1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
|
/*-------------------------------------------------------------------------
*
* hashfunc.c
* Support functions for hash access method.
*
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/access/hash/hashfunc.c
*
* NOTES
* These functions are stored in pg_amproc. For each operator class
* defined for hash indexes, they compute the hash value of the argument.
*
* Additional hash functions appear in /utils/adt/ files for various
* specialized datatypes.
*
* It is expected that every bit of a hash function's 32-bit result is
* as random as every other; failure to ensure this is likely to lead
* to poor performance of hash joins, for example. In most cases a hash
* function should use hash_any() or its variant hash_uint32().
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/hash.h"
#include "utils/builtins.h"
#ifdef PGXC
#include "catalog/pg_type.h"
#include "utils/builtins.h"
#include "utils/timestamp.h"
#include "utils/date.h"
#include "utils/nabstime.h"
#endif
/*
* Datatype-specific hash functions.
*
* These support both hash indexes and hash joins.
*
* NOTE: some of these are also used by catcache operations, without
* any direct connection to hash indexes. Also, the common hash_any
* routine is also used by dynahash tables.
*/
/* Note: this is used for both "char" and boolean datatypes */
Datum
hashchar(PG_FUNCTION_ARGS)
{
return hash_uint32((int32) PG_GETARG_CHAR(0));
}
Datum
hashint2(PG_FUNCTION_ARGS)
{
return hash_uint32((int32) PG_GETARG_INT16(0));
}
Datum
hashint4(PG_FUNCTION_ARGS)
{
return hash_uint32(PG_GETARG_INT32(0));
}
Datum
hashint8(PG_FUNCTION_ARGS)
{
/*
* The idea here is to produce a hash value compatible with the values
* produced by hashint4 and hashint2 for logically equal inputs; this is
* necessary to support cross-type hash joins across these input types.
* Since all three types are signed, we can xor the high half of the int8
* value if the sign is positive, or the complement of the high half when
* the sign is negative.
*/
int64 val = PG_GETARG_INT64(0);
uint32 lohalf = (uint32) val;
uint32 hihalf = (uint32) (val >> 32);
lohalf ^= (val >= 0) ? hihalf : ~hihalf;
return hash_uint32(lohalf);
}
Datum
hashoid(PG_FUNCTION_ARGS)
{
return hash_uint32((uint32) PG_GETARG_OID(0));
}
Datum
hashenum(PG_FUNCTION_ARGS)
{
return hash_uint32((uint32) PG_GETARG_OID(0));
}
Datum
hashfloat4(PG_FUNCTION_ARGS)
{
float4 key = PG_GETARG_FLOAT4(0);
float8 key8;
/*
* On IEEE-float machines, minus zero and zero have different bit patterns
* but should compare as equal. We must ensure that they have the same
* hash value, which is most reliably done this way:
*/
if (key == (float4) 0)
PG_RETURN_UINT32(0);
/*
* To support cross-type hashing of float8 and float4, we want to return
* the same hash value hashfloat8 would produce for an equal float8 value.
* So, widen the value to float8 and hash that. (We must do this rather
* than have hashfloat8 try to narrow its value to float4; that could fail
* on overflow.)
*/
key8 = key;
return hash_any((unsigned char *) &key8, sizeof(key8));
}
Datum
hashfloat8(PG_FUNCTION_ARGS)
{
float8 key = PG_GETARG_FLOAT8(0);
/*
* On IEEE-float machines, minus zero and zero have different bit patterns
* but should compare as equal. We must ensure that they have the same
* hash value, which is most reliably done this way:
*/
if (key == (float8) 0)
PG_RETURN_UINT32(0);
return hash_any((unsigned char *) &key, sizeof(key));
}
Datum
hashoidvector(PG_FUNCTION_ARGS)
{
oidvector *key = (oidvector *) PG_GETARG_POINTER(0);
return hash_any((unsigned char *) key->values, key->dim1 * sizeof(Oid));
}
Datum
hashname(PG_FUNCTION_ARGS)
{
char *key = NameStr(*PG_GETARG_NAME(0));
return hash_any((unsigned char *) key, strlen(key));
}
Datum
hashtext(PG_FUNCTION_ARGS)
{
text *key = PG_GETARG_TEXT_PP(0);
Datum result;
/*
* Note: this is currently identical in behavior to hashvarlena, but keep
* it as a separate function in case we someday want to do something
* different in non-C locales. (See also hashbpchar, if so.)
