Dates are inconsistent

Dates are inconsistent

1926 results sorted by ID

2024/1378 (PDF) Last updated: 2024-09-02
Practical Blind Signatures in Pairing-Free Groups
Michael Klooß, Michael Reichle, Benedikt Wagner
Public-key cryptography

Blind signatures have garnered significant attention in recent years, with several efficient constructions in the random oracle model relying on well-understood assumptions. However, this progress does not apply to pairing-free cyclic groups: fully secure constructions over cyclic groups rely on pairings, remain inefficient, or depend on the algebraic group model or strong interactive assumptions. To address this gap, Chairattana-Apirom, Tessaro, and Zhu (CTZ, Crypto 2024) proposed a new...

2024/1368 (PDF) Last updated: 2024-08-30
Tightly Secure Non-Interactive BLS Multi-Signatures
Renas Bacho, Benedikt Wagner
Public-key cryptography

Due to their simplicity, compactness, and algebraic structure, BLS signatures are among the most widely used signatures in practice. For example, used as multi-signatures, they are integral in Ethereum's proof-of-stake consensus. From the perspective of concrete security, however, BLS (multi-)signatures suffer from a security loss linear in the number of signing queries. It is well-known that this loss can not be avoided using current proof techniques. In this paper, we introduce a new...

2024/1364 (PDF) Last updated: 2024-08-29
FLIP-and-prove R1CS
Anca Nitulescu, Nikitas Paslis, Carla Ràfols
Cryptographic protocols

In this work, we consider the setting where one or more users with low computational resources would lie to outsource the task of proof generation for SNARKs to one external entity, named Prover. We study the scenario in which Provers have access to all statements and witnesses to be proven beforehand. We take a different approach to proof aggregation and design a new protocol that reduces simultaneously proving time and communication complexity, without going through recursive proof...

2024/1352 (PDF) Last updated: 2024-08-28
ISABELLA: Improving Structures of Attribute-Based Encryption Leveraging Linear Algebra
Doreen Riepel, Marloes Venema, Tanya Verma
Public-key cryptography

Attribute-based encryption (ABE) is a powerful primitive that has found applications in important real-world settings requiring access control. Compared to traditional public-key encryption, ABE has established itself as a considerably more complex primitive that is additionally less efficient to implement. It is therefore paramount that the we can simplify the design of ABE schemes that are efficient, provide strong security guarantees, minimize the complexity in their descriptions and...

2024/1311 (PDF) Last updated: 2024-08-28
Dynamic Threshold Key Encapsulation with a Transparent Setup
Joon Sik Kim, Kwangsu Lee, Jong Hwan Park, Hyoseung Kim
Public-key cryptography

A threshold key encapsulation mechanism (TKEM) facilitates the secure distribution of session keys among multiple participants, allowing key recovery through a threshold number of shares. TKEM has gained significant attention, especially for decentralized systems, including blockchains. However, existing constructions often rely on trusted setups, which pose security risks such as a single point of failure, and are limited by fixed participant numbers and thresholds. To overcome this, we...

2024/1292 (PDF) Last updated: 2024-08-18
Chosen Ciphertext Security for (Hierarchical) Identity-Based Matchmaking Encryption
Sohto Chiku, Keisuke Hara, Junji Shikata
Public-key cryptography

Identity-based matchmaking encryption (IB-ME) is an advanced encryption scheme that enables a sender and a receiver to specify each of identity. In general, from the aspect of abilities for adversaries, we have two flavors of security for encryption schemes chosen plaintext attacks (CPA) security and chosen ciphertext attacks (CCA) security. Compared to CPA security, CCA security can capture active adversaries, then it has been recognized as a desirable one. In this paper, we investigate...

2024/1252 (PDF) Last updated: 2024-08-08
Legendre Sequences are Pseudorandom under the Quadratic-Residuosity Assumption
Henry Corrigan-Gibbs, David J. Wu
Foundations

The Legendre sequence of an integer $x$ modulo a prime $p$ with respect to offsets $\vec a = (a_1, \dots, a_\ell)$ is the string of Legendre symbols $(\frac{x+a_1}{p}), \dots, (\frac{x+a_\ell}{p})$. Under the quadratic-residuosity assumption, we show that the function that maps the pair $(x,p)$ to the Legendre sequence of $x$ modulo $p$, with respect to public random offsets $\vec a$, is a pseudorandom generator. This answers an open question of Damgård (CRYPTO 1988), up to the choice of the...

