

// Decode back
const text = backend.decode(primes);

// Compare concepts
const state1 = backend.textToOrderedState('wisdom');
const state2 = backend.textToOrderedState('knowledge');
console.log('Similarity:', state1.coherence(state2));

Cryptographic Backend

Semantic hashing and key derivation:

const { CryptographicBackend, hash, deriveKey } = require('@aleph-ai/tinyaleph');

// Quick hash
const h = hash('my secret data');

// Key derivation
const key = deriveKey('password', 'salt', 32, 10000);

// Full backend
const crypto = new CryptographicBackend(config);
const semanticHash = crypto.hash('similar meanings produce similar hashes');

Scientific Backend

Quantum-inspired computation:

const { ScientificBackend } = require('@aleph-ai/tinyaleph');

const backend = new ScientificBackend(config);

// Create quantum-like states
const state = backend.createRandomState();
const basis = backend.createBasisState(0);

// Superposition
const superposition = backend.superpose(state, 0.5, basis, 0.5);

// Measurement
const result = backend.measure(superposition, [basis]);

Bioinformatics Backend

DNA computing, protein folding, and molecular biology:

const { BioinformaticsBackend, DNACircuit, ANDGate, ORGate } = require('@aleph-ai/tinyaleph');

const backend = new BioinformaticsBackend();

// Encode DNA sequence
const dnaPrimes = backend.encode('ATGCGATCG');

// Transcribe DNA to RNA
const transcribed = backend.transcribe(dnaPrimes, { force: true });
console.log('mRNA primes:', transcribed.rna);

// Translate RNA to Protein
const translated = backend.translate(transcribed.rna);
console.log('Protein:', backend.decode(translated.protein));

// Full gene expression (DNA → RNA → Protein)
const expressed = backend.express(dnaPrimes);
console.log('Protein sequence:', expressed.sequence);

// Protein folding via Kuramoto oscillators
const proteinPrimes = backend.encode('MWLKFVIER');
const foldResult = backend.foldProtein(proteinPrimes);
console.log('Folding order parameter:', foldResult.orderParameter);

// Molecular binding affinity
const affinity = backend.bindingAffinity(dnaPrimes, proteinPrimes);
console.log('Binding affinity:', affinity.affinity);

DNA Computing

Build logic gates and circuits using DNA strands:

const { DNACircuit, ANDGate, ORGate, NOTGate } = require('@aleph-ai/tinyaleph');

// Create logic gates
const andGate = new ANDGate({ name: 'and1' });
const orGate = new ORGate({ name: 'or1' });
const notGate = new NOTGate({ name: 'not1' });

// Evaluate gates (concentration-based)
console.log(andGate.evaluate(1, 1));  // { output: true, ... }
console.log(orGate.evaluate(0, 1));   // { output: true, ... }
console.log(notGate.evaluate(0));     // { output: true, ... }

// Build a circuit
const circuit = new DNACircuit('logic-circuit');
circuit.addGate('and1', new ANDGate({ name: 'and1' }));
circuit.addGate('not1', new NOTGate({ name: 'not1' }));
circuit.addGate('or1', new ORGate({ name: 'or1' }));
circuit.connect('and1', 'or1', 1);
circuit.connect('not1', 'or1', 2);

// Evaluate circuit
const result = circuit.evaluate();

Physics Engine

Oscillators

const { Oscillator, OscillatorBank, KuramotoModel } = require('@aleph-ai/tinyaleph');

// Create oscillator bank
const bank = new OscillatorBank(16);

// Excite with primes
bank.excite([2, 3, 5, 7]);

// Kuramoto synchronization
const kuramoto = new KuramotoModel(bank, { coupling: 0.1 });
kuramoto.step(0.01);

console.log('Order parameter:', kuramoto.orderParameter());

Extended Synchronization Models

Five advanced Kuramoto-family models for complex synchronization dynamics:

const {
  NetworkKuramoto,      // Topology-aware coupling
  AdaptiveKuramoto,     // Hebbian plasticity
  SakaguchiKuramoto,    // Phase frustration (chimera states)
  SmallWorldKuramoto,   // Watts-Strogatz topology
  MultiSystemCoupling   // Cross-system synchronization
} = require('@aleph-ai/tinyaleph');

// Network Kuramoto with custom topology
const network = new NetworkKuramoto(frequencies, adjacencyMatrix, 0.5);
network.setFromEntanglementGraph(entanglementGraph, primeList);

// Adaptive Kuramoto with Hebbian learning
const adaptive = new AdaptiveKuramoto(frequencies, 0.3, 0.02);
// Coupling evolves: "concepts that sync together link together"

// Sakaguchi-Kuramoto with phase frustration
const sakaguchi = new SakaguchiKuramoto(frequencies, 0.5, Math.PI/4);
console.log('State:', sakaguchi.classifyState()); // synchronized/chimera/incoherent

// Small-world topology
const smallWorld = new SmallWorldKuramoto(frequencies, 4, 0.1, 0.5);
console.log('Small-world coefficient:', smallWorld.smallWorldCoefficient());