*/
result = hash_any((unsigned char *) VARDATA_ANY(key),
VARSIZE_ANY_EXHDR(key));
/* Avoid leaking memory for toasted inputs */
PG_FREE_IF_COPY(key, 0);
return result;
}
/*
* hashvarlena() can be used for any varlena datatype in which there are
* no non-significant bits, ie, distinct bitpatterns never compare as equal.
*/
Datum
hashvarlena(PG_FUNCTION_ARGS)
{
struct varlena *key = PG_GETARG_VARLENA_PP(0);
Datum result;
result = hash_any((unsigned char *) VARDATA_ANY(key),
VARSIZE_ANY_EXHDR(key));
/* Avoid leaking memory for toasted inputs */
PG_FREE_IF_COPY(key, 0);
return result;
}
/*
* This hash function was written by Bob Jenkins
* ([email protected]), and superficially adapted
* for PostgreSQL by Neil Conway. For more information on this
* hash function, see http://burtleburtle.net/bob/hash/doobs.html,
* or Bob's article in Dr. Dobb's Journal, Sept. 1997.
*
* In the current code, we have adopted Bob's 2006 update of his hash
* function to fetch the data a word at a time when it is suitably aligned.
* This makes for a useful speedup, at the cost of having to maintain
* four code paths (aligned vs unaligned, and little-endian vs big-endian).
* It also uses two separate mixing functions mix() and final(), instead
* of a slower multi-purpose function.
*/
/* Get a bit mask of the bits set in non-uint32 aligned addresses */
#define UINT32_ALIGN_MASK (sizeof(uint32) - 1)
/* Rotate a uint32 value left by k bits - note multiple evaluation! */
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
/*----------
* mix -- mix 3 32-bit values reversibly.
*
* This is reversible, so any information in (a,b,c) before mix() is
* still in (a,b,c) after mix().
*
* If four pairs of (a,b,c) inputs are run through mix(), or through
* mix() in reverse, there are at least 32 bits of the output that
* are sometimes the same for one pair and different for another pair.
* This was tested for:
* * pairs that differed by one bit, by two bits, in any combination
* of top bits of (a,b,c), or in any combination of bottom bits of
* (a,b,c).
* * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
* the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
* is commonly produced by subtraction) look like a single 1-bit
* difference.
* * the base values were pseudorandom, all zero but one bit set, or
* all zero plus a counter that starts at zero.
*
* This does not achieve avalanche. There are input bits of (a,b,c)
* that fail to affect some output bits of (a,b,c), especially of a. The
* most thoroughly mixed value is c, but it doesn't really even achieve
* avalanche in c.
*
* This allows some parallelism. Read-after-writes are good at doubling
* the number of bits affected, so the goal of mixing pulls in the opposite
* direction from the goal of parallelism. I did what I could. Rotates
* seem to cost as much as shifts on every machine I could lay my hands on,
* and rotates are much kinder to the top and bottom bits, so I used rotates.
*----------
*/
#define mix(a,b,c) \
{ \
a -= c; a ^= rot(c, 4); c += b; \
b -= a; b ^= rot(a, 6); a += c; \
c -= b; c ^= rot(b, 8); b += a; \
a -= c; a ^= rot(c,16); c += b; \
b -= a; b ^= rot(a,19); a += c; \
c -= b; c ^= rot(b, 4); b += a; \
}
/*----------
* final -- final mixing of 3 32-bit values (a,b,c) into c
*
* Pairs of (a,b,c) values differing in only a few bits will usually
* produce values of c that look totally different. This was tested for
* * pairs that differed by one bit, by two bits, in any combination
* of top bits of (a,b,c), or in any combination of bottom bits of
* (a,b,c).
* * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
* the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
* is commonly produced by subtraction) look like a single 1-bit
* difference.
* * the base values were pseudorandom, all zero but one bit set, or
* all zero plus a counter that starts at zero.