2024/1223 (PDF) Last updated: 2024-07-31
A short-list of pairing-friendly curves resistant to the Special TNFS algorithm at the 192-bit security level
Diego F. Aranha, Georgios Fotiadis, Aurore Guillevic
Implementation

For more than two decades, pairings have been a fundamental tool for designing elegant cryptosystems, varying from digital signature schemes to more complex privacy-preserving constructions. However, the advancement of quantum computing threatens to undermine public-key cryptography. Concretely, it is widely accepted that a future large-scale quantum computer would be capable to break any public-key cryptosystem used today, rendering today's public-key cryptography obsolete and mandating the...

2024/1195 (PDF) Last updated: 2024-08-01
Efficient Implementation of Super-optimal Pairings on Curves with Small Prime Fields at the 192-bit Security Level
Jianming Lin, Chang-An Zhao, Yuhao Zheng
Implementation

For many pairing-based cryptographic protocols such as Direct Anonymous Attestation (DAA) schemes, the arithmetic on the first pairing subgroup $\mathbb{G}_1$ is more fundamental. Such operations heavily depend on the sizes of prime fields. At the 192-bit security level, Gasnier and Guillevic presented a curve named GG22D7-457 with CM-discriminant $D = 7$ and embedding degree $k = 22$. Compared to other well-known pairing-friendly curves at the same security level, the curve GG22D7-457 has...

2024/1140 (PDF) Last updated: 2024-07-13
Permutation Superposition Oracles for Quantum Query Lower Bounds
Christian Majenz, Giulio Malavolta, Michael Walter
Foundations

We propose a generalization of Zhandry’s compressed oracle method to random permutations, where an algorithm can query both the permutation and its inverse. We show how to use the resulting oracle simulation to bound the success probability of an algorithm for any predicate on input-output pairs, a key feature of Zhandry’s technique that had hitherto resisted attempts at generalization to random permutations. One key technical ingredient is to use strictly monotone factorizations to...

2024/1133 (PDF) Last updated: 2024-07-12
Parameters of Algebraic Representation vs. Efficiency of Algebraic Cryptanalysis
Hossein Arabnezhad, Babak Sadeghiyan
Foundations

The aim of an algebraic attack is to find the secret key by solving a collection of relations that describe the internal structure of a cipher for observations of plaintext/cipher-text pairs. Although algebraic attacks are addressed for cryptanalysis of block and stream ciphers, there is a limited understanding of the impact of algebraic representation of the cipher on the efficiency of solving the resulting collection of equations. In this paper, we investigate on how different S-box...

2024/1130 (PDF) Last updated: 2024-07-11
Distributed Verifiable Random Function With Compact Proof
Ahmet Ramazan Ağırtaş, Arda Buğra Özer, Zülfükar Saygı, Oğuz Yayla
Cryptographic protocols

Verifiable Random Functions (VRFs) are cryptographic primitives that generate unpredictable randomness along with proofs that are verifiable, a critical requirement for blockchain applications in decentralized finance, online gaming, and more. Existing VRF constructions often rely on centralized entities, creating security vulnerabilities. Distributed VRFs (DVRFs) offer a decentralized alternative but face challenges like large proof sizes or dependence on computationally expensive bilinear...

2024/1128 (PDF) Last updated: 2024-07-11
Cryptiny: Compacting Cryptography for Space-Restricted Channels and its Use-case for IoT-E2EE
Liron David, Omer Berkman, Avinatan Hassidim, David Lazarov, Yossi Matias, Moti Yung

We present a novel cryptographic paradigm denoted ``cryptiny:'' Employing a single cryptographic value for several security goals, thus ``compacting'' the communication sent over a space-restricted (narrow) channel, while still proving security. Cryptiny is contrary to the classical cryptographic convention of using a separate cryptographic element for each security goal. Demonstrating the importance of cryptiny, we employ it for securing a critical IoT configuration in which a...

2024/1126 (PDF) Last updated: 2024-08-08
Is ML-Based Cryptanalysis Inherently Limited? Simulating Cryptographic Adversaries via Gradient-Based Methods
Avital Shafran, Eran Malach, Thomas Ristenpart, Gil Segev, Stefano Tessaro
Foundations

Given the recent progress in machine learning (ML), the cryptography community has started exploring the applicability of ML methods to the design of new cryptanalytic approaches. While current empirical results show promise, the extent to which such methods may outperform classical cryptanalytic approaches is still somewhat unclear. In this work, we initiate exploration of the theory of ML-based cryptanalytic techniques, in particular providing new results towards understanding whether...