// Multi-system coupling (hierarchical or peer-to-peer)
const multi = new MultiSystemCoupling([system1, system2, system3]);
console.log('Inter-system coherence:', multi.interSystemCoherence());

Stochastic Kuramoto Models

Noise-robust synchronization with Langevin dynamics:

const {
  StochasticKuramoto,      // White noise Langevin dynamics
  ColoredNoiseKuramoto,    // Ornstein-Uhlenbeck noise
  ThermalKuramoto          // Temperature-dependent coupling
} = require('@aleph-ai/tinyaleph');

// White noise model
const stochastic = new StochasticKuramoto(frequencies, {
  coupling: 0.5,
  noiseIntensity: 0.1
});

stochastic.evolve(100, 0.01);
const { mean, stdDev } = stochastic.orderParameterWithUncertainty(50, 0.01);

// Colored noise (Ornstein-Uhlenbeck process)
const colored = new ColoredNoiseKuramoto(frequencies, {
  correlationTime: 2.0,
  noiseIntensity: 0.1
});

// Thermal model with temperature-dependent noise
const thermal = new ThermalKuramoto(frequencies, { temperature: 2.0 });
thermal.setTemperature(4.0);  // Higher temp = more noise
const Tc = thermal.estimateCriticalTemperature();

Prime Entanglement Graph

Track prime relationships from co-occurrence and resonance:

const { PrimeEntanglementGraph } = require('@aleph-ai/tinyaleph');

const graph = new PrimeEntanglementGraph([2, 3, 5, 7, 11]);

// Record co-occurrences
graph.observe([2, 3], [5, 7], 0.8);
graph.observe([5, 7], [11], 0.6);

// Query relationships
const neighbors = graph.neighbors(7, 2);  // 2-hop neighborhood
const path = graph.shortestPath(2, 11);

// Graph metrics
const cc = graph.clusteringCoefficient(5);
const stats = graph.stats();

// Convert to Kuramoto network
const adjacency = graph.toAdjacencyMatrix([2, 3, 5, 7, 11]);

Event-Driven Streaming

Real-time monitoring and async iteration:

const {
  AlephEventEmitter,
  AlephMonitor,
  EvolutionStream
} = require('@aleph-ai/tinyaleph');

// Event emitter with throttling
const emitter = new AlephEventEmitter();
emitter.throttle('tick', 100);  // Max once per 100ms

emitter.on('collapse', ({ from, to, probability }) => {
  console.log(`Collapsed with p=${probability}`);
});

emitter.on('sync', ({ orderParameter }) => {
  console.log(`Synchronized: r=${orderParameter}`);
});

// Promise-based waiting
const data = await emitter.waitFor('ready', 5000);

// Async iteration over evolution
const stream = EvolutionStream.fromEvolvable(kuramoto);

for await (const state of stream.take(100)) {
  console.log(state.orderParameter);
}

// Stream operators
const filtered = stream
  .filter(s => s.entropy < 2.0)
  .map(s => s.orderParameter)
  .take(50);

Entropy and Stability

const { shannonEntropy, estimateLyapunov, stateEntropy } = require('@aleph-ai/tinyaleph');

// Calculate entropy
const entropy = stateEntropy(state);

// Estimate Lyapunov exponent for stability
const lambda = estimateLyapunov(entropyTimeSeries);
console.log('Stable:', lambda < 0);

Hypercomplex Algebra Extensions

Extended operations for smooth interpolation and rotations:

const { Hypercomplex } = require('@aleph-ai/tinyaleph');

const q1 = Hypercomplex.fromArray([1, 0, 0, 0]);
const q2 = Hypercomplex.fromAxisAngle(4, [0, 0, 1], Math.PI/2);

// Exponential and logarithm
const expQ = q1.exp();
const logQ = q2.log();

// Smooth interpolation (slerp)
for (let t = 0; t <= 1; t += 0.1) {
  const interpolated = q1.slerp(q2, t);
}

// Rotation operations
const rotated = q2.sandwich(vector);
const axis = q2.toAxisAngle();

// Power operations
const squared = q1.pow(2);
const cubed = q1.powInt(3);

Multi-Z Channel Primeon Ladder

Hierarchical memory with different decay rates:

const { PrimeonZLadderMulti, createAdiabaticSchedule } = require('@aleph-ai/tinyaleph');

const ladder = new PrimeonZLadderMulti({
  N: 32,
  zChannels: [
    { name: 'fast', dz: 1, leak: 0.2, decay: 0.1 },
    { name: 'slow', dz: 1, leak: 0.01, decay: 0.001 },
    { name: 'permanent', dz: 1, leak: 0.0, decay: 0.0 }
  ],
  J: 0.25
});

// Per-channel metrics
const metrics = ladder.channelMetrics();
console.log('Fast entropy:', metrics.fast.entropy);
console.log('Slow Z-flux:', metrics.slow.totalFlux);

// Adiabatic parameter schedules
const Jt = createAdiabaticSchedule(0.1, 0.5, 100, 'sinusoidal');
const ladder2 = new PrimeonZLadderMulti({ N: 16, Jt });

