summaryrefslogtreecommitdiff
path: root/src/test/regress/sql/stats_ext.sql
blob: c6a5776120e3f613e0d91ecb3df00abee528fcf6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
-- Generic extended statistics support

-- We will be checking execution plans without/with statistics, so
-- let's make sure we get simple non-parallel plans. Also set the
-- work_mem low so that we can use small amounts of data.

-- check the number of estimated/actual rows in the top node
create function check_estimated_rows(text) returns table (estimated int, actual int)
language plpgsql as
$$
declare
    ln text;
    tmp text[];
    first_row bool := true;
begin
    for ln in
        execute format('explain analyze %s', $1)
    loop
        if first_row then
            first_row := false;
            tmp := regexp_match(ln, 'rows=(\d*) .* rows=(\d*)');
            return query select tmp[1]::int, tmp[2]::int;
        end if;
    end loop;
end;
$$;

-- Verify failures
CREATE STATISTICS tst;
CREATE STATISTICS tst ON a, b;
CREATE STATISTICS tst FROM sometab;
CREATE STATISTICS tst ON a, b FROM nonexistant;
CREATE STATISTICS tst ON a, b FROM pg_class;
CREATE STATISTICS tst ON relname, relname, relnatts FROM pg_class;
CREATE STATISTICS tst ON relnatts + relpages FROM pg_class;
CREATE STATISTICS tst ON (relpages, reltuples) FROM pg_class;
CREATE STATISTICS tst (unrecognized) ON relname, relnatts FROM pg_class;

-- Ensure stats are dropped sanely, and test IF NOT EXISTS while at it
CREATE TABLE ab1 (a INTEGER, b INTEGER, c INTEGER);
CREATE STATISTICS IF NOT EXISTS ab1_a_b_stats ON a, b FROM ab1;
CREATE STATISTICS IF NOT EXISTS ab1_a_b_stats ON a, b FROM ab1;
DROP STATISTICS ab1_a_b_stats;

CREATE SCHEMA regress_schema_2;
CREATE STATISTICS regress_schema_2.ab1_a_b_stats ON a, b FROM ab1;

-- Let's also verify the pg_get_statisticsobjdef output looks sane.
SELECT pg_get_statisticsobjdef(oid) FROM pg_statistic_ext WHERE stxname = 'ab1_a_b_stats';

DROP STATISTICS regress_schema_2.ab1_a_b_stats;

-- Ensure statistics are dropped when columns are
CREATE STATISTICS ab1_b_c_stats ON b, c FROM ab1;
CREATE STATISTICS ab1_a_b_c_stats ON a, b, c FROM ab1;
CREATE STATISTICS ab1_b_a_stats ON b, a FROM ab1;
ALTER TABLE ab1 DROP COLUMN a;
\d ab1
-- Ensure statistics are dropped when table is
SELECT stxname FROM pg_statistic_ext WHERE stxname LIKE 'ab1%';
DROP TABLE ab1;
SELECT stxname FROM pg_statistic_ext WHERE stxname LIKE 'ab1%';

-- Ensure things work sanely with SET STATISTICS 0
CREATE TABLE ab1 (a INTEGER, b INTEGER);
ALTER TABLE ab1 ALTER a SET STATISTICS 0;
INSERT INTO ab1 SELECT a, a%23 FROM generate_series(1, 1000) a;
CREATE STATISTICS ab1_a_b_stats ON a, b FROM ab1;
ANALYZE ab1;
ALTER TABLE ab1 ALTER a SET STATISTICS -1;
-- partial analyze doesn't build stats either
ANALYZE ab1 (a);
ANALYZE ab1;
DROP TABLE ab1;

-- Verify supported object types for extended statistics
CREATE schema tststats;

CREATE TABLE tststats.t (a int, b int, c text);
CREATE INDEX ti ON tststats.t (a, b);
CREATE SEQUENCE tststats.s;
CREATE VIEW tststats.v AS SELECT * FROM tststats.t;
CREATE MATERIALIZED VIEW tststats.mv AS SELECT * FROM tststats.t;
CREATE TYPE tststats.ty AS (a int, b int, c text);
CREATE FOREIGN DATA WRAPPER extstats_dummy_fdw;
CREATE SERVER extstats_dummy_srv FOREIGN DATA WRAPPER extstats_dummy_fdw;
CREATE FOREIGN TABLE tststats.f (a int, b int, c text) SERVER extstats_dummy_srv;
CREATE TABLE tststats.pt (a int, b int, c text) PARTITION BY RANGE (a, b);
CREATE TABLE tststats.pt1 PARTITION OF tststats.pt FOR VALUES FROM (-10, -10) TO (10, 10);