2024/1097 (PDF) Last updated: 2024-07-05
The Cost of Maintaining Keys in Dynamic Groups with Applications to Multicast Encryption and Group Messaging
Michael Anastos, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto Noval, Matthew Kwan, Guillermo Pascual-Perez, Krzysztof Pietrzak
Cryptographic protocols

In this work we prove lower bounds on the (communication) cost of maintaining a shared key among a dynamic group of users. Being "dynamic'' means one can add and remove users from the group. This captures important protocols like multicast encryption (ME) and continuous group-key agreement (CGKA), which is the primitive underlying many group messaging applications. We prove our bounds in a combinatorial setting where the state of the protocol progresses in rounds. The state of the...

2024/1081 (PDF) Last updated: 2024-07-07
Practical Non-interactive Multi-signatures, and a Multi-to-Aggregate Signatures Compiler
Matthieu Rambaud, Christophe Levrat
Public-key cryptography

In a fully non-interactive multi-signature, resp. aggregate-signature scheme (fNIM, resp. fNIA), signatures issued by many signers on the same message, resp. on different messages, can be succinctly ``combined'', resp. ``aggregated''. fNIMs are used in the Ethereum consensus protocol, to produce the certificates of validity of blocks which are to be verified by billions of clients. fNIAs are used in some PBFT-like consensus protocols, such as the production version of Diem by Aptos, to...

2024/1017 (PDF) Last updated: 2024-06-24
Accelerating pairings on BW10 and BW14 Curves
Senegue Gomez Nyamsi, Laurian Guimagang Azebaze, Emmanuel Fouotsa
Implementation

Since the advent of pairing based cryptography, many researchers have developed several techniques and variants of pairings to optimise the speed of pairing computations. The selection of the elliptic curve for a given pairing based protocol is crucial for operations in the first and second pairing groups of points of the elliptic curve and for many cryptographic schemes. A new variant of superoptimal pairing was proposed in 2023, namely x-superoptimal pairing on curves with odd prime...

2024/993 (PDF) Last updated: 2024-06-19
Limits on the Power of Prime-Order Groups: Separating Q-Type from Static Assumptions
George Lu, Mark Zhandry
Foundations

Subgroup decision techniques on cryptographic groups and pairings have been critical for numerous applications. Originally conceived in the composite-order setting, there is a large body of work showing how to instantiate subgroup decision techniques in the prime-order setting as well. In this work, we demonstrate the first barrier to this research program, by demonstrating an important setting where composite-order techniques cannot be replicated in the prime-order setting. In...

2024/986 (PDF) Last updated: 2024-06-25
FABESA: Fast (and Anonymous) Attribute-Based Encryption under Standard Assumption
Long Meng, Liqun Chen, Yangguang Tian, Mark Manulis
Public-key cryptography

Attribute-Based Encryption (ABE) provides fine-grained access control to encrypted data and finds applications in various domains. The practicality of ABE schemes hinges on the balance between security and efficiency. The state-of-the-art adaptive secure ABE scheme, proven to be adaptively secure under standard assumptions (FAME, CCS'17), is less efficient compared to the fastest one (FABEO, CCS'22) which is only proven secure under the Generic Group Model (GGM). These traditional ABE...

2024/981 (PDF) Last updated: 2024-06-18
Hadamard Product Arguments and Their Applications
Kyeongtae Lee, Donghwan Oh, Hankyung Ko, Jihye Kim, Hyunok Oh
Cryptographic protocols

This paper introduces transparent and efficient arguments for Hadamard products between committed vectors from two source groups. For vectors of length $n$, the proofs consist of $\mathcal{O}(\log n)$ target group elements and $\mathcal{O}(1)$ additional elements. The verifier's workload is dominated by $\mathcal{O}(\log n)$ multi-exponentiations in the target group and $\mathcal{O}(1)$ pairings. We prove our security under the standard SXDH assumption. Additionally, we propose an aggregator...

2024/968 (PDF) Last updated: 2024-06-20
Fast SNARK-based Non-Interactive Distributed Verifiable Random Function with Ethereum Compatibility
Jia Liu, Mark Manulis
Cryptographic protocols

Distributed randomness beacons (DRBs) are fundamental for various decentralised applications, such as consensus protocols, decentralised gaming and lotteries, and collective governance protocols. These applications are heavily used on modern blockchain platforms. This paper presents the so far most efficient direct construction and implementation of a non-interactive distributed verifiable random function (NI-DVRF) that is fully compatible with Ethereum. Our NI-DVRF scheme adopts...

