Trigonometria
Tähän artikkeliin tai osioon ei ole merkitty lähteitä, joten tiedot kannattaa tarkistaa muista tietolähteistä. Voit auttaa Wikipediaa lisäämällä artikkeliin tarkistettavissa olevia lähteitä ja merkitsemällä ne ohjeen mukaan. |
Trigonometria (m.kreik. τρίγωνος, trígōnos, kolmekulmainen, ja μέτρον, métron, mitata), kolmiomitanto, on matematiikan ala, joka käsittelee kolmioiden sivujen ja kulmien välisiä suhteita sekä tiettyjä, kolmion kulmista riippuvia funktioita ja niiden soveltamista laskutoimituksissa.[1]
Trigonometrian perustana on se tosiasia, että kaikki suorakulmaiset kolmiot, joissa on suoran kulman lisäksi toinenkin yhtä suuri kulma, ovat keskenään yhdenmuotoisia. Koska yhdenmuotoisten kolmioiden vastinsivujen suhteet ovat samat, suorakulmaisen kolmion sivujen suhteet määräytyvät vain kolmion (ei-suorasta) kulmasta. Nämä suhteet ovat siis pelkästään kulman funktioita.
Suorakulmaisen kolmion , , kolmesta sivusta , ja voidaan muodostaa kuusi suhdetta. Nämä on tapana nimittää kulman funktioiksi seuraavasti:
sin() on eli kulman vastakkaisen sivun pituus jaettuna hypotenuusan pituudella;
cos() on eli viereisen sivun pituus jaettuna hypotenuusan pituudella ja
tan() on eli vastaisen sivun pituus jaettuna viereisen sivun pituudella
Lisäksi on :n kotangentti, on :n sekantti ja on :n kosekantti.
Näiden suhteiden eli trigonometristen funktioiden arvoja on aikojen kuluessa taulukoitu ja muita menetelmiä niiden tuottamiseksi kehitetty. Trigonometristen funktioiden, erityisesti sinin ja kosinin, arvojen tuntemus ja sinilauseen ja kosinilauseen käyttö tekevät mahdolliseksi kolmion tuntemattomien osien laskemisen eli kolmion ratkaisemisen, kun kolmiosta tunnetaan vähintään kaksi osaa, joista ainakin yksi on kolmion sivun pituus.
Trigonometrialla on monia sovelluksia esimerkiksi tähtitieteessä, tilastotieteessä, kemiassa, arkkitehtuurissa, meteorologiassa ja kartografiassa.
Trigonometrisista funktioista
muokkaa- Pääartikkeli: Trigonometrinen funktio
Klassiset määritelmät
muokkaaSuorakulmaisessa kolmiossa , , sivujen suhteisiin vaikuttaa vain terävän kulman ( ) suuruus, ei kolmion koko. Kolmion pisintä sivua kutsutaan sen hypotenuusaksi, lyhempiä sivuja :n vastaiseksi ja :n viereiseksi kateetiksi. Näitä sivujen suhteita nimitetään kulman trigonometrisiksi funktioiksi.
- SINI sin α = a/c;
- KOSINI cos α = b/c
- TANGENTTI tan α = a/b
- KOTANGENTTI cot α = b/a
- SEKANTTI sec α = c/b
- KOSEKANTTI csc α = c/a
Kateettien ja hypotenuusan pituuksien välillä olevaa yhteyttä kutsutaan nimellä Pythagoraan lause. Se on erikoistapaus kosinilauseesta.
Yleensä käytetään vain kahta tai kolmea ensimmäistä funktiota, koska kotangentti, sekantti ja kosekantti saadaan tangentin, kosinin ja sinin (vastaavasti) käänteisarvoina ja tangentti on sinin ja kosinin osamäärä.