CREATE STATISTICS tststats.s1 ON a, b FROM tststats.t;
CREATE STATISTICS tststats.s2 ON a, b FROM tststats.ti;
CREATE STATISTICS tststats.s3 ON a, b FROM tststats.s;
CREATE STATISTICS tststats.s4 ON a, b FROM tststats.v;
CREATE STATISTICS tststats.s5 ON a, b FROM tststats.mv;
CREATE STATISTICS tststats.s6 ON a, b FROM tststats.ty;
CREATE STATISTICS tststats.s7 ON a, b FROM tststats.f;
CREATE STATISTICS tststats.s8 ON a, b FROM tststats.pt;
CREATE STATISTICS tststats.s9 ON a, b FROM tststats.pt1;
DO $$
DECLARE
	relname text := reltoastrelid::regclass FROM pg_class WHERE oid = 'tststats.t'::regclass;
BEGIN
	EXECUTE 'CREATE STATISTICS tststats.s10 ON a, b FROM ' || relname;
EXCEPTION WHEN wrong_object_type THEN
	RAISE NOTICE 'stats on toast table not created';
END;
$$;

DROP SCHEMA tststats CASCADE;
DROP FOREIGN DATA WRAPPER extstats_dummy_fdw CASCADE;

-- n-distinct tests
CREATE TABLE ndistinct (
    filler1 TEXT,
    filler2 NUMERIC,
    a INT,
    b INT,
    filler3 DATE,
    c INT,
    d INT
);

-- over-estimates when using only per-column statistics
INSERT INTO ndistinct (a, b, c, filler1)
     SELECT i/100, i/100, i/100, cash_words((i/100)::money)
       FROM generate_series(1,1000) s(i);

ANALYZE ndistinct;

-- Group Aggregate, due to over-estimate of the number of groups
SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY a, b');

SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY b, c');

SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY a, b, c');

SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY a, b, c, d');

SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY b, c, d');

-- correct command
CREATE STATISTICS s10 ON a, b, c FROM ndistinct;

ANALYZE ndistinct;

SELECT stxkind, stxndistinct
  FROM pg_statistic_ext WHERE stxrelid = 'ndistinct'::regclass;

-- Hash Aggregate, thanks to estimates improved by the statistic
SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY a, b');

SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY b, c');

SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY a, b, c');

-- last two plans keep using Group Aggregate, because 'd' is not covered
-- by the statistic and while it's NULL-only we assume 200 values for it
SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY a, b, c, d');

SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY b, c, d');

TRUNCATE TABLE ndistinct;

-- under-estimates when using only per-column statistics
INSERT INTO ndistinct (a, b, c, filler1)
     SELECT mod(i,50), mod(i,51), mod(i,32),
            cash_words(mod(i,33)::int::money)
       FROM generate_series(1,5000) s(i);

ANALYZE ndistinct;

SELECT stxkind, stxndistinct
  FROM pg_statistic_ext WHERE stxrelid = 'ndistinct'::regclass;

-- correct esimates
SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY a, b');

SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY a, b, c');

SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY a, b, c, d');

SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY b, c, d');

SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY a, d');

DROP STATISTICS s10;

SELECT stxkind, stxndistinct
  FROM pg_statistic_ext WHERE stxrelid = 'ndistinct'::regclass;

-- dropping the statistics results in under-estimates
SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY a, b');

SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY a, b, c');

SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY a, b, c, d');

SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY b, c, d');

SELECT * FROM check_estimated_rows('SELECT COUNT(*) FROM ndistinct GROUP BY a, d');

-- functional dependencies tests
CREATE TABLE functional_dependencies (
    filler1 TEXT,
    filler2 NUMERIC,
    a INT,
    b TEXT,
    filler3 DATE,
    c INT,
    d TEXT
);

