summaryrefslogtreecommitdiff
path: root/doc/src/sgml/cube.sgml
blob: edb7611810af16f395049efc2b67482168994164 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

<sect1 id="cube">
 <title>cube</title>
 
 <indexterm zone="cube">
  <primary>cube</primary>
 </indexterm>

 <para>
  This module contains the user-defined type, CUBE, representing 
  multidimensional cubes.
 </para>

 <sect2>
  <title>Syntax</title>

  <para>
   The following are valid external representations for the CUBE type:
  </para>

  <table>
   <title>Cube external representations</title>
   <tgroup cols="2">
    <tbody>
     <row>
      <entry>'x'</entry>
      <entry>A floating point value representing a one-dimensional point or 
       one-dimensional zero length cubement
      </entry>
     </row>
     <row>
      <entry>'(x)'</entry>
      <entry>Same as above</entry>
     </row>
     <row>
      <entry>'x1,x2,x3,...,xn'</entry>
      <entry>A point in n-dimensional space, represented internally as a zero 
       volume box
      </entry>
     </row>
     <row>
      <entry>'(x1,x2,x3,...,xn)'</entry>
      <entry>Same as above</entry>
     </row>
     <row>
      <entry>'(x),(y)'</entry>
      <entry>1-D cubement starting at x and ending at y or vice versa; the 
       order does not matter
      </entry>
     </row>
     <row>
      <entry>'(x1,...,xn),(y1,...,yn)'</entry>
      <entry>n-dimensional box represented by a pair of its opposite corners, no 
       matter which.  Functions take care of swapping to achieve "lower left -- 
       upper right" representation before computing any values
      </entry>
     </row>
    </tbody>
   </tgroup>
  </table>
   </sect2>
  
   <sect2>
    <title>Grammar</title>
    <table>
     <title>Cube Grammar Rules</title>
     <tgroup cols="2">
      <tbody>
       <row>
        <entry>rule 1</entry>
        <entry>box -> O_BRACKET paren_list COMMA paren_list C_BRACKET</entry>
       </row>
       <row>
        <entry>rule 2</entry>
        <entry>box -> paren_list COMMA paren_list</entry>
       </row>
       <row>
        <entry>rule 3</entry>
        <entry>box -> paren_list</entry>
       </row>
       <row>
        <entry>rule 4</entry>
        <entry>box -> list</entry>
       </row>
       <row>
        <entry>rule 5</entry>
        <entry>paren_list -> O_PAREN list C_PAREN</entry>
       </row>
       <row>
        <entry>rule 6</entry>
        <entry>list -> FLOAT</entry>
       </row>
       <row>
        <entry>rule 7</entry>
        <entry>list -> list COMMA FLOAT</entry>
       </row>
      </tbody>
     </tgroup>
    </table>
   </sect2>

   <sect2>
    <title>Tokens</title>
    <table>
     <title>Cube Grammar Rules</title>
     <tgroup cols="2">
      <tbody>
       <row>
        <entry>n</entry>
        <entry>[0-9]+</entry>
       </row>
       <row>
        <entry>i</entry>
        <entry>nteger                [+-]?{n}</entry>
       </row>
       <row>
        <entry>real</entry>
        <entry>[+-]?({n}\.{n}?|\.{n})</entry>
       </row>
       <row>
        <entry>FLOAT</entry>
        <entry>({integer}|{real})([eE]{integer})?</entry>
       </row>
       <row>
        <entry>O_BRACKET</entry>        
        <entry>\[</entry>
       </row>
       <row>
        <entry>C_BRACKET</entry>
        <entry>\]</entry>
       </row>
       <row>
        <entry>O_PAREN</entry>
        <entry>\(</entry>
       </row>
       <row>
        <entry>C_PAREN</entry>
        <entry>\)</entry>
       </row>
       <row>
        <entry>COMMA</entry>
        <entry>\,</entry>
       </row>
      </tbody>
     </tgroup>
    </table>
   </sect2>