Topological Physics

The 108 Invariant from 108bio.pdf provides deep connections between number theory and physics:

const {
  TWIST_108,
  Knot,
  TREFOIL,
  PhysicalConstants,
  GaugeSymmetry,
  FreeEnergyDynamics,
  OBSERVER_HIERARCHY
} = require('@aleph-ai/tinyaleph/core/topology');

// 108 Invariant: 2² × 3³ = 108
console.log(TWIST_108.value);           // 108
console.log(TWIST_108.factorization);   // { twos: 2, threes: 3 }

// Twist angle κ(p) = 360°/p
const twistAngle = TWIST_108.twistAngle(7);  // 51.43°

// Find minimum primes for closed twist (sum to 360°)
const closingPrimes = TWIST_108.findClosingPrimes(3);

// Trefoil Knot with complexity T = s·c - b + u = 17
console.log(TREFOIL.strands);      // 1
console.log(TREFOIL.crossings);    // 3
console.log(TREFOIL.bridges);      // 2
console.log(TREFOIL.unknotting);   // 1
console.log(TREFOIL.complexity);   // 17

// Physical constants from 108 + Trefoil
console.log(PhysicalConstants.PROTON_ELECTRON_RATIO);  // 1836 (17 × 108)
console.log(PhysicalConstants.FINE_STRUCTURE_INV);     // 137 (108 + 29)
console.log(PhysicalConstants.ALPHA);                  // 1/137

// Gauge symmetry from 108 factorization
const gauge = new GaugeSymmetry();
console.log(gauge.generators);       // { SU3: 8, SU2: 3, U1: 1 }
console.log(gauge.totalDimension);   // 12
console.log(gauge.isStandardModel);  // true

// Free Energy Dynamics (cubic FEP)
// dψ/dt = αψ + βψ² + γψ³
const fep = new FreeEnergyDynamics({ alpha: 0.1, beta: -0.3, gamma: 0.2 });
const energy = fep.freeEnergy(0.5);   // F(ψ)
const gradient = fep.gradient(0.5);   // dF/dψ
const minima = fep.findMinima();      // Stable states

// Observer Hierarchy (quantum to cosmic scales)
OBSERVER_HIERARCHY.forEach(level => {
  console.log(`${level.name}: scale=${level.scale}, capacity=${level.capacity}`);
});
// cellular: scale=1e-6, capacity=1e6
// neural: scale=1e-3, capacity=1e9
// cognitive: scale=1, capacity=1e12
// collective: scale=1e6, capacity=1e15
// cosmic: scale=1e26, capacity=1e21

Discrete Dynamics

Integer-domain computation from discrete.pdf:

const { INT_SINE_TABLE, computeHistogramCoherence } = require('@aleph-ai/tinyaleph/apps/sentient/lib/prsc');
const { SMF_CODEBOOK, nearestCodebookAttractor, codebookTunnel } = require('@aleph-ai/tinyaleph/apps/sentient/lib/smf');
const { canonicalTriad, canonicalFusion, verifyCanonical } = require('@aleph-ai/tinyaleph/apps/sentient/lib/prime-calculus');
const { TickGate } = require('@aleph-ai/tinyaleph/apps/sentient/lib/hqe');

// Integer Sine Table (M=256 discretization)
console.log(INT_SINE_TABLE.M);            // 256
const sinValue = INT_SINE_TABLE.sin(64);  // Integer sine at phase 64
const cosValue = INT_SINE_TABLE.cos(128); // Integer cosine at phase 128

// Histogram Coherence C_bin(t) = max_k(b_k(t))/|P|
const phases = [10, 12, 11, 50, 52, 51, 100, 102, 101];
const coherence = computeHistogramCoherence(phases, { numBins: 16 });
// coherence ≈ 0.33 (three clusters of 3 phases each)

// 64-Attractor SMF Codebook
console.log(SMF_CODEBOOK.length);         // 64
console.log(SMF_CODEBOOK[0]);             // { index: 0, phase: 0, label: '0x00' }

// Find nearest codebook attractor
const nearest = nearestCodebookAttractor(130);  // phase 130
console.log(nearest.index);               // Nearest codebook index
console.log(nearest.distance);            // Distance to attractor

// Controlled tunneling to codebook attractor
const tunneled = codebookTunnel(130, { force: 0.5 });
console.log(tunneled.original);           // 130
console.log(tunneled.target);             // Nearest attractor phase
console.log(tunneled.result);             // Tunneled phase (interpolated)

// Canonical Fusion FUSE(p,q,r) selection
const triad = canonicalTriad(19);  // Find canonical triad for sum 19
console.log(triad);                // [3, 5, 11] (lexicographically first)

// Verify canonical property
console.log(verifyCanonical(3, 5, 11, 19));  // true

// Fuse with automatic triad selection
const fused = canonicalFusion(19);
console.log(fused.triad);          // [3, 5, 11]
console.log(fused.sum);            // 19

// Tick-Only HQE Gate
const tickGate = new TickGate({ threshold: 0.7 });
const gateResult = tickGate.evaluate({ coherence: 0.8, tickValid: true });
console.log(gateResult.passed);    // true (coherence > threshold && tick valid)
console.log(gateResult.reason);    // 'TICK_VALID'

