This repo provides the official implementations for the experiments described in the following paper:
Subgroup Generalization and Fairness of Graph Neural Networks
Jiaqi Ma*, Junwei Deng*, and Qiaozhu Mei. NeurIPS 2021.
(*: equal constribution)
torch 1.8.0pytorch-1.8.1dgl 0.4.3dgl-0.6.1- networkx 2.4
numpy 1.17.3numpy-1.21.2
torch 1.8.2pytorch-1.8.1torch-geometricpyg-2.0.1- networkx 2.4
- ogb 1.3.2
numpy 1.17.3numpy-1.21.2
If you choose to install the dependencies individually:
conda install pytorch=1.8 -c pytorch
conda install pyg -c pyg -c conda-forge
conda install networkx=2.4
conda install ogb==1.3.2 -c conda-forge
pip install dgl
For REPL (ipython), we install: conda install notebook.
Else, recreate the ma conda environment:
conda env create --file conda-envs/ma.yml
Activate with conda activate ma, and deactivate with conda deactivate.
NOTE: The specified version set is unsatisfiable: e.g., a) numpy==1.17.3 -> python[version='>=3.6,<3.7.0a0|>=3.7,<3.8.0a0|>=3.8,<3.9.0a0']),b) pytorch-sparse==0.6.12 -> pytorch=1.8, and, c) pytorch-sparse==0.6.12 -> python[version='>=3.9,<3.10.0a0'] -> libffi[version='>=3.3,<3.4.0a0'].
Please refer to the readme in each subfolder.
@article{DBLP:journals/corr/abs-2106-15535,
author = {Jiaqi Ma, Junwei Deng, Qiaozhu Mei},
title = {Subgroup Generalization and Fairness of Graph Neural Networks},
journal = {CoRR},
volume = {abs/2106.15535},
year = {2021},
url = {https://arxiv.org/abs/2106.15535},
eprinttype = {arXiv},
eprint = {2106.15535},
timestamp = {Mon, 05 Jul 2021 15:15:50 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2106-15535.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}