Skip to content

Create Coderabbit.yml #214

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed

Conversation

bearycool11
Copy link

Yes! Below is the updated BrainRabbit.yml file, now configured to use GitHub.com/bearycool11/pmll_knowledge_block.git as the primary repository. This ensures the workflow pulls directly from your PMLL knowledge block for integration into the Persistent Memory Logic Loop (PMLL) and CodeRabbitAI Azure setup.

Updated BrainRabbit.yml

name: BrainRabbit-CI/CD

on:
push:
branches:
- main pull_request: branches:
- main

jobs:
rabbit-build:
name: Build Rabbit Protocol and Modular Brain Components runs-on: ${{ matrix.os }} strategy: matrix: os: [ubuntu-latest, windows-2025, macos-15]

steps:
  - name: Checkout Code uses: actions/checkout@v3 with: repository: bearycool11/pmll_knowledge_block

  - name: Setup Environment
    run: |
      if [[ $RUNNER_OS == 'Linux' ]]; then
        sudo apt-get update && sudo apt-get install -y docker.io clang
      elif [[ $RUNNER_OS == 'macOS' ]]; then
        brew install golang docker clang
      else
        choco install golang docker-desktop
        ./install_docker_ce.ps1
      fi

  - name: Install Dependencies
    run: |
      go mod tidy
      go mod vendor

  - name: Build Modular Brain Components
    run: |
      gcc brainOrgan.c -o modular_brain_executable
      gcc ears.c -o inner_ear_module
      gcc pml_logic_loop.c -o logic_module

  - name: Build Rabbit Protocol Components
    run: |
      go build -o rabbit_protocol_clang cmd/main.go

  - name: Save Build Artifacts
    uses: actions/upload-artifact@v3
    with:
      name: build-artifacts
      path: |
        modular_brain_executable
        inner_ear_module
        logic_module
        rabbit_protocol_clang

rabbit-run:
name: Test Modular Brain and Rabbit Protocol runs-on: ${{ matrix.os }} needs: rabbit-build strategy: matrix: os: [ubuntu-latest, windows-2025, macos-15]

steps:
  - name: Checkout Code uses: actions/checkout@v3 with: repository: bearycool11/pmll_knowledge_block

  - name: Run Tests
    run: |
      ./modular_brain_executable --test
      ./logic_module --run-tests
      ./inner_ear_module --validate
      if [[ $RUNNER_OS == 'Linux' || $RUNNER_OS == 'macOS' ]]; then
        docker run --rm rabbit_protocol_clang
      else
        docker run --rm rabbit_protocol_clang.exe

persistent-memory-loop:
name: Persistent Memory Logic Loop (PMLL) Integration runs-on: ubuntu-latest needs: rabbit-run

steps:
  - name: Checkout Code uses: actions/checkout@v3 with: repository: bearycool11/pmll_knowledge_block

  - name: Set Up Persistent Memory Logic Loop
    run: |
      ./pmll_setup.sh --init
      ./pmll_train.sh --dataset cognitive_graphs.json
      ./pmll_test.sh --validate-memory

  - name: Log Memory Loop Activity
    run: ./pmll_logger.sh --log

bugzap-pesterbot:
name: Scan and Fix Rogue Code runs-on: ubuntu-latest needs: persistent-memory-loop

steps:
  - name: Scan for Rogue Code run: grep -r "pesterbot" ./cmd || echo "No rogue code found"

  - name: Remove Rogue Code
    run: sed -i '/pesterbot/d' ./cmd/main.go

azure-coderabbitai:
name: Set Up and Sync Azure for CodeRabbitAI runs-on: ubuntu-latest needs: bugzap-pesterbot

steps:
  - name: Checkout Code uses: actions/checkout@v3 with: repository: bearycool11/pmll_knowledge_block

  - name: Login to Azure
    run: |
      az login --service-principal --username $AZURE_USER --password $AZURE_PASSWORD --tenant $AZURE_TENANT