Observer Capacity

Calculate observer capacity from 108bio.pdf's C_obs = α·N_osc·K̄·τ⁻¹:

const { SymbolicObserver } = require('@aleph-ai/tinyaleph/apps/sentient/lib/symbolic-observer');

const observer = new SymbolicObserver();

// Add oscillator bank for N_osc
observer.addOscillatorBank(bank);

// Calculate observer capacity
const capacity = observer.calculateObserverCapacity({
  alpha: 1/137,           // Fine structure constant
  meanCoupling: 0.5,      // K̄ average coupling
  coherenceTime: 0.1      // τ coherence time
});

console.log(capacity.value);       // Capacity in bits/second
console.log(capacity.numOscillators);
console.log(capacity.formula);     // 'α × N_osc × K̄ × τ⁻¹'

Free Energy Curiosity

Cubic FEP-based curiosity for learning systems:

const { FreeEnergyCuriosity } = require('@aleph-ai/tinyaleph/apps/sentient/lib/learning/curiosity');

const curiosity = new FreeEnergyCuriosity({
  alpha: 0.1,    // Linear coefficient
  beta: -0.3,    // Quadratic coefficient
  gamma: 0.2     // Cubic coefficient
});

// Evaluate free energy at belief state ψ
const energy = curiosity.freeEnergy(0.5);

// Get gradient for belief update
const grad = curiosity.gradient(0.5);

// Find stable belief states (local minima)
const stableStates = curiosity.findMinima();

// Check if current state is at equilibrium
const isStable = curiosity.isStable(0.5, { tolerance: 0.01 });

Observer Scale Management

Multi-scale observer hierarchy from 108bio.pdf:

const { ObserverScaleManager } = require('@aleph-ai/tinyaleph/apps/sentient/lib/collective');

const manager = new ObserverScaleManager();

// Assign node to appropriate hierarchy level based on capacity
const level = manager.assignNode(nodeId, observerCapacity);
console.log(level.name);       // 'neural', 'cognitive', etc.
console.log(level.scale);      // Physical scale
console.log(level.capacity);   // Information capacity

// Get all nodes at a level
const cognitiveNodes = manager.getNodesAtLevel('cognitive');

// Get hierarchy statistics
const stats = manager.getHierarchyStats();
console.log(stats.totalNodes);
console.log(stats.levelDistribution);

ResoFormer Architecture

Complete prime-indexed transformer:

const {
  ResoFormer,
  ResoFormerBlock,
  ResonantMultiHeadAttention,
  PrimeFFN,
  SparsePrimeState
} = require('@aleph-ai/tinyaleph');

// Create sparse prime states
const state1 = SparsePrimeState.fromPrimes([2, 3, 5]);
const state2 = SparsePrimeState.fromPrimes([7, 11, 13]);

// Multi-head attention
const attention = new ResonantMultiHeadAttention({
  numHeads: 8,
  numPrimes: 4096
});

const result = attention.forward(state1, [state2], [state2]);

// Full ResoFormer model
const model = new ResoFormer({
  numLayers: 6,
  numHeads: 8,
  hiddenDim: 256
});

const outputs = model.forward([state1, state2]);

CRT-Enhanced ResoFormer

Integrates Chinese Remainder Theorem reconstruction with homology-based regularization:

const {
    CRTResonantAttention,
    HomologyRegularizedBlock,
    CRTResoFormer,
    createCRTResoFormer
} = require('@aleph-ai/tinyaleph');

// Create CRT-enhanced model
const model = createCRTResoFormer({
    numLayers: 3,
    numHeads: 4,        // Maps to coprime moduli [2, 3, 5, 7]
    homologyWeight: 0.1
});

// Process sequence with homology detection
const sequence = [
    SparsePrimeState.fromHash('the'),
    SparsePrimeState.fromHash('quick'),
    SparsePrimeState.fromHash('fox')
];

const result = model.forward(sequence);

console.log('Total homology loss:', result.totalLoss);
console.log('Holes detected:', result.homologyReport.hasHoles);
console.log('Betti numbers:', result.homologyReport.maxBettiNumber);

CRT Residue Encoding

Encode semantic states as residue distributions over coprime moduli:

const {
    ResidueEncoder,
    CRTReconstructor,
    BirkhoffProjector,
    HomologyLoss,
    DEFAULT_PRIMES_SMALL
} = require('@aleph-ai/tinyaleph');

// Use first 4 primes: [2, 3, 5, 7], P = 210
const primes = DEFAULT_PRIMES_SMALL;
const encoder = new ResidueEncoder(primes, 16);
const crt = new CRTReconstructor(primes);

// Encode hidden vector to residue distributions
const h = new Float64Array(16).fill(0.5);
const residues = encoder.encode(h);
const expectedResidues = encoder.expectedResidues(residues);

// CRT reconstruction
const L = crt.reconstruct(expectedResidues);
console.log('Reconstructed:', L);

// Detect kernel (consistency failures)
const inKernel = crt.detectKernel(expectedResidues, 0.1);
console.log('In kernel:', inKernel);