 <sect2>
  <title>Examples</title>
  <table>
   <title>Examples</title>
   <tgroup cols="2">
    <tbody>
     <row>
      <entry>'x'</entry>
      <entry>A floating point value representing a one-dimensional point 
       (or, zero-length one-dimensional interval)
      </entry>
     </row>
     <row>
      <entry>'(x)'</entry>
      <entry>Same as above</entry>
     </row>
     <row>
      <entry>'x1,x2,x3,...,xn'</entry>
      <entry>A point in n-dimensional space,represented internally as a zero 
       volume cube
      </entry>
     </row>
     <row>
      <entry>'(x1,x2,x3,...,xn)'</entry>
      <entry>Same as above</entry>
     </row>
     <row>
      <entry>'(x),(y)'</entry>
      <entry>A 1-D interval starting at x and ending at y or vice versa; the
       order does not matter
      </entry>
     </row>
     <row>
      <entry>'[(x),(y)]'</entry>
      <entry>Same as above</entry>
     </row>
     <row>
      <entry>'(x1,...,xn),(y1,...,yn)'</entry>
      <entry>An n-dimensional box represented by a pair of its diagonally 
       opposite corners, regardless of order. Swapping is provided
       by all comarison routines to ensure the 
       "lower left -- upper right" representation
       before actaul comparison takes place.
      </entry>
     </row>
     <row>
      <entry>'[(x1,...,xn),(y1,...,yn)]'</entry>
      <entry>Same as above</entry>
     </row>
    </tbody>
   </tgroup>
  </table>
  <para>
   White space is ignored, so '[(x),(y)]' can be: '[ ( x ), ( y ) ]'
  </para>
 </sect2>
 <sect2>
  <title>Defaults</title>
  <para>
   I believe this union:
  </para>
<programlisting>
select cube_union('(0,5,2),(2,3,1)','0'); 
cube_union        
-------------------
(0, 0, 0),(2, 5, 2)
(1 row)
</programlisting>

   <para>
    does not contradict to the common sense, neither does the intersection
   </para>

<programlisting>
select cube_inter('(0,-1),(1,1)','(-2),(2)');
cube_inter  
-------------
(0, 0),(1, 0)
(1 row)
</programlisting>

   <para>
    In all binary operations on differently sized boxes, I assume the smaller
    one to be a cartesian projection, i. e., having zeroes in place of coordinates
    omitted in the string representation. The above examples are equivalent to:
   </para>

<programlisting>
cube_union('(0,5,2),(2,3,1)','(0,0,0),(0,0,0)'); 
cube_inter('(0,-1),(1,1)','(-2,0),(2,0)');
</programlisting>

   <para>
    The following containment predicate uses the point syntax,
    while in fact the second argument is internally represented by a box.
    This syntax makes it unnecessary to define the special Point type
    and functions for (box,point) predicates.
   </para>

<programlisting>
select cube_contains('(0,0),(1,1)', '0.5,0.5');
cube_contains
--------------
t             
(1 row)
</programlisting>
 </sect2>
 <sect2>
  <title>Precision</title>
  <para>
Values are stored internally as 64-bit floating point numbers. This means that
numbers with more than about 16 significant digits will be truncated.
  </para>
 </sect2>

 <sect2>
  <title>Usage</title>
  <para>
   The access method for CUBE is a GiST index (gist_cube_ops), which is a
   generalization of R-tree. GiSTs allow the postgres implementation of
   R-tree, originally encoded to support 2-D geometric types such as
   boxes and polygons, to be used with any data type whose data domain
   can be partitioned using the concepts of containment, intersection and
   equality. In other words, everything that can intersect or contain
   its own kind can be indexed with a GiST. That includes, among other
   things, all geometric data types, regardless of their dimensionality
   (see also contrib/seg).
  </para>

  <para>
   The operators supported by the GiST access method include:
  </para>

  <programlisting>
a = b                Same as
  </programlisting>
  <para>
   The cubements a and b are identical.
  </para>

  <programlisting>
a &amp;&amp; b                Overlaps
  </programlisting>
  <para>
   The cubements a and b overlap.
  </para>

