Ir al contenido

Hipersuperficie

De Wikipedia, la enciclopedia libre

En matemáticas, una hipersuperficie es una variedad n-dimensional con n > 2, es decir, un objeto geométrico que generaliza la noción de una superficie bidimensional a dimensiones superiores, del mismo modo que el hiperplano generaliza la noción de plano.

Técnicamente una hipersuperficie de dimensión n es un espacio topológico que es localmente homeomorfo al espacio euclídeo . Ello significa que para cada punto P de la hipersuperficie hay una vecindad de P (una pequeña región que la rodea) que es homeomorfa a un disco abierto de . Eso permite definir una serie de coordenadas locales que parametrizan dicha hipersuperficie.

El tipo más simple de hipersuperficie son las 3-variedades contenidas en el espacio de cuatro dimensiones .

Véase también

[editar]