*
* The use of separate functions for mix() and final() allow for a
* substantial performance increase since final() does not need to
* do well in reverse, but is does need to affect all output bits.
* mix(), on the other hand, does not need to affect all output
* bits (affecting 32 bits is enough). The original hash function had
* a single mixing operation that had to satisfy both sets of requirements
* and was slower as a result.
*----------
*/
#define final(a,b,c) \
{ \
c ^= b; c -= rot(b,14); \
a ^= c; a -= rot(c,11); \
b ^= a; b -= rot(a,25); \
c ^= b; c -= rot(b,16); \
a ^= c; a -= rot(c, 4); \
b ^= a; b -= rot(a,14); \
c ^= b; c -= rot(b,24); \
}
/*
* hash_any() -- hash a variable-length key into a 32-bit value
* k : the key (the unaligned variable-length array of bytes)
* len : the length of the key, counting by bytes
*
* Returns a uint32 value. Every bit of the key affects every bit of
* the return value. Every 1-bit and 2-bit delta achieves avalanche.
* About 6*len+35 instructions. The best hash table sizes are powers
* of 2. There is no need to do mod a prime (mod is sooo slow!).
* If you need less than 32 bits, use a bitmask.
*
* This procedure must never throw elog(ERROR); the ResourceOwner code
* relies on this not to fail.
*
* Note: we could easily change this function to return a 64-bit hash value
* by using the final values of both b and c. b is perhaps a little less
* well mixed than c, however.
*/
Datum
hash_any(register const unsigned char *k, register int keylen)
{
register uint32 a,
b,
c,
len;
/* Set up the internal state */
len = keylen;
a = b = c = 0x9e3779b9 + len + 3923095;
/* If the source pointer is word-aligned, we use word-wide fetches */
if (((uintptr_t) k & UINT32_ALIGN_MASK) == 0)
{
/* Code path for aligned source data */
register const uint32 *ka = (const uint32 *) k;
/* handle most of the key */
while (len >= 12)
{
a += ka[0];
b += ka[1];
c += ka[2];
mix(a, b, c);
ka += 3;
len -= 12;
}
/* handle the last 11 bytes */
k = (const unsigned char *) ka;
#ifdef WORDS_BIGENDIAN
switch (len)
{
case 11:
c += ((uint32) k[10] << 8);
/* fall through */
case 10:
c += ((uint32) k[9] << 16);
/* fall through */
case 9:
c += ((uint32) k[8] << 24);
/* the lowest byte of c is reserved for the length */
/* fall through */
case 8:
b += ka[1];
a += ka[0];
break;
case 7:
b += ((uint32) k[6] << 8);
/* fall through */
case 6:
b += ((uint32) k[5] << 16);
/* fall through */
case 5:
b += ((uint32) k[4] << 24);
/* fall through */
case 4:
a += ka[0];
break;
case 3:
a += ((uint32) k[2] << 8);
/* fall through */
case 2:
a += ((uint32) k[1] << 16);
/* fall through */
case 1:
a += ((uint32) k[0] << 24);
/* case 0: nothing left to add */
}
#else /* !WORDS_BIGENDIAN */
switch (len)
{
case 11:
c += ((uint32) k[10] << 24);
/* fall through */
case 10:
c += ((uint32) k[9] << 16);
/* fall through */
case 9:
c += ((uint32) k[8] << 8);
/* the lowest byte of c is reserved for the length */
/* fall through */
case 8:
b += ka[1];
a += ka[0];
break;
case 7:
b += ((uint32) k[6] << 16);
/* fall through */
case 6:
b += ((uint32) k[5] << 8);
/* fall through */
case 5:
b += k[4];
/* fall through */
case 4:
a += ka[0];
break;
case 3:
a += ((uint32) k[2] << 16);
/* fall through */
case 2:
a += ((uint32) k[1] << 8);