CREATE INDEX fdeps_ab_idx ON functional_dependencies (a, b);
CREATE INDEX fdeps_abc_idx ON functional_dependencies (a, b, c);

-- random data (no functional dependencies)
INSERT INTO functional_dependencies (a, b, c, filler1)
     SELECT mod(i, 23), mod(i, 29), mod(i, 31), i FROM generate_series(1,5000) s(i);

ANALYZE functional_dependencies;

SELECT * FROM check_estimated_rows('SELECT * FROM functional_dependencies WHERE a = 1 AND b = ''1''');

SELECT * FROM check_estimated_rows('SELECT * FROM functional_dependencies WHERE a = 1 AND b = ''1'' AND c = 1');

-- create statistics
CREATE STATISTICS func_deps_stat (dependencies) ON a, b, c FROM functional_dependencies;

ANALYZE functional_dependencies;

SELECT * FROM check_estimated_rows('SELECT * FROM functional_dependencies WHERE a = 1 AND b = ''1''');

SELECT * FROM check_estimated_rows('SELECT * FROM functional_dependencies WHERE a = 1 AND b = ''1'' AND c = 1');

-- a => b, a => c, b => c
TRUNCATE functional_dependencies;
DROP STATISTICS func_deps_stat;

INSERT INTO functional_dependencies (a, b, c, filler1)
     SELECT mod(i,100), mod(i,50), mod(i,25), i FROM generate_series(1,5000) s(i);

ANALYZE functional_dependencies;

SELECT * FROM check_estimated_rows('SELECT * FROM functional_dependencies WHERE a = 1 AND b = ''1''');

SELECT * FROM check_estimated_rows('SELECT * FROM functional_dependencies WHERE a = 1 AND b = ''1'' AND c = 1');

-- create statistics
CREATE STATISTICS func_deps_stat (dependencies) ON a, b, c FROM functional_dependencies;

ANALYZE functional_dependencies;

SELECT * FROM check_estimated_rows('SELECT * FROM functional_dependencies WHERE a = 1 AND b = ''1''');

SELECT * FROM check_estimated_rows('SELECT * FROM functional_dependencies WHERE a = 1 AND b = ''1'' AND c = 1');

-- check change of column type doesn't break it
ALTER TABLE functional_dependencies ALTER COLUMN c TYPE numeric;

SELECT * FROM check_estimated_rows('SELECT * FROM functional_dependencies WHERE a = 1 AND b = ''1'' AND c = 1');

ANALYZE functional_dependencies;

SELECT * FROM check_estimated_rows('SELECT * FROM functional_dependencies WHERE a = 1 AND b = ''1'' AND c = 1');

-- MCV lists
CREATE TABLE mcv_lists (
    filler1 TEXT,
    filler2 NUMERIC,
    a INT,
    b VARCHAR,
    filler3 DATE,
    c INT,
    d TEXT
);

-- random data (no MCV list)
INSERT INTO mcv_lists (a, b, c, filler1)
     SELECT mod(i,37), mod(i,41), mod(i,43), mod(i,47) FROM generate_series(1,5000) s(i);

ANALYZE mcv_lists;

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a = 1 AND b = ''1''');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a = 1 AND b = ''1'' AND c = 1');

-- create statistics
CREATE STATISTICS mcv_lists_stats (mcv) ON a, b, c FROM mcv_lists;

ANALYZE mcv_lists;

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a = 1 AND b = ''1''');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a = 1 AND b = ''1'' AND c = 1');

-- 100 distinct combinations, all in the MCV list
TRUNCATE mcv_lists;
DROP STATISTICS mcv_lists_stats;

INSERT INTO mcv_lists (a, b, c, filler1)
     SELECT mod(i,100), mod(i,50), mod(i,25), i FROM generate_series(1,5000) s(i);

ANALYZE mcv_lists;

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a = 1 AND b = ''1''');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a < 1 AND b < ''1''');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a <= 0 AND b <= ''0''');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a = 1 AND b = ''1'' AND c = 1');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a < 5 AND b < ''1'' AND c < 5');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a <= 4 AND b <= ''0'' AND c <= 4');