2024/948 (PDF) Last updated: 2024-08-14
Return of the Kummer: a Toolbox for Genus-2 Cryptography
Maria Corte-Real Santos, Krijn Reijnders
Public-key cryptography

This work expands the machinery we have for isogeny-based cryptography in genus 2 by developing a toolbox of several essential algorithms for Kummer surfaces, the dimension-2 analogue of $x$-only arithmetic on elliptic curves. Kummer surfaces have been suggested in hyper-elliptic curve cryptography since at least the 1980s and recently these surfaces have reappeared to efficiently compute $(2,2)$-isogenies. We construct several essential analogues of techniques used in one-dimensional...

2024/947 (PDF) Last updated: 2024-06-12
A Modular Approach to Registered ABE for Unbounded Predicates
Nuttapong Attrapadung, Junichi Tomida
Public-key cryptography

Registered attribute-based encryption (Reg-ABE), introduced by Hohenberger et al. (Eurocrypt’23), emerges as a pivotal extension of attribute-based encryption (ABE), aimed at mitigating the key-escrow problem. Although several Reg-ABE schemes with black-box use of cryptography have been proposed so far, there remains a significant gap in the class of achievable predicates between vanilla ABE and Reg-ABE. To narrow this gap, we propose a modular framework for constructing Reg-ABE schemes for a...

2024/931 (PDF) Last updated: 2024-06-10
Leveled Fully-Homomorphic Signatures from Batch Arguments
Abtin Afshar, Jiaqi Cheng, Rishab Goyal
Public-key cryptography

Fully homomorphic signatures are a significant strengthening of digital signatures, enabling computations on \emph{secretly} signed data. Today, we have multiple approaches to design fully homomorphic signatures such as from lattices, or succinct functional commitments, or indistinguishability obfuscation, or mutable batch arguments. Unfortunately, all existing constructions for homomorphic signatures suffer from one or more limitations. We do not have homomorphic signatures with features...

2024/924 (PDF) Last updated: 2024-07-02
Climbing and descending tall volcanos
Steven Galbraith
Public-key cryptography

We revisit the question of relating the elliptic curve discrete logarithm problem (ECDLP) between ordinary elliptic curves over finite fields with the same number of points. This problem was considered in 1999 by Galbraith and in 2005 by Jao, Miller, and Venkatesan. We apply recent results from isogeny cryptography and cryptanalysis, especially the Kani construction, to this problem. We improve the worst case bound in Galbraith's 1999 paper from $\tilde{O}( q^{1.5} )$ to (heuristically)...

2024/914 (PDF) Last updated: 2024-06-07
Compact Key Storage: A Modern Approach to Key Backup and Delegation
Yevgeniy Dodis, Daniel Jost, Antonio Marcedone
Cryptographic protocols

End-to-End (E2E) encrypted messaging, which prevents even the service provider from learning communication contents, is gaining popularity. Since users care about maintaining access to their data even if their devices are lost or broken or just replaced, these systems are often paired with cloud backup solutions: Typically, the user will encrypt their messages with a fixed key, and upload the ciphertexts to the server. Unfortunately, this naive solution has many drawbacks. First, it often...

2024/895 (PDF) Last updated: 2024-06-05
Fully-Succinct Multi-Key Homomorphic Signatures from Standard Assumptions
Gaspard Anthoine, David Balbás, Dario Fiore
Foundations

Multi-Key Homomorphic Signatures (MKHS) allow one to evaluate a function on data signed by distinct users while producing a succinct and publicly-verifiable certificate of the correctness of the result. All the constructions of MKHS in the state of the art achieve a weak level of succinctness where signatures are succinct in the total number of inputs but grow linearly with the number of users involved in the computation. The only exception is a SNARK-based construction which relies on a...

2024/880 (PDF) Last updated: 2024-06-14
Extending class group action attacks via pairings
Joseph Macula, Katherine E. Stange
Foundations

We introduce a new tool for the study of isogeny-based cryptography, namely pairings which are sesquilinear (conjugate linear) with respect to the $\mathcal{O}$-module structure of an elliptic curve with CM by an imaginary quadratic order $\mathcal{O}$. We use these pairings to study the security of problems based on the class group action on collections of oriented ordinary or supersingular elliptic curves. This extends work of of both (Castryck, Houben, Merz, Mula, Buuren, Vercauteren,...