// Birkhoff attention (doubly-stochastic)
const birkhoff = new BirkhoffProjector(20);
const attentionMatrix = [[0.8, 0.2], [0.3, 0.7]];
const projected = birkhoff.project(attentionMatrix);
// Row sums ≈ 1, column sums ≈ 1

Homology Loss

Detect semantic inconsistencies as topological holes:

const { HomologyLoss, CRTReconstructor } = require('@aleph-ai/tinyaleph');

const crt = new CRTReconstructor([2, 3, 5, 7]);
const homology = new HomologyLoss({ tau: 0.1 });

// Batch of residue tuples
const residueBatch = [
    [0.5, 1.2, 2.8, 4.1],
    [0.99, 0.01, 2.5, 3.99],
    [0.1, 0.2, 0.3, 0.4]
];

// Compute homology loss
const result = homology.compute(residueBatch, crt);
console.log('Homology loss:', result.loss);
console.log('Cycles detected:', result.cycles);

// Betti numbers (topological invariants)
const betti = homology.computeBettiNumbers(residueBatch, crt);
console.log('β₀ (components):', betti.beta0);
console.log('β₁ (holes):', betti.beta1);

Symbolic AI

Symbol Database

184+ emoji symbols with prime assignments and cultural tags:

const { getSymbol, symbolDatabase } = require('@aleph-ai/tinyaleph');

// Get a symbol
const hero = getSymbol('hero');
console.log(hero);
// { id: 'hero', unicode: '🦸', prime: 1013, meaning: 'Hero archetype', culturalTags: ['universal'] }

// Find Greek mythology symbols
const greekSymbols = symbolDatabase.getSymbolsByTag('greek');

// Encode/decode concepts to prime signatures
const signature = symbolDatabase.encode(['hero', 'journey', 'mountain']);
const symbols = symbolDatabase.decode(signature);

Semantic Inference

Pattern matching with resonance-enhanced disambiguation:

const { inferSymbol, inferWithResonance, inferMostResonant } = require('@aleph-ai/tinyaleph');

// Basic inference
const result = inferSymbol('brave knight');
// { symbol: ⚔️, method: 'regex', confidence: 0.85 }

// Resonance-enhanced inference - symbols ranked by harmony
const symbols = inferWithResonance('The hero fought the shadow in the temple');
// Symbols sorted by attention weight based on resonance scores

// Context-aware selection
const context = [getSymbol('warrior'), getSymbol('temple')];
const best = inferMostResonant('weapon', context);
// → 🗡️ sword (high resonance with warrior/temple context)

Compound Symbols

Build multi-symbol concepts through prime multiplication:

const { createCompound, getCompound, compoundBuilder } = require('@aleph-ai/tinyaleph');

// Pre-built compound
const greekWarrior = getCompound('greek_warrior');
// { unicode: '⚔️⛩️🦉', meaning: 'Greek Warrior: Temple guardian blessed by Athena' }

// Create custom compound
const fireMage = createCompound('fire_mage',
  ['magician', 'fire', 'staff'],
  'Fire Mage - Wielder of flame magic'
);

// Calculate internal harmony
const harmony = compoundBuilder.calculateCompoundResonance(fireMage);

Golden Ratio Resonance

Primes whose ratio approaches φ ≈ 1.618 have natural harmony:

const { calculateResonance, findGoldenPairs, resonanceSignature } = require('@aleph-ai/tinyaleph');

// Check resonance between primes
calculateResonance(3, 5);   // 0.9 (Fibonacci pair!)
calculateResonance(7, 11);  // 0.936 (close to φ)

// Find golden pairs
const pairs = findGoldenPairs([2, 3, 5, 7, 11, 13]);

// Get signature for symbol set
const sig = resonanceSignature([2, 3, 5, 7]);
console.log(`Mean resonance: ${sig.mean}, Golden pairs: ${sig.goldenCount}`);

Formal Semantics

Typed Term Calculus

The library implements a formal type system for prime-based compositional semantics:

const { N, A, FUSE, CHAIN, SENTENCE, TypeChecker } = require('@aleph-ai/tinyaleph');

// Create typed terms
const noun7 = N(7);      // N(7) - noun indexed by prime 7
const adj3 = A(3);       // A(3) - adjective indexed by prime 3

// Adjective application with ordering constraint (p < q)
const chain = adj3.apply(noun7);  // A(3)N(7) is valid since 3 < 7

// Triadic fusion where p+q+r is prime
const fused = FUSE(3, 5, 11);  // 3+5+11 = 19 (prime) ✓

// Sentence composition
const s1 = SENTENCE(7);
const s2 = SENTENCE(11);
const compound = SEQ(s1, s2);  // s₁ ◦ s₂

// Type checking
const checker = new TypeChecker();
console.log(checker.inferType(noun7));  // 'N'
console.log(checker.checkApplication(adj3, noun7));  // { valid: true }

Reduction Semantics

Strong normalization with prime-preserving operators:

const {
    ReductionSystem,
    ResonanceOperator,
    NextPrimeOperator,
    demonstrateStrongNormalization
} = require('@aleph-ai/tinyaleph');

// Create reduction system
const reduction = new ReductionSystem();

// Add prime-preserving operators
reduction.addOperator(new ResonanceOperator(2));    // Resonance at p=2
reduction.addOperator(new NextPrimeOperator());      // Map to next prime

// Normalize a term sequence
const result = reduction.normalize([7, 11, 13]);
console.log(result.normalForm);    // Canonical form
console.log(result.steps);         // Reduction trace

// Demonstrate strong normalization
const proof = demonstrateStrongNormalization([3, 5, 7], reduction);
console.log(proof.terminates);     // true (guaranteed!)