Yleisempi määritelmä
muokkaaPiirretään suorakulmaiseen xy-koordinaatistoon yksikköympyrä eli ympyrä, jonka keskipiste on origossa ja säde on yksi, ja tarkastellaan ympyrän kehän tason ensimmäisessä neljänneksessä sijaitsevaa pistettä . Jos -akselin ja pisteen origoon yhdistävän janan välinen kulma on , niin sinin ja kosinin määritelmän perusteella ja . Tämä antaa aiheen laajentaa sinin ja kosinin määritelmät myös sellaisille kulmille , jotka eivät toteuta ehtoa . Määritelmä syntyy sijoittamalla kulma niin, että sen kärki on origo ja oikea kylki on positiivinen -akseli. Jos vasen kylki leikkaa yksikköympyrän pisteessä , asetetaan ja . Kun :n ajatellaan syntyvän kiertona positiivisesta -akselista vastapäivään eli positiiviseen kiertosuuntaan, kun on positiivinen, ja myötäpäivään eli negatiiviseen kiertosuuntaan, kun on negatiivinen, saadaan määritelmä koskemaan kaikkia kulmia (tai kiertoja).
Muut trigonometriset funktiot ovat sinin ja kosinin suhteita tai käänteislukuja. Niiden yleiset määritelmät palautuvat siis sinin ja kosinin yleiseen määritelmään. Koska sini ja kosini saavat tietyillä kulmilla arvon 0, niin tangentti, kotangentti, sekantti ja kosekantti eivät ole määriteltyjä kaikilla kulmilla.
Koska kulmia mitataan eri yksiköin, on trigonometristen funktioiden avulla laskettaessa otettava huomioon käytettävä mittayksikkö (asteet, piirut, radiaanit jne.). Silloin, kun trigonometrisia funktioita käytetään alkuperäisestä geometrisesta yhteydestään irrotettuina, oletetaan yleensä, että niiden argumentit ovat paljaita lukuja. Kulmiin palautettuna tämä tarkoittaa kulman yksikköä radiaani eli ns. absoluuttista kulman yksikköä.
Sarjakehitelmät
muokkaaSini- ja kosinifunktion arvot voidaan laskea niiden sarjakehitelmistä kaikilla reaaliluvuilla :
- ,
- .
Näistä sarjoista voidaan johtaa myös muiden trigonometristen funktioiden sarjakehitelmiä, esimerkiksi
- ,
- ,
- ,
- .
Näissä :t ovat ns. Bernoullin lukuja ja :t ns. Eulerin lukuja.
Trigonometrisiin funktioihin liittyviä kaavoja
muokkaaPeruskaavoja
muokkaaMuunnoskaavoja
muokkaa
Derivointi
muokkaa
Trigonometristen funktioiden monikertaisten kulmien kaavat (esimerkiksi ) voidaan johtaa De Moivren kaavalla.
Integrointi
muokkaa
Pallotrigonometria
muokkaaYleensä trigonometrialla tarkoitetaan vain tasopinnalle sijoitettuja kolmioita käsittelevää matematiikkaa. Pallotrigonometria käsittelee kolmioita, jotka muodostuvat pallon isoympyröiden kaarista. Pallokolmion kulmien ja sivujen suuruus ilmaistaan kulmamitoin. Pallotrigonometrialla on runsaasti sovelluksia tähtitieteessä.
Katso myös
muokkaaLähteet
muokkaa- ↑ Trigonometry | Definition, Formulas, Ratios, & Identities | Britannica www.britannica.com. Viitattu 16.1.2023. (englanniksi)
- ↑ Matemaattisten aineiden opettajien liitto: MAOL, s. 33 (1992). MAOL ry. ja Otava, 1992.
Aiheesta muualla
muokkaa- Kuvia tai muita tiedostoja aiheesta Trigonometria Wikimedia Commonsissa
- Opetusvideoita aiheesta Opetus.tv-sivustolla
- Matematiikkalehti Solmu, Erkki Luoma-aho: Matematiikan historia aihealueittain, Trigonometria (pdf)
- Trigonometrian periaatteet (englanniksi)