2024/874 (PDF) Last updated: 2024-06-01
Fake It till You Make It: Enhancing Security of Bluetooth Secure Connections via Deferrable Authentication
Marc Fischlin, Olga Sanina
Cryptographic protocols

The Bluetooth protocol for wireless connection between devices comes with several security measures to protect confidentiality and integrity of data. At the heart of these security protocols lies the Secure Simple Pairing, wherewith the devices can negotiate a shared key before communicating sensitive data. Despite the good intentions, the Bluetooth security protocol has repeatedly been shown to be vulnerable, especially with regard to active attacks on the Secure Simple Pairing. We...

2024/869 (PDF) Last updated: 2024-06-01
On cycles of pairing-friendly abelian varieties
Maria Corte-Real Santos, Craig Costello, Michael Naehrig
Foundations

One of the most promising avenues for realizing scalable proof systems relies on the existence of 2-cycles of pairing-friendly elliptic curves. Such a cycle consists of two elliptic curves E/GF(p) and E'/GF(q) that both have a low embedding degree and also satisfy q = #E and p = #E'. These constraints turn out to be rather restrictive; in the decade that has passed since 2-cycles were first proposed for use in proof systems, no new constructions of 2-cycles have been found. In this paper,...

2024/867 (PDF) Last updated: 2024-05-31
Optimal Traitor Tracing from Pairings
Mark Zhandry
Foundations

We use pairings over elliptic curves to give a collusion-resistant traitor tracing scheme where the sizes of public keys, secret keys, and ciphertexts are independent of the number of users. Prior constructions from pairings had size $\Omega(N^{1/3})$. Our construction is non-black box.

2024/865 (PDF) Last updated: 2024-05-31
Result Pattern Hiding Boolean Searchable Encryption: Achieving Negligible False Positive Rates in Low Storage Overhead
Dandan Yuan, Shujie Cui, Giovanni Russello
Cryptographic protocols

Boolean Searchable Symmetric Encryption (SSE) enables secure outsourcing of databases to an untrusted server in encrypted form and allows the client to execute secure Boolean queries involving multiple keywords. The leakage of keyword pair result pattern (KPRP) in a Boolean search poses a significant threat, which reveals the intersection of documents containing any two keywords involved in a search and can be exploited by attackers to recover plaintext information about searched keywords...

2024/852 (PDF) Last updated: 2024-05-30
Breaking Indistinguishability with Transfer Learning: A First Look at SPECK32/64 Lightweight Block Ciphers
Jimmy Dani, Kalyan Nakka, Nitesh Saxena
Attacks and cryptanalysis

In this research, we introduce MIND-Crypt, a novel attack framework that uses deep learning (DL) and transfer learning (TL) to challenge the indistinguishability of block ciphers, specifically SPECK32/64 encryption algorithm in CBC mode (Cipher Block Chaining) against Known Plaintext Attacks (KPA). Our methodology includes training a DL model with ciphertexts of two messages encrypted using the same key. The selected messages have the same byte-length and differ by only one bit at the binary...

2024/846 (PDF) Last updated: 2024-05-29
Distributed Asynchronous Remote Key Generation
Mark Manulis, Hugo Nartz
Cryptographic protocols

Asynchronous Remote Key Generation (ARKG) is a primitive introduced by Frymann et al. at ACM CCS 2020. It enables a sender to generate a new public key $pk'$ for a receiver ensuring only it can, at a later time, compute the corresponding private key sk'. These key pairs are indistinguishable from freshly generated ones and can be used in various public-key cryptosystems such as digital signatures and public-key encryption. ARKG has been explored for applications in WebAuthn credential backup...

2024/845 (PDF) Last updated: 2024-07-19
PathGES: An Efficient and Secure Graph Encryption Scheme for Shortest Path Queries
Francesca Falzon, Esha Ghosh, Kenneth G. Paterson, Roberto Tamassia
Applications

The increasing importance of graph databases and cloud storage services prompts the study of private queries on graphs. We propose PathGES, a graph encryption scheme (GES) for single-pair shortest path queries. PathGES is efficient and mitigates the state-of-the-art attack by Falzon and Paterson (2022) on the GES by Ghosh, Kamara, and Tamassia (2021), while only incurring an additional logarithmic factor in storage overhead. PathGES leverages a novel data structure that minimizes leakage and...