-- create statistics
CREATE STATISTICS mcv_lists_stats (mcv) ON a, b, c FROM mcv_lists;

ANALYZE mcv_lists;

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a = 1 AND b = ''1''');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a < 1 AND b < ''1''');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a <= 0 AND b <= ''0''');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a = 1 AND b = ''1'' AND c = 1');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a < 5 AND b < ''1'' AND c < 5');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a <= 4 AND b <= ''0'' AND c <= 4');

-- check change of unrelated column type does not reset the MCV statistics
ALTER TABLE mcv_lists ALTER COLUMN d TYPE VARCHAR(64);

SELECT stxmcv IS NOT NULL FROM pg_statistic_ext WHERE stxname = 'mcv_lists_stats';

-- check change of column type resets the MCV statistics
ALTER TABLE mcv_lists ALTER COLUMN c TYPE numeric;

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a = 1 AND b = ''1''');

ANALYZE mcv_lists;

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a = 1 AND b = ''1''');

-- 100 distinct combinations with NULL values, all in the MCV list
TRUNCATE mcv_lists;
DROP STATISTICS mcv_lists_stats;

INSERT INTO mcv_lists (a, b, c, filler1)
     SELECT
         (CASE WHEN mod(i,100) = 1 THEN NULL ELSE mod(i,100) END),
         (CASE WHEN mod(i,50) = 1  THEN NULL ELSE mod(i,50) END),
         (CASE WHEN mod(i,25) = 1  THEN NULL ELSE mod(i,25) END),
         i
     FROM generate_series(1,5000) s(i);

ANALYZE mcv_lists;

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a IS NULL AND b IS NULL');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a IS NULL AND b IS NULL AND c IS NULL');

-- create statistics
CREATE STATISTICS mcv_lists_stats (mcv) ON a, b, c FROM mcv_lists;

ANALYZE mcv_lists;

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a IS NULL AND b IS NULL');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists WHERE a IS NULL AND b IS NULL AND c IS NULL');

-- test pg_mcv_list_items with a very simple (single item) MCV list
TRUNCATE mcv_lists;
INSERT INTO mcv_lists (a, b, c) SELECT 1, 2, 3 FROM generate_series(1,1000) s(i);
ANALYZE mcv_lists;

SELECT m.* FROM pg_statistic_ext,
              pg_mcv_list_items(stxmcv) m WHERE stxname = 'mcv_lists_stats';

-- mcv with arrays
CREATE TABLE mcv_lists_arrays (
    a TEXT[],
    b NUMERIC[],
    c INT[]
);

INSERT INTO mcv_lists_arrays (a, b, c)
     SELECT
         ARRAY[md5((i/100)::text), md5((i/100-1)::text), md5((i/100+1)::text)],
         ARRAY[(i/100-1)::numeric/1000, (i/100)::numeric/1000, (i/100+1)::numeric/1000],
         ARRAY[(i/100-1), i/100, (i/100+1)]
     FROM generate_series(1,5000) s(i);

CREATE STATISTICS mcv_lists_arrays_stats (mcv) ON a, b, c
  FROM mcv_lists_arrays;

ANALYZE mcv_lists_arrays;

-- mcv with bool
CREATE TABLE mcv_lists_bool (
    a BOOL,
    b BOOL,
    c BOOL
);

INSERT INTO mcv_lists_bool (a, b, c)
     SELECT
         (mod(i,2) = 0), (mod(i,4) = 0), (mod(i,8) = 0)
     FROM generate_series(1,10000) s(i);

ANALYZE mcv_lists_bool;

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_bool WHERE a AND b AND c');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_bool WHERE NOT a AND b AND c');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_bool WHERE NOT a AND NOT b AND c');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_bool WHERE NOT a AND b AND NOT c');

CREATE STATISTICS mcv_lists_bool_stats (mcv) ON a, b, c
  FROM mcv_lists_bool;

ANALYZE mcv_lists_bool;

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_bool WHERE a AND b AND c');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_bool WHERE NOT a AND b AND c');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_bool WHERE NOT a AND NOT b AND c');

SELECT * FROM check_estimated_rows('SELECT * FROM mcv_lists_bool WHERE NOT a AND b AND NOT c');