Lambda Calculus Translation

Model-theoretic semantics via τ translation:

const {
    Translator,
    LambdaEvaluator,
    Semantics
} = require('@aleph-ai/tinyaleph');

// Translate prime terms to λ-expressions
const translator = new Translator();
const lambda = translator.translateNoun(N(7));  // Constant 7
const appLambda = translator.translateChain(chain);

// Evaluate λ-expressions
const evaluator = new LambdaEvaluator();
const normal = evaluator.normalize(appLambda);

// Model-theoretic interpretation
const semantics = new Semantics();
semantics.domain = [2, 3, 5, 7, 11, 13];  // Prime domain
const value = semantics.interpret(N(7));   // 7

Enochian Vocabulary

The 21-letter angelic alphabet with prime basis and sedenion operations:

const {
    EnochianEngine,
    ENOCHIAN_ALPHABET,
    PRIME_BASIS,
    CORE_VOCABULARY,
    SedenionElement
} = require('@aleph-ai/tinyaleph/apps/sentient/lib/enochian-vocabulary');

// 21-letter alphabet with prime mappings
console.log(ENOCHIAN_ALPHABET['A']);  // { prime: 3, value: 1, angle: 51.43 }
console.log(PRIME_BASIS);  // [7, 11, 13, 17, 19, 23, 29]

// Enochian engine for word processing
const engine = new EnochianEngine();

// Parse and compute word prime value
const parsed = engine.parseWord('MADRIAX');  // "O ye heavens"
console.log(parsed.primeValue);
console.log(parsed.letters);

// Sedenion operations (16-dimensional)
const s1 = new SedenionElement([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
const s2 = new SedenionElement([0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
const product = s1.multiply(s2);  // Non-commutative!

// Access core vocabulary (35+ Enochian words)
console.log(CORE_VOCABULARY['OL']);     // "I" (first person)
console.log(CORE_VOCABULARY['ZORGE']);  // "be friendly unto"

API Overview

Main Exports

Export Description
createEngine(type, config) Create engine with backend
AlephEngine Unified computation engine
SemanticBackend Natural language processing
CryptographicBackend Hashing and key derivation
ScientificBackend Quantum-inspired computation
BioinformaticsBackend DNA/RNA/Protein computation
DNACircuit DNA logic circuit builder
ANDGate / ORGate / NOTGate DNA logic gates
Hypercomplex Sedenion algebra with exp/log/slerp
Oscillator / OscillatorBank Phase-amplitude oscillators
KuramotoModel Coupled oscillator synchronization
NetworkKuramoto Topology-aware coupling
AdaptiveKuramoto Hebbian plasticity
SakaguchiKuramoto Phase frustration / chimera states
SmallWorldKuramoto Watts-Strogatz topology
MultiSystemCoupling Cross-system synchronization
StochasticKuramoto Langevin noise dynamics
ColoredNoiseKuramoto Ornstein-Uhlenbeck noise
ThermalKuramoto Temperature-dependent coupling
PrimeEntanglementGraph Prime relationship tracking
AlephEventEmitter Event-driven monitoring
AlephMonitor Engine state monitoring
EvolutionStream Async iteration over evolution
PrimeonZLadderMulti Multi-channel Z memory
ResoFormer Prime-indexed transformer
SparsePrimeState Sparse prime activations
getSymbol(id) Get symbol by ID
symbolDatabase Symbol database singleton
inferSymbol(text) Infer symbol from text
inferWithResonance(text) Resonance-ranked inference
inferMostResonant(text, ctx) Context-aware selection
createCompound(...) Build compound symbol
compoundBuilder Compound builder instance
calculateResonance(p1, p2) Prime pair resonance
findGoldenPairs(primes) Find φ-ratio pairs
resonanceSignature(primes) Resonance statistics
hash(input) Quick semantic hash
deriveKey(pass, salt) Quick key derivation

