Aller au contenu

Excursion brownienne

Un article de Wikipédia, l'encyclopédie libre.
Une représentation de l'excursion brownienne.

Dans la théorie des probabilités, une excursion brownienne est un processus stochastique, qui est étroitement liée à un processus de Wiener (ou mouvement brownien). Les réalisations de l'excursion brownienne sont essentiellement des réalisations d'un processus de Wiener spécifique, qui satisfait à certaines conditions. En particulier, une excursion brownienne est un processus de Wiener conditionné à être positif et à prendre la valeur 0 au temps 1. On peut aussi le définir comme un pont brownien conditionné à être positif[1].

Définition

[modifier | modifier le code]

Une représentation d'une excursion brownienne en termes d'un mouvement brownien W (due à Paul Lévy et notée par Kiyoshi Itō et Henry P. McKean, Jr[2]) se donne en termes de la dernière fois que W atteint zéro, avant le temps 1 et la première fois que le mouvement brownien atteint zéro, après le temps 1:

Si est le temps auquel un pont brownien atteint son minimum sur [0, 1], Vervaat (1979) montre que

Notes et références

[modifier | modifier le code]
  1. Durrett, Iglehart, Functionals of Brownian meander and Brownian excursion (1975)
  2. Itô et McKean (1974, page 75)

Bibliographie

[modifier | modifier le code]