A library that aims to remove the overhead of creating tensors from CSV files completely; allowing you to dive right into the fun parts of your ML project.
- Lightweight.
- Fast.
- Flexible.
- TypeScript compatible.
- 100% test coverage.
NPM:
npm install tensorflow-load-csvYarn:
yarn add tensorflow-load-csvSimple usage:
import loadCsv from 'tensorflow-load-csv';
const { features, labels } = loadCsv('./data.csv', {
featureColumns: ['lat', 'lng', 'height'],
labelColumns: ['temperature'],
});
features.print();
labels.print();Advanced usage:
import loadCsv from 'tensorflow-load-csv';
const {
features,
labels,
testFeatures,
testLabels,
mean, // tensor holding mean of features, ignores testFeatures
variance, // tensor holding variance of features, ignores testFeatures
} = loadCsv('./data.csv', {
featureColumns: ['lat', 'lng', 'height'],
labelColumns: ['temperature'],
shuffle: true, // Pass true to shuffle with a fixed seed, or a string to use it as a seed for the shuffling.
splitTest: true, // Splits your data in half. You can also provide a certain row count for the test data.
prependOnes: true, // Prepends a column of 1s to your features and testFeatures tensors, useful for linear regression.
standardise: true, // Calculates mean and variance for each feature column using data only in features, then standardises the values in features and testFeatures. Does not touch labels.
});
features.print();
labels.print();
testFeatures.print();
testLabels.print();
mean.print();
variance.print();