Observer Exports

The observer module provides components for building sentient observer systems:

const observer = require('@aleph-ai/tinyaleph/observer');
// Or destructure specific exports:
const {
    SedenionMemoryField,
    PRSCLayer,
    TemporalLayer,
    SymbolicSMF,
    SymbolicTemporalLayer,
    AssaySuite
} = require('@aleph-ai/tinyaleph/observer');
Export Description
PrimeOscillator Single prime-indexed oscillator
PRSCLayer Prime Resonance Semantic Coherence oscillator bank
coherenceKernel Phase coherence calculation
TickGate Tick-based activation gating
HQE Holographic Quaternion Engine
SedenionMemoryField 16D semantic orientation field
SMF_AXES Named axes for 16D space
Moment Discrete temporal moment
TemporalLayer Moment classification and time tracking
AttentionFocus Attention target with decay
Goal Goal representation with progress
AgencyLayer Goals, attention, and intention management
BoundaryLayer Self-other differentiation
EntanglementLayer Semantic phrase coherence
SafetyMonitor Constraint monitoring
SymbolicSMF Symbol-grounded Sedenion field
SMFSymbolMapper Maps SMF axes to symbols
AXIS_SYMBOL_MAPPING 16 axes → symbol mappings
SymbolicMoment Moment with I-Ching classification
SymbolicTemporalLayer 64-attractor hexagram classification
HEXAGRAM_ARCHETYPES 64 hexagram → archetype mappings
SymbolicPatternDetector Narrative pattern detection
TimeDilationAssay Assay A: Time dilation test
MemoryContinuityAssay Assay B: Memory continuity test
AgencyConstraintAssay Assay C: Agency under constraint test
NonCommutativeMeaningAssay Assay D: Non-commutative meaning test
AssaySuite Run all four validation assays

Topology Exports

Export Description
TWIST_108 108 invariant with twist angle calculations
Knot General knot class with invariant computation
TREFOIL Pre-configured trefoil knot (T=17)
PhysicalConstants Derived constants (α, proton/electron ratio)
GaugeSymmetry Standard Model gauge group from 108
FreeEnergyDynamics Cubic FEP model dψ/dt = αψ + βψ² + γψ³
OBSERVER_HIERARCHY 5-level observer scale hierarchy

Discrete Dynamics Exports

Export Description
INT_SINE_TABLE M=256 integer sine/cosine table
computeHistogramCoherence C_bin(t) = max_k(b_k)/|P|
SMF_CODEBOOK 64-attractor codebook array
nearestCodebookAttractor Find nearest attractor for phase
codebookTunnel Controlled tunneling to attractor
canonicalTriad Find lexicographically first triad for sum
canonicalFusion FUSE(p,q,r) with automatic triad
verifyCanonical Verify triad is canonical
TickGate Tick-only HQE gating class

Formal Semantics Exports

Export Description
N(prime) Create noun term N(p)
A(prime) Create adjective term A(p)
FUSE(p, q, r) Create triadic fusion
CHAIN(ops, noun) Create operator chain
SENTENCE(expr) Create sentence from noun
SEQ(s1, s2) Sequential composition
IMPL(s1, s2) Implication
TypeChecker Type inference and checking
ReductionSystem Reduction semantics engine
ResonanceOperator Prime resonance operator
NextPrimeOperator Next prime mapping
ModularOperator Modular arithmetic
Translator λ-calculus translation
LambdaEvaluator β-reduction evaluator
Semantics Model-theoretic interpretation
EnochianEngine Enochian language processing
SedenionElement 16D hypercomplex operations

Sub-modules

// Direct module access
const { core, physics, backends, engine } = require('@aleph-ai/tinyaleph');

// Or import sub-modules directly
const core = require('@aleph-ai/tinyaleph/core');
const physics = require('@aleph-ai/tinyaleph/physics');
const backends = require('@aleph-ai/tinyaleph/backends');
const engine = require('@aleph-ai/tinyaleph/engine');

New Physics Exports

Export Description
StochasticKuramoto White noise Langevin dynamics
ColoredNoiseKuramoto Ornstein-Uhlenbeck colored noise
ThermalKuramoto Temperature-dependent coupling
PrimeonZLadderMulti Hierarchical Z memory channels
createAdiabaticSchedule Parameter sweep schedules

New Core Exports

Export Description
PrimeEntanglementGraph Prime co-occurrence tracking
AlephEventEmitter Event pub/sub system
AlephMonitor Engine monitoring wrapper
EvolutionStream Async iteration for dynamics
ResoFormer Full transformer model
ResoFormerBlock Single transformer block
ResonantMultiHeadAttention Multi-head attention
PrimeFFN Feed-forward network
PrimeLayerNorm Prime-preserving normalization
PositionalPrimeEncoding Position as prime phases
SparsePrimeState Sparse activation storage
CRTResonantAttention Multi-head CRT-fused attention
HomologyRegularizedBlock Block with homology loss
CRTResoFormer Complete CRT-enhanced model
ResidueEncoder Encode to residue distributions
CRTReconstructor Chinese Remainder Theorem
BirkhoffProjector Doubly-stochastic projection
HomologyLoss Cycle-based regularization
CoprimeSelector Optimal moduli selection

Documentation

Full documentation is available in the docs/ directory:

  • Theory: Mathematical foundations

    • Prime semantics, hypercomplex algebra, oscillator dynamics
    • Entropy minimization, non-commutativity, temporal emergence
  • Guide: Practical tutorials

    • Quick start, semantic computing, cryptographic applications
    • Scientific computing, LLM integration, symbolic AI, advanced topics
  • Reference: Complete API documentation

    • Core module, physics module, backends, engine
    • Topology module: 108 invariant, knots, gauge symmetry
  • CRT-Homology Reference: CRT reconstruction and homology