/* fall through */
case 1:
a += k[0];
/* case 0: nothing left to add */
}
#endif /* WORDS_BIGENDIAN */
}
else
{
/* Code path for non-aligned source data */
/* handle most of the key */
while (len >= 12)
{
#ifdef WORDS_BIGENDIAN
a += (k[3] + ((uint32) k[2] << 8) + ((uint32) k[1] << 16) + ((uint32) k[0] << 24));
b += (k[7] + ((uint32) k[6] << 8) + ((uint32) k[5] << 16) + ((uint32) k[4] << 24));
c += (k[11] + ((uint32) k[10] << 8) + ((uint32) k[9] << 16) + ((uint32) k[8] << 24));
#else /* !WORDS_BIGENDIAN */
a += (k[0] + ((uint32) k[1] << 8) + ((uint32) k[2] << 16) + ((uint32) k[3] << 24));
b += (k[4] + ((uint32) k[5] << 8) + ((uint32) k[6] << 16) + ((uint32) k[7] << 24));
c += (k[8] + ((uint32) k[9] << 8) + ((uint32) k[10] << 16) + ((uint32) k[11] << 24));
#endif /* WORDS_BIGENDIAN */
mix(a, b, c);
k += 12;
len -= 12;
}
/* handle the last 11 bytes */
#ifdef WORDS_BIGENDIAN
switch (len) /* all the case statements fall through */
{
case 11:
c += ((uint32) k[10] << 8);
case 10:
c += ((uint32) k[9] << 16);
case 9:
c += ((uint32) k[8] << 24);
/* the lowest byte of c is reserved for the length */
case 8:
b += k[7];
case 7:
b += ((uint32) k[6] << 8);
case 6:
b += ((uint32) k[5] << 16);
case 5:
b += ((uint32) k[4] << 24);
case 4:
a += k[3];
case 3:
a += ((uint32) k[2] << 8);
case 2:
a += ((uint32) k[1] << 16);
case 1:
a += ((uint32) k[0] << 24);
/* case 0: nothing left to add */
}
#else /* !WORDS_BIGENDIAN */
switch (len) /* all the case statements fall through */
{
case 11:
c += ((uint32) k[10] << 24);
case 10:
c += ((uint32) k[9] << 16);
case 9:
c += ((uint32) k[8] << 8);
/* the lowest byte of c is reserved for the length */
case 8:
b += ((uint32) k[7] << 24);
case 7:
b += ((uint32) k[6] << 16);
case 6:
b += ((uint32) k[5] << 8);
case 5:
b += k[4];
case 4:
a += ((uint32) k[3] << 24);
case 3:
a += ((uint32) k[2] << 16);
case 2:
a += ((uint32) k[1] << 8);
case 1:
a += k[0];
/* case 0: nothing left to add */
}
#endif /* WORDS_BIGENDIAN */
}
final(a, b, c);
/* report the result */
return UInt32GetDatum(c);
}
/*
* hash_uint32() -- hash a 32-bit value
*
* This has the same result as
* hash_any(&k, sizeof(uint32))
* but is faster and doesn't force the caller to store k into memory.
*/
Datum
hash_uint32(uint32 k)
{
register uint32 a,
b,
c;
a = b = c = 0x9e3779b9 + (uint32) sizeof(uint32) + 3923095;
a += k;
final(a, b, c);
/* report the result */
return UInt32GetDatum(c);
}
#ifdef PGXC
/*
* compute_hash()
* Generic hash function for all datatypes
*/
Datum
compute_hash(Oid type, Datum value, char locator)
{
int16 tmp16;
int32 tmp32;
int64 tmp64;
Oid tmpoid;
char tmpch;
switch (type)
{
case INT8OID:
/* This gives added advantage that
* a = 8446744073709551359
* and a = 8446744073709551359::int8 both work*/
tmp64 = DatumGetInt64(value);
if (locator == LOCATOR_TYPE_HASH)
return DirectFunctionCall1(hashint8, value);
return tmp64;
case INT2OID:
tmp16 = DatumGetInt16(value);
if (locator == LOCATOR_TYPE_HASH)
return DirectFunctionCall1(hashint2, tmp16);
return tmp16;
case OIDOID:
tmpoid = DatumGetObjectId(value);
if (locator == LOCATOR_TYPE_HASH)
return DirectFunctionCall1(hashoid, tmpoid);
return tmpoid;
case INT4OID:
tmp32 = DatumGetInt32(value);
if (locator == LOCATOR_TYPE_HASH)
return DirectFunctionCall1(hashint4, tmp32);
return tmp32;