  <programlisting>
a @&gt; b                Contains
  </programlisting>
  <para>
   The cubement a contains the cubement b.
  </para>

  <programlisting>
a &lt;@ b                Contained in
  </programlisting>
  <para>
   The cubement a is contained in b.
  </para>

  <para>
   (Before PostgreSQL 8.2, the containment operators @&gt; and &lt;@ were
   respectively called @ and ~.  These names are still available, but are
   deprecated and will eventually be retired.  Notice that the old names
   are reversed from the convention formerly followed by the core geometric
   datatypes!)
  </para>

  <para>
   Although the mnemonics of the following operators is questionable, I
   preserved them to maintain visual consistency with other geometric
   data types defined in Postgres.
  </para>

  <para>
   Other operators:
  </para>

  <programlisting>
[a, b] &lt; [c, d]                Less than
[a, b] &gt; [c, d]                Greater than
  </programlisting>
 
  <para>
   These operators do not make a lot of sense for any practical
   purpose but sorting. These operators first compare (a) to (c),
   and if these are equal, compare (b) to (d). That accounts for
   reasonably good sorting in most cases, which is useful if
   you want to use ORDER BY with this type
  </para>

  <para>
   The following functions are available:
  </para>

  <table>
   <title>Functions available</title>
   <tgroup cols="2">
    <tbody>
     <row>
      <entry><literal>cube_distance(cube, cube) returns double</literal></entry>
      <entry>cube_distance returns the distance between two cubes. If both 
       cubes are points, this is the normal distance function.
      </entry>
     </row>
     <row>
      <entry><literal>cube(text)</literal></entry>
      <entry>Takes text input and returns a cube. This is useful for making 
      cubes from computed strings.
      </entry>
     </row>
     <row>
      <entry><literal>cube(float8) returns cube</literal></entry>
      <entry>This makes a one dimensional cube with both coordinates the same.
       If the type of the argument is a numeric type other than float8 an
       explicit cast to float8 may be needed.
       <literal>cube(1) == '(1)'</literal>
      </entry>
     </row>

     <row>
      <entry><literal>cube(float8, float8) returns cube</literal></entry>
      <entry>
       This makes a one dimensional cube.
       <literal>cube(1,2) == '(1),(2)'</literal>
      </entry>
     </row>

     <row>
      <entry><literal>cube(float8[]) returns cube</literal></entry>
      <entry>This makes a zero-volume cube using the coordinates 
       defined by thearray.<literal>cube(ARRAY[1,2]) == '(1,2)'</literal>
      </entry>
     </row>

     <row>
      <entry><literal>cube(float8[], float8[]) returns cube</literal></entry>
      <entry>This makes a cube, with upper right and lower left 
       coordinates as defined by the 2 float arrays. Arrays must be of the 
       same length.
       <literal>cube('{1,2}'::float[], '{3,4}'::float[]) == '(1,2),(3,4)'
       </literal>
      </entry>
     </row>

     <row>
      <entry><literal>cube(cube, float8) returns cube</literal></entry>
      <entry>This builds a new cube by adding a dimension on to an 
       existing cube with the same values for both parts of the new coordinate. 
       This is useful for building cubes piece by piece from calculated values.
       <literal>cube('(1)',2) == '(1,2),(1,2)'</literal>
      </entry>
     </row>

     <row>
      <entry><literal>cube(cube, float8, float8) returns cube</literal></entry>
      <entry>This builds a new cube by adding a dimension on to an 
       existing cube. This is useful for building cubes piece by piece from 
       calculated values. <literal>cube('(1,2)',3,4) == '(1,3),(2,4)'</literal>
      </entry>
     </row>

     <row>
      <entry><literal>cube_dim(cube) returns int</literal></entry>
      <entry>cube_dim returns the number of dimensions stored in the 
       the data structure
       for a cube. This is useful for constraints on the dimensions of a cube.
      </entry>
     </row>

     <row>
      <entry><literal>cube_ll_coord(cube, int) returns double </literal></entry>
      <entry>
       cube_ll_coord returns the nth coordinate value for the lower left 
       corner of a cube. This is useful for doing coordinate transformations.
      </entry>
     </row>