2024/821 (PDF) Last updated: 2024-05-26
A General Framework for Lattice-Based ABE Using Evasive Inner-Product Functional Encryption
Yao-Ching Hsieh, Huijia Lin, Ji Luo
Public-key cryptography

We present a general framework for constructing attribute-based encryption (ABE) schemes for arbitrary function class based on lattices from two ingredients, i) a noisy linear secret sharing scheme for the class and ii) a new type of inner-product functional encryption (IPFE) scheme, termed *evasive* IPFE, which we introduce in this work. We propose lattice-based evasive IPFE schemes and establish their security under simple conditions based on variants of evasive learning with errors (LWE)...

2024/809 (PDF) Last updated: 2024-05-24
Reducing Overdefined Systems of Polynomial Equations Derived from Small Scale Variants of the AES via Data Mining Methods
Jana Berušková, Martin Jureček, Olha Jurečková
Attacks and cryptanalysis

This paper deals with reducing the secret key computation time of small scale variants of the AES cipher using algebraic cryptanalysis, which is accelerated by data mining methods. This work is based on the known plaintext attack and aims to speed up the calculation of the secret key by processing the polynomial equations extracted from plaintext-ciphertext pairs. Specifically, we propose to transform the overdefined system of polynomial equations over GF(2) into a new system so that the...

2024/785 Last updated: 2024-06-02
SmartBean: Transparent, Concretely Efficient, Polynomial Commitment Scheme with Logarithmic Verification and Communication Costs that Runs on Any Group
Frank Y.C. Lu
Cryptographic protocols

We introduce a new, concretely efficient, transparent polynomial commitment scheme with logarithmic verification time and communication cost that can run on any group. Existing group-based polynomial commitment schemes must use less efficient groups, such as class groups of unknown order or pairing-based groups to achieve transparency (no trusted setup), making them expensive to adopt in practice.  We offer the first group-based polynomial commitment scheme that can run on any group s.t....

2024/762 (PDF) Last updated: 2024-05-18
Extractable Witness Encryption for Signed Vector Digests from Pairings and Trust-Scalable One-Time Programs
Sora Suegami
Cryptographic protocols

Witness encryption (WE) allows a ciphertext to be encrypted under an NP problem such that anyone holding a valid witness for that problem can decrypt it (flexible decryptors), without interaction with others (non-interaction). However, existing schemes are either impractical or achieve only a part of these WE features. We propose a novel WE scheme that 1) is based on bilinear maps such as pairings, 2) achieves the property of flexible decryptors, and 3) still requires the decryptor's...

2024/752 (PDF) Last updated: 2024-08-06
More Embedded Curves for SNARK-Pairing-Friendly Curves
Aurore Guillevic
Public-key cryptography

Embedded curves are elliptic curves defined over a prime field whose order (characteristic) is the prime subgroup order (the scalar field) of a pairing-friendly curve. Embedded curves have a large prime-order subgroup of cryptographic size but are not pairing-friendly themselves. Sanso and El Housni published families of embedded curves for BLS pairing-friendly curves. Their families are parameterized by polynomials, like families of pairing-friendly curves are. However their work did not...

2024/750 (PDF) Last updated: 2024-05-16
Speeding Up Multi-Scalar Multiplications for Pairing-Based zkSNARKs
Xinxin Fan, Veronika Kuchta, Francesco Sica, Lei Xu
Implementation

Multi-scalar multiplication (MSM) is one of the core components of many zero-knowledge proof systems, and a primary performance bottleneck for proof generation in these schemes. One major strategy to accelerate MSM is utilizing precomputation. Several algorithms (e.g., Pippenger and BGMW) and their variants have been proposed in this direction. In this paper, we revisit the recent precomputation-based MSM calculation method proposed by Luo, Fu and Gong at CHES 2023 and generalize their...

2024/749 (PDF) Last updated: 2024-05-16
Reducing the CRS Size in Registered ABE Systems
Rachit Garg, George Lu, Brent Waters, David J. Wu
Public-key cryptography

Attribute-based encryption (ABE) is a generalization of public-key encryption that enables fine-grained access control to encrypted data. In (ciphertext-policy) ABE, a central trusted authority issues decryption keys for attributes $x$ to users. In turn, ciphertexts are associated with a decryption policy $\mathcal{P}$. Decryption succeeds and recovers the encrypted message whenever $\mathcal{P}(x) = 1$. Recently, Hohenberger, Lu, Waters, and Wu (Eurocrypt 2023) introduced the notion of...