case BOOLOID:
tmpch = DatumGetBool(value);
if (locator == LOCATOR_TYPE_HASH)
return DirectFunctionCall1(hashchar, tmpch);
return tmpch;
case CHAROID:
return DirectFunctionCall1(hashchar, value);
case NAMEOID:
return DirectFunctionCall1(hashname, value);
case VARCHAROID:
case TEXTOID:
return DirectFunctionCall1(hashtext, value);
case OIDVECTOROID:
return DirectFunctionCall1(hashoidvector, value);
case FLOAT4OID:
return DirectFunctionCall1(hashfloat4, value);
case FLOAT8OID:
return DirectFunctionCall1(hashfloat8, value);
case ABSTIMEOID:
tmp32 = DatumGetAbsoluteTime(value);
if (locator == LOCATOR_TYPE_HASH)
return DirectFunctionCall1(hashint4, tmp32);
return tmp32;
case RELTIMEOID:
tmp32 = DatumGetRelativeTime(value);
if (locator == LOCATOR_TYPE_HASH)
return DirectFunctionCall1(hashint4, tmp32);
return tmp32;
case CASHOID:
return DirectFunctionCall1(hashint8, value);
case BPCHAROID:
return DirectFunctionCall1(hashbpchar, value);
case BYTEAOID:
return DirectFunctionCall1(hashvarlena, value);
case DATEOID:
tmp32 = DatumGetDateADT(value);
if (locator == LOCATOR_TYPE_HASH)
return DirectFunctionCall1(hashint4, tmp32);
return tmp32;
case TIMEOID:
return DirectFunctionCall1(time_hash, value);
case TIMESTAMPOID:
return DirectFunctionCall1(timestamp_hash, value);
case TIMESTAMPTZOID:
return DirectFunctionCall1(timestamp_hash, value);
case INTERVALOID:
return DirectFunctionCall1(interval_hash, value);
case TIMETZOID:
return DirectFunctionCall1(timetz_hash, value);
case NUMERICOID:
return DirectFunctionCall1(hash_numeric, value);
default:
ereport(ERROR,(errmsg("Unhandled datatype for modulo or hash distribution\n")));
}
/* Control should not come here. */
ereport(ERROR,(errmsg("Unhandled datatype for modulo or hash distribution\n")));
/* Keep compiler silent */
return (Datum)0;
}
/*
* get_compute_hash_function
* Get hash function name depending on the hash type.
* For some cases of hash or modulo distribution, a function might
* be required or not.
*/
char *
get_compute_hash_function(Oid type, char locator)
{
switch (type)
{
case INT8OID:
if (locator == LOCATOR_TYPE_HASH)
return "hashint8";
return NULL;
case INT2OID:
if (locator == LOCATOR_TYPE_HASH)
return "hashint2";
return NULL;
case OIDOID:
if (locator == LOCATOR_TYPE_HASH)
return "hashoid";
return NULL;
case DATEOID:
case INT4OID:
if (locator == LOCATOR_TYPE_HASH)
return "hashint4";
return NULL;
case BOOLOID:
if (locator == LOCATOR_TYPE_HASH)
return "hashchar";
return NULL;
case CHAROID:
return "hashchar";
case NAMEOID:
return "hashname";
case VARCHAROID:
case TEXTOID:
return "hashtext";
case OIDVECTOROID:
return "hashoidvector";
case FLOAT4OID:
return "hashfloat4";
case FLOAT8OID:
return "hashfloat8";
case RELTIMEOID:
case ABSTIMEOID:
if (locator == LOCATOR_TYPE_HASH)
return "hashint4";
return NULL;
case CASHOID:
return "hashint8";
case BPCHAROID:
return "hashbpchar";
case BYTEAOID:
return "hashvarlena";
case TIMEOID:
return "time_hash";
case TIMESTAMPOID:
case TIMESTAMPTZOID:
return "timestamp_hash";
case INTERVALOID:
return "interval_hash";
case TIMETZOID:
return "timetz_hash";
case NUMERICOID:
return "hash_numeric";
default:
ereport(ERROR,(errmsg("Unhandled datatype for modulo or hash distribution\n")));
}
/* Keep compiler quiet */
return NULL;
}
#endif
|