    <row>
      <entry><literal>cube_ur_coord(cube, int) returns double
      </literal></entry>
      <entry>cube_ur_coord returns the nth coordinate value for the
       upper right corner of a cube. This is useful for doing coordinate 
       transformations.
      </entry>
     </row>

     <row>
      <entry><literal>cube_subset(cube, int[]) returns cube
      </literal></entry>
      <entry>Builds a new cube from an existing cube, using a list of 
       dimension indexes
       from an array. Can be used to find both the ll and ur coordinate of single
       dimenion, e.g.: cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[2]) = '(3),(7)'
       Or can be used to drop dimensions, or reorder them as desired, e.g.:
       cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[3,2,1,1]) = 
       '(5, 3, 1, 1),(8, 7, 6, 6)'
      </entry>
     </row>

     <row>
      <entry><literal>cube_is_point(cube) returns bool</literal></entry>
      <entry>cube_is_point returns true if a cube is also a point. 
       This is true when the two defining corners are the same.</entry>
     </row>
 
     <row>
      <entry><literal>cube_enlarge(cube, double, int) returns cube</literal></entry>
      <entry>
       cube_enlarge increases the size of a cube by a specified 
       radius in at least
       n dimensions. If the radius is negative the box is shrunk instead. This
       is useful for creating bounding boxes around a point for searching for
       nearby points. All defined dimensions are changed by the radius. If n
       is greater than the number of defined dimensions and the cube is being
       increased (r &gt;= 0) then 0 is used as the base for the extra coordinates.
       LL coordinates are decreased by r and UR coordinates are increased by r. 
       If a LL coordinate is increased to larger than the corresponding UR 
       coordinate (this can only happen when r &lt; 0) than both coordinates are 
       set to their average. To make it harder for people to break things there 
       is an effective maximum on the dimension of cubes of 100. This is set 
       in cubedata.h if you need something bigger.
      </entry>
     </row>
    </tbody>
   </tgroup>
  </table>
 
  <para>
   There are a few other potentially useful functions defined in cube.c 
   that vanished from the schema because I stopped using them. Some of 
   these were meant to support type casting. Let me know if I was wrong: 
   I will then add them back to the schema. I would also appreciate 
   other ideas that would enhance the type and make it more useful.
  </para>

  <para>
   For examples of usage, see sql/cube.sql
  </para>
 </sect2>

 <sect2>
  <title>Credits</title>
  <para>
   This code is essentially based on the example written for
   Illustra, <ulink url="http://garcia.me.berkeley.edu/~adong/rtree"></ulink>
  </para>
  <para>
   My thanks are primarily to Prof. Joe Hellerstein
   (<ulink url="http://db.cs.berkeley.edu/~jmh/"></ulink>) for elucidating the 
   gist of the GiST (<ulink url="http://gist.cs.berkeley.edu/"></ulink>), and 
   to his former student, Andy Dong 
   (<ulink url="http://best.me.berkeley.edu/~adong/"></ulink>), for his exemplar.
   I am also grateful to all postgres developers, present and past, for enabling
   myself to create my own world and live undisturbed in it. And I would like to
   acknowledge my gratitude to Argonne Lab and to the U.S. Department of Energy
   for the years of faithful support of my database research.
  </para>

  <para>
   Gene Selkov, Jr.
   Computational Scientist
   Mathematics and Computer Science Division
   Argonne National Laboratory
   9700 S Cass Ave.
   Building 221
   Argonne, IL 60439-4844
   <email>[email protected]</email>
  </para>

  <para>
   Minor updates to this package were made by Bruno Wolff III 
   <email>[email protected]</email> in August/September of 2002. These include 
   changing the precision from single precision to double precision and adding 
   some new functions.
  </para>

  <para>
   Additional updates were made by Joshua Reich <email>[email protected]</email> in 
   July 2006. These include <literal>cube(float8[], float8[])</literal> and 
   cleaning up the code to use the V1 call protocol instead of the deprecated V0 
   form.
  </para>
 </sect2>
</sect1>