Ir al contenido

Monoide

De Wikipedia, la enciclopedia libre

En álgebra abstracta, un monoide es una estructura algebraica con una operación binaria, que es asociativa y tiene elemento neutro, es decir, es un semigrupo con elemento neutro.

Definición formal

[editar]

Un monoide es una estructura algebraica en la que es un conjunto y es una operación binaria interna en :

Que cumple las siguientes tres propiedades (la primera es redundante con la definición):[1]

  1. Operación interna: para cualquiera de los dos elementos del conjunto A operados bajo , el resultado siempre pertenece al mismo conjunto A. Es decir:
  2. Asociatividad: para cualquier elemento del conjunto A no importa el orden en que se operen las parejas de elementos, mientras no se cambie el orden de los elementos (ver grupo abeliano), siempre dará el mismo resultado. Es decir:
  3. Elemento neutro: existe un (único) elemento, e, en A que es neutro de la operación , es decir:

Es fácil demostrar que el elemento neutro es necesariamente único por lo que es redundante exigir su unicidad en este axioma o propiedad. En esencia, un monoide es un semigrupo con elemento neutro.

Conmutatividad

[editar]

Si además se cumple la propiedad conmutativa:

Conmutatividad: un conjunto A tiene la propiedad conmutativa respecto a la operación interna si:

Se dice que es un monoide conmutativo o abeliano.

Ejemplos

[editar]

Concatenación de cadenas alfanuméricas

[editar]

Dado un conjunto A de caracteres alfanuméricos, que llamaremos alfabeto, una cadena alfanumerica del alfabeto A es una secuencia de elementos de A en cualquier orden y de cualquier longitud, si tomas el conjunto como:

Cadenas del alfabeto[2]A, que representamos C(A) pueden ser:

La cadena vacía, la que no tiene ningún carácter, sería:

Definimos la operación de concatenación de cadenas del alfabeto A como:

que podemos representar, de las siguientes formas:

podemos ver que tiene estructura algebraica de monoide:

1.- Es una operación interna: para cualquiera dos cadenas del alfabeto A su concatenación es una cadena de A:

.

2.- Es asociativa:

3.- Tiene elemento neutro: para todo elemento a cadena de caracteres de A, existe la cadena vacía de A, de modo que:

La concatenación de cadenas de caracteres no es conmutativa:

Siendo a, b de C(A) la concatenación de a con b no es igual a la concatenación de b con a.

Luego la concatenación de cadenas alfanuméricas es un monoide no conmutativo.

Multiplicación de números naturales

[editar]

Partiendo del conjunto de los números naturales:

y la operación multiplicación, podemos ver que: es un monoide

1.- Es una operación interna: para cualquiera dos números naturales su multiplicación es un número natural:

.

2.- Es asociativa:

3.- Tiene elemento neutro: el 1 en N es neutro para todos los números naturales ya que cumple:

4.- La multiplicación de números naturales es conmutativa:

El conjunto de los números naturales, bajo la operación multiplicación: , tiene estructura algebraica de monoide conmutativo o abeliano.

En la teoría de categorías

[editar]

Definición como categoría

[editar]

Un monoide también se puede ver como un tipo particular de categoría. Concretamente, un monoide se puede definir como una categoría con un único objeto.

Dados una categoría y un objeto suyo , todos los morfismos de en forman un conjunto . Sobre este conjunto, la composición de morfismos define una operación binaria interna. Debido a los axiomas de la teoría de categorías, la composición de morfismos es asociativa y debe existir un morfismo identidad , por lo que el conjunto equipado con la composición de morfismos constituye un monoide.

De esta forma, toda categoría con un único objeto da lugar a un monoide al tomar el conjunto de morfismos . También es posible ir en la dirección opuesta y definir, a partir de un monoide , una categoría con un único objeto tal que , justificando así la definición alternativa de monoide en términos de categorías.

Categoría monoidal

[editar]

Una categoría monoidal es una categoría , equipada con un bifuntor , que satisface propiedades análogas a las de la operación binaria en un monoide. Dos ejemplos son:

  1. La categoría de conjuntos con la unión disjunta de conjuntos y el conjunto vacío como elemento neutro.
  2. La categoría de los espacios vectoriales sobre un cuerpo junto con el producto tensorial de espacios vectoriales y a como el elemento neutro.

Véase también

[editar]
Grupo
Monoide
Semigrupo
Magma
Conjunto
Ley de composición
Interna
Asociatividad
Elemento neutro
Elemento simétrico

Referencias

[editar]
  1. Álgebra (1971) Lang, Serge, versión española de Milagros Ancoche ISBN 84-03-20216-4; pg.3
  2. Hernández Rodríguez, Leonardo Alonso; Jaramillo Valbuena, Sonia; Cardona Torres, Sergio Augusto (2010). «2.1.2». Practique la teoría de autómatas y lenguajes formales. Ediciones Elizcom. p. 8. ISBN 978-958-44-7913-6. 

Bibliografía

[editar]
  1. Gutiérrez Gómez, Andrés; García Castro, Fernando. Álgebra lineal (2 edición). Ediciones Pirámide, S.A. ISBN 978-84-368-0174-3. 

Enlaces externos

[editar]