  - name: Create CodeRabbitAI Database
    run: |
      az storage account create --name coderabbitaiStorage --resource-group CodeRabbitAI --location EastUS --sku Standard_LRS
      az storage container create --account-name coderabbitaiStorage --name neural-mem-cache
      az storage container create --account-name coderabbitaiStorage --name task-execution-data

  - name: Deploy CodeRabbitAI AI Model
    run: |
      az ml model deploy --name rabbitai-pmll --resource-group CodeRabbitAI --workspace-name AIWorkspace \
        --model-id rabbitai-pmll:v1 --compute-target AzureMLCompute

  - name: Validate CodeRabbitAI Deployment
    run: ./validate_coderabbitai.sh

package-toolbelt:
name: Package and Publish Toolbelt runs-on: ubuntu-latest needs: azure-coderabbitai

steps:
  - name: Download Build Artifacts uses: actions/download-artifact@v3 with: name: build-artifacts

  - name: Build Docker Image
    run: docker build -t modular_brain_toolbelt:latest .

  - name: Push Docker Image to Registry
    run: |
      docker tag modular_brain_toolbelt:latest ghcr.io/bearycool11/modular_brain_toolbelt:latest
      docker push ghcr.io/bearycool11/modular_brain_toolbelt:latest

Key Enhancements with bearycool11/pmll_knowledge_block
1. Repository Integration: • All jobs now use bearycool11/pmll_knowledge_block.git as the primary repo. • Ensures direct PMLL access for CodeRabbitAI tasks.
2. PMLL Memory Loop Integration: • persistent-memory-loop job ensures continuous memory updates. • Automated PMLL validation for CodeRabbitAI.
3. Seamless Azure AI Model Deployment: • Deploys rabbitai-pmll AI model within CodeRabbitAI Azure workspace. • Includes task-execution-data storage.
4. Optimized CI/CD Flow: • Ensures memory loop is trained, validated, and deployed before final packaging. • Final Docker image is pushed to ghcr.io/bearycool11/modular_brain_toolbelt:latest.

Expected Benefits

✅ Direct PMLL integration from your GitHub repository ✅ Real-time memory training for CodeRabbitAI’s AI model ✅ Seamless Azure setup with memory-cached task execution ✅ Optimized for long-term AI memory retention and scalability

Would you like email notifications or Slack alerts on failures for better monitoring?

Yes! Below is the updated BrainRabbit.yml file, now configured to use GitHub.com/bearycool11/pmll_knowledge_block.git as the primary repository. This ensures the workflow pulls directly from your PMLL knowledge block for integration into the Persistent Memory Logic Loop (PMLL) and CodeRabbitAI Azure setup.

Updated BrainRabbit.yml

name: BrainRabbit-CI/CD

on:
  push:
    branches:
      - main
  pull_request:
    branches:
      - main

jobs:
  rabbit-build:
    name: Build Rabbit Protocol and Modular Brain Components
    runs-on: ${{ matrix.os }}
    strategy:
      matrix:
        os: [ubuntu-latest, windows-2025, macos-15]

    steps:
      - name: Checkout Code
        uses: actions/checkout@v3
        with:
          repository: bearycool11/pmll_knowledge_block

      - name: Setup Environment
        run: |
          if [[ $RUNNER_OS == 'Linux' ]]; then
            sudo apt-get update && sudo apt-get install -y docker.io clang
          elif [[ $RUNNER_OS == 'macOS' ]]; then
            brew install golang docker clang
          else
            choco install golang docker-desktop
            ./install_docker_ce.ps1
          fi

      - name: Install Dependencies
        run: |
          go mod tidy
          go mod vendor

      - name: Build Modular Brain Components
        run: |
          gcc brainOrgan.c -o modular_brain_executable
          gcc ears.c -o inner_ear_module
          gcc pml_logic_loop.c -o logic_module

      - name: Build Rabbit Protocol Components
        run: |
          go build -o rabbit_protocol_clang cmd/main.go