2024/720 (PDF) Last updated: 2024-05-13
Multivariate Blind Signatures Revisited
Ward Beullens
Attacks and cryptanalysis

In 2017, Petzoldt, Szepieniec, and Mohamed proposed a blind signature scheme, based on multivariate cryptography. This construction has been expanded on by several other works. This short paper shows that their construction is susceptible to an efficient polynomial-time attack. The problem is that the authors implicitly assumed that for a random multivariate quadratic map $\mathcal{R}:\mathbb{F}_q^m \rightarrow \mathbb{F}_q^m$ and a collision-resistant hash function $H: \{0,1\}^* \rightarrow...

2024/688 (PDF) Last updated: 2024-05-05
Succinct Functional Commitments for Circuits from k-Lin
Hoeteck Wee, David J. Wu
Foundations

A functional commitment allows a user to commit to an input $\mathbf{x}$ and later, open the commitment to an arbitrary function $\mathbf{y} = f(\mathbf{x})$. The size of the commitment and the opening should be sublinear in $|\mathbf{x}|$ and $|f|$. In this work, we give the first pairing-based functional commitment for arbitrary circuits where the size of the commitment and the size of the opening consist of a constant number of group elements. Security relies on the standard bilateral...

2024/657 (PDF) Last updated: 2024-05-02
Cryptographic Accumulators: New Definitions, Enhanced Security, and Delegatable Proofs
Anaïs Barthoulot, Olivier Blazy, Sébastien Canard
Public-key cryptography

Cryptographic accumulators, introduced in 1993 by Benaloh and De Mare, represent a set with a concise value and offer proofs of (non-)membership. Accumulators have evolved, becoming essential in anonymous credentials, e-cash, and blockchain applications. Various properties like dynamic and universal emerged for specific needs, leading to multiple accumulator definitions. In 2015, Derler, Hanser, and Slamanig proposed a unified model, but new properties, including zero-knowledge security,...

2024/655 (PDF) Last updated: 2024-04-29
Implementation and Performance Analysis of Homomorphic Signature Schemes
Davide Carnemolla, Dario Catalano, Mario Di Raimondo, Federico Savasta
Implementation

Homomorphic signatures allow to validate computation on signed data. Alice, holding a dataset, $\{m_1 , \ldots , m_t \}$ uses her secret key $\sf sk$ to sign these data and stores the authenticated dataset on a remote server. The server can later (publicly) compute $m = f(m_1,...,m_t)$ together with a signature $\sigma$ certifying that $m$ is indeed the correct output of the computation $f$. Over the last fifteen years, the problem of realizing homomorphic signatures has been the focus of...

2024/640 (PDF) Last updated: 2024-04-26
On Proving Pairings
Andrija Novakovic, Liam Eagen
Cryptographic protocols

In this paper we explore efficient ways to prove correctness of elliptic curve pairing relations. Pairing-based cryptographic protocols such as the Groth16 and Plonk SNARKs and the BLS signature scheme are used extensively in public blockchains such as Ethereum due in large part to their small size. However the relatively high cost of pairing computation remains a practical problem for many use cases such as verification ``in circuit" inside a SNARK. This naturally arises in recursive SNARK...

2024/625 (PDF) Last updated: 2024-04-23
Interactive Threshold Mercurial Signatures and Applications
Masaya Nanri, Octavio Perez Kempner, Mehdi Tibouchi, Masayuki Abe
Public-key cryptography

Equivalence class signatures allow a controlled form of malleability based on equivalence classes defined over the message space. As a result, signatures can be publicly randomized and adapted to a new message representative in the same equivalence class. Notably, security requires that an adapted signature-message pair looks indistinguishable from a random signature-message pair in the space of valid signatures for the new message representative. Together with the decisional Diffie-Hellman...

2024/618 (PDF) Last updated: 2024-04-22
Efficient KZG-based Univariate Sum-check and Lookup Argument
Yuncong Zhang, Shi-Feng Sun, Dawu Gu
Cryptographic protocols

We propose a novel KZG-based sum-check scheme, dubbed $\mathsf{Losum}$, with optimal efficiency. Particularly, its proving cost is one multi-scalar-multiplication of size $k$---the number of non-zero entries in the vector, its verification cost is one pairing plus one group scalar multiplication, and the proof consists of only one group element. Using $\mathsf{Losum}$ as a component, we then construct a new lookup argument, named $\mathsf{Locq}$, which enjoys a smaller proof size and a...