  • Topology Examples: 108 invariant and physical constants

    • 108 invariant and twist angles
    • Trefoil complexity and mass ratios
    • Gauge symmetry from factorization
    • Free energy dynamics
  • Discrete Dynamics Examples: Integer-domain computation

    • Integer sine tables
    • Codebook tunneling
    • Canonical fusion selection
    • Tick-based gating
  • Formal Semantics Examples: New formal system demos

    • Typed terms and type checking
    • Reduction and normalization
    • Lambda translation
    • Enochian language

Examples

Run the included demos:

# Basic modular demo
npm run demo

# Two-layer meaning demo
npm run demo:two-layer

# Performance benchmark
npm run benchmark

# Interactive chat
npm run chat

# Formal semantics examples
node examples/formal-semantics/01-typed-terms.js
node examples/formal-semantics/02-reduction.js
node examples/formal-semantics/03-lambda-translation.js
node examples/formal-semantics/04-enochian-language.js

# Topology examples (108 invariant, physical constants)
node examples/topology/01-108-invariant.js
node examples/topology/02-trefoil-constants.js
node examples/topology/03-gauge-symmetry.js
node examples/topology/04-free-energy-dynamics.js

# Discrete dynamics examples (integer tables, codebooks)
node examples/discrete/01-integer-sine-table.js
node examples/discrete/02-codebook-tunneling.js
node examples/discrete/03-canonical-fusion.js
node examples/discrete/04-tick-gate.js

# CRT-Homology examples
node examples/crt-homology/01-residue-encoding.js
node examples/crt-homology/02-birkhoff-attention.js
node examples/crt-homology/03-homology-loss.js
node examples/crt-homology/04-crt-resoformer.js

# Bioinformatics examples
node examples/bioinformatics/01-dna-encoding.js
node examples/bioinformatics/02-central-dogma.js
node examples/bioinformatics/03-protein-folding.js
node examples/bioinformatics/04-dna-computing.js
node examples/bioinformatics/05-molecular-binding.js

# Symbolic AI examples
node examples/05-symbolic-resonance.js
node examples/06-symbol-database.js
node examples/07-semantic-inference.js
node examples/08-compound-symbols.js

Architecture

┌─────────────────────────────────────────────────────────────────┐
│                        AlephEngine                              │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────────────────┐  │
│  │ Oscillators │◄─┤   Field     │◄─┤      Transform          │  │
│  │  (Kuramoto) │  │  (Sedenion) │  │      Pipeline           │  │
│  └─────────────┘  └─────────────┘  └─────────────────────────┘  │
└─────────────────────────────────────────────────────────────────┘
                              │
         ┌────────────────────┼────────────────────┐
         ▼                    ▼                    ▼
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ SemanticBackend │ │CryptographicBack│ │ScientificBackend│
│                 │ │                 │ │                 │
│ • Tokenization  │ │ • Hash          │ │ • Quantum sim   │
│ • Prime encode  │ │ • Key derive    │ │ • Wave collapse │
│ • Transforms    │ │ • Verify        │ │ • Measurement   │
└─────────────────┘ └─────────────────┘ └─────────────────┘

┌─────────────────────────────────────────────────────────────────┐
│                     Formal Semantics Layer                      │
├─────────────────┬─────────────────┬─────────────────────────────┤
│   Type System   │   Reduction     │   Lambda Translation        │
│                 │                 │                             │
│ • N(p), A(p), S │ • Small-step →  │ • τ: Terms → λ-expressions  │
│ • FUSE(p,q,r)   │ • ⊕ operators   │ • β-reduction               │
│ • ◦ composition │ • Normal forms  │ • Model interpretation      │
│ • ⇒ implication │ • Confluence    │ • Semantic domains          │
└─────────────────┴─────────────────┴─────────────────────────────┘

┌─────────────────────────────────────────────────────────────────┐
│                      Symbolic AI Layer                          │
├─────────────────┬─────────────────┬─────────────────────────────┤
│  Symbol DB      │  Inference      │   Resonance                 │
│                 │                 │                             │
│ • 184+ emojis   │ • Pattern match │ • Golden ratio φ            │
│ • Cultural tags │ • Semantic sim  │ • Prime pair harmony        │
│ • Prime index   │ • ResoFormer    │ • Cluster detection         │
│ • Categories    │ • Context-aware │ • Compound scoring          │
└─────────────────┴─────────────────┴─────────────────────────────┘

┌─────────────────────────────────────────────────────────────────┐
│                     Enochian Language Module                    │
├─────────────────────────────────────────────────────────────────┤
│ • 21-letter alphabet with prime mappings                        │
│ • Prime basis PE = {7, 11, 13, 17, 19, 23, 29}                  │
│ • Twist angles κ(p) = 360/p degrees                             │
│ • 16-dimensional sedenion operations                            │
│ • Core vocabulary (35+ words)                                   │
│ • The Nineteen Calls (traditional invocations)                  │
└─────────────────────────────────────────────────────────────────┘

Requirements

  • Node.js >= 14.0.0

License

MIT © Sebastian Schepis

Contributing

Contributions welcome! Please read the documentation in docs/ before submitting PRs.

About

A javascript library that implements the Aleph semantic computer

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published