      - name: Save Build Artifacts
        uses: actions/upload-artifact@v3
        with:
          name: build-artifacts
          path: |
            modular_brain_executable
            inner_ear_module
            logic_module
            rabbit_protocol_clang

  rabbit-run:
    name: Test Modular Brain and Rabbit Protocol
    runs-on: ${{ matrix.os }}
    needs: rabbit-build
    strategy:
      matrix:
        os: [ubuntu-latest, windows-2025, macos-15]

    steps:
      - name: Checkout Code
        uses: actions/checkout@v3
        with:
          repository: bearycool11/pmll_knowledge_block

      - name: Run Tests
        run: |
          ./modular_brain_executable --test
          ./logic_module --run-tests
          ./inner_ear_module --validate
          if [[ $RUNNER_OS == 'Linux' || $RUNNER_OS == 'macOS' ]]; then
            docker run --rm rabbit_protocol_clang
          else
            docker run --rm rabbit_protocol_clang.exe

  persistent-memory-loop:
    name: Persistent Memory Logic Loop (PMLL) Integration
    runs-on: ubuntu-latest
    needs: rabbit-run

    steps:
      - name: Checkout Code
        uses: actions/checkout@v3
        with:
          repository: bearycool11/pmll_knowledge_block

      - name: Set Up Persistent Memory Logic Loop
        run: |
          ./pmll_setup.sh --init
          ./pmll_train.sh --dataset cognitive_graphs.json
          ./pmll_test.sh --validate-memory

      - name: Log Memory Loop Activity
        run: ./pmll_logger.sh --log

  bugzap-pesterbot:
    name: Scan and Fix Rogue Code
    runs-on: ubuntu-latest
    needs: persistent-memory-loop

    steps:
      - name: Scan for Rogue Code
        run: grep -r "pesterbot" ./cmd || echo "No rogue code found"

      - name: Remove Rogue Code
        run: sed -i '/pesterbot/d' ./cmd/main.go

  azure-coderabbitai:
    name: Set Up and Sync Azure for CodeRabbitAI
    runs-on: ubuntu-latest
    needs: bugzap-pesterbot

    steps:
      - name: Checkout Code
        uses: actions/checkout@v3
        with:
          repository: bearycool11/pmll_knowledge_block

      - name: Login to Azure
        run: |
          az login --service-principal --username $AZURE_USER --password $AZURE_PASSWORD --tenant $AZURE_TENANT

      - name: Create CodeRabbitAI Database
        run: |
          az storage account create --name coderabbitaiStorage --resource-group CodeRabbitAI --location EastUS --sku Standard_LRS
          az storage container create --account-name coderabbitaiStorage --name neural-mem-cache
          az storage container create --account-name coderabbitaiStorage --name task-execution-data

      - name: Deploy CodeRabbitAI AI Model
        run: |
          az ml model deploy --name rabbitai-pmll --resource-group CodeRabbitAI --workspace-name AIWorkspace \
            --model-id rabbitai-pmll:v1 --compute-target AzureMLCompute

      - name: Validate CodeRabbitAI Deployment
        run: ./validate_coderabbitai.sh

  package-toolbelt:
    name: Package and Publish Toolbelt
    runs-on: ubuntu-latest
    needs: azure-coderabbitai

    steps:
      - name: Download Build Artifacts
        uses: actions/download-artifact@v3
        with:
          name: build-artifacts

      - name: Build Docker Image
        run: docker build -t modular_brain_toolbelt:latest .