2024/616 (PDF) Last updated: 2024-05-29
$\mathsf{Cougar}$: Cubic Root Verifier Inner Product Argument under Discrete Logarithm Assumption
Hyeonbum Lee, Seunghun Paik, Hyunjung Son, Jae Hong Seo
Cryptographic protocols

An inner product argument (IPA) is a cryptographic primitive used to construct a zero-knowledge proof system, which is a notable privacy-enhancing technology. We propose a novel efficient IPA called $\mathsf{Cougar}$. $\mathsf{Cougar}$ features cubic root verifier and logarithmic communication under the discrete logarithm (DL) assumption. At Asiacrypt2022, Kim et al. proposed two square root verifier IPAs under the DL assumption. Our main objective is to overcome the limitation of square...

2024/614 (PDF) Last updated: 2024-06-21
Non-interactive Blind Signatures: Post-quantum and Stronger Security
Foteini Baldimtsi, Jiaqi Cheng, Rishab Goyal, Aayush Yadav
Public-key cryptography

Blind signatures enable a receiver to obtain signatures on messages of its choice without revealing any message to the signer. Round-optimal blind signatures are designed as a two-round interactive protocol between a signer and receiver. Coincidentally, the choice of message is not important in many applications, and is routinely set as a random (unstructured) message by a receiver. With the goal of designing more efficient blind signatures for such applications, Hanzlik (Eurocrypt '23)...

2024/613 (PDF) Last updated: 2024-04-24
Hadamard Product Argument from Lagrange-Based Univariate Polynomials
Jie Xie, Yuncong Hu, Yu Yu
Cryptographic protocols

Hadamard product is a point-wise product for two vectors. This paper presents a new scheme to prove Hadamard-product relation as a sub-protocol for SNARKs based on univariate polynomials. Prover uses linear cryptographic operations to generate the proof containing logarithmic field elements. The verification takes logarithmic cryptographic operations with constant numbers of pairings in bilinear group. The construction of the scheme is based on the Lagrange-based KZG commitments (Kate,...

2024/608 (PDF) Last updated: 2024-04-20
The Practical Advantage of RSA over ECC and Pairings
Zhengjun Cao, Lihua Liu
Implementation

The coexistence of RSA and elliptic curve cryptosystem (ECC) had continued over forty years. It is well-known that ECC has the advantage of shorter key than RSA, which often leads a newcomer to assume that ECC runs faster. In this report, we generate the Mathematica codes for RSA-2048 and ECC-256, which visually show that RSA-2048 runs three times faster than ECC-256. It is also estimated that RSA-2048 runs 48,000 times faster than Weil pairing with 2 embedding degree and a fixed point.

2024/580 (PDF) Last updated: 2024-04-15
Dynamic Decentralized Functional Encryptions from Pairings in the Standard Model
Duy Nguyen
Cryptographic protocols

Dynamic Decentralized Functional Encryption (DDFE), introduced by Chotard et al. (CRYPTO'20), stands as a robust generalization of (Multi-Client) Functional Encryption. It enables users to dynamically join and contribute private inputs to individually-controlled joint functions, all without requiring a trusted authority. Agrawal et al. (TCC’21) further extended this line of research by presenting the first DDFE construction for function-hiding inner products (FH-IP-DDFE) in the random oracle...

2024/575 (PDF) Last updated: 2024-04-15
Pairing Optimizations for Isogeny-based Cryptosystems
Shiping Cai, Kaizhan Lin, Chang-An Zhao
Implementation

In isogeny-based cryptography, bilinear pairings are regarded as a powerful tool in various applications, including key compression, public-key validation and torsion basis generation. However, in most isogeny-based protocols, the performance of pairing computations is unsatisfactory due to the high computational cost of the Miller function. Reducing the computational expense of the Miller function is crucial for enhancing the overall performance of pairing computations in isogeny-based...

2024/517 (PDF) Last updated: 2024-07-03
Fast pairings via biextensions and cubical arithmetic
Damien Robert
Foundations

Biextensions associated to line bundles on abelian varieties allows to reinterpret the usual Weil, Tate, Ate, optimal Ate, \ldots, pairings as monodromy pairings. We introduce a cubical arithmetic, derived from the canonical cubical torsor structure of these line bundles, to obtain an efficient