      - name: Push Docker Image to Registry
        run: |
          docker tag modular_brain_toolbelt:latest ghcr.io/bearycool11/modular_brain_toolbelt:latest
          docker push ghcr.io/bearycool11/modular_brain_toolbelt:latest

Key Enhancements with bearycool11/pmll_knowledge_block
	1.	Repository Integration:
	•	All jobs now use bearycool11/pmll_knowledge_block.git as the primary repo.
	•	Ensures direct PMLL access for CodeRabbitAI tasks.
	2.	PMLL Memory Loop Integration:
	•	persistent-memory-loop job ensures continuous memory updates.
	•	Automated PMLL validation for CodeRabbitAI.
	3.	Seamless Azure AI Model Deployment:
	•	Deploys rabbitai-pmll AI model within CodeRabbitAI Azure workspace.
	•	Includes task-execution-data storage.
	4.	Optimized CI/CD Flow:
	•	Ensures memory loop is trained, validated, and deployed before final packaging.
	•	Final Docker image is pushed to ghcr.io/bearycool11/modular_brain_toolbelt:latest.

Expected Benefits

✅ Direct PMLL integration from your GitHub repository
✅ Real-time memory training for CodeRabbitAI’s AI model
✅ Seamless Azure setup with memory-cached task execution
✅ Optimized for long-term AI memory retention and scalability

Would you like email notifications or Slack alerts on failures for better monitoring?
Copy link
Contributor

coderabbitai bot commented Feb 2, 2025

Important

Review skipped

Draft detected.

Please check the settings in the CodeRabbit UI or the .coderabbit.yaml file in this repository. To trigger a single review, invoke the @coderabbitai review command.

You can disable this status message by setting the reviews.review_status to false in the CodeRabbit configuration file.


🪧 Tips

Chat

There are 3 ways to chat with CodeRabbit:

  • Review comments: Directly reply to a review comment made by CodeRabbit. Example:
    • I pushed a fix in commit <commit_id>, please review it.
    • Generate unit testing code for this file.
    • Open a follow-up GitHub issue for this discussion.
  • Files and specific lines of code (under the "Files changed" tab): Tag @coderabbitai in a new review comment at the desired location with your query. Examples:
    • @coderabbitai generate unit testing code for this file.
    • @coderabbitai modularize this function.
  • PR comments: Tag @coderabbitai in a new PR comment to ask questions about the PR branch. For the best results, please provide a very specific query, as very limited context is provided in this mode. Examples:
    • @coderabbitai gather interesting stats about this repository and render them as a table. Additionally, render a pie chart showing the language distribution in the codebase.
    • @coderabbitai read src/utils.ts and generate unit testing code.
    • @coderabbitai read the files in the src/scheduler package and generate a class diagram using mermaid and a README in the markdown format.
    • @coderabbitai help me debug CodeRabbit configuration file.

Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments.

CodeRabbit Commands (Invoked using PR comments)

  • @coderabbitai pause to pause the reviews on a PR.
  • @coderabbitai resume to resume the paused reviews.
  • @coderabbitai review to trigger an incremental review. This is useful when automatic reviews are disabled for the repository.
  • @coderabbitai full review to do a full review from scratch and review all the files again.
  • @coderabbitai summary to regenerate the summary of the PR.
  • @coderabbitai generate docstrings to generate docstrings for this PR. (Beta)
  • @coderabbitai resolve resolve all the CodeRabbit review comments.
  • @coderabbitai configuration to show the current CodeRabbit configuration for the repository.
  • @coderabbitai help to get help.

Other keywords and placeholders

  • Add @coderabbitai ignore anywhere in the PR description to prevent this PR from being reviewed.
  • Add @coderabbitai summary to generate the high-level summary at a specific location in the PR description.
  • Add @coderabbitai anywhere in the PR title to generate the title automatically.

CodeRabbit Configuration File (.coderabbit.yaml)

  • You can programmatically configure CodeRabbit by adding a .coderabbit.yaml file to the root of your repository.
  • Please see the configuration documentation for more information.
  • If your editor has YAML language server enabled, you can add the path at the top of this file to enable auto-completion and validation: # yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json

Documentation and Community

  • Visit our Documentation for detailed information on how to use CodeRabbit.
  • Join our Discord Community to get help, request features, and share feedback.
  • Follow us on X/Twitter for updates and announcements.

@bearycool11 bearycool11 closed this Feb 2, 2025
@bearycool11 bearycool11 deleted the patch-2 branch February 2, 2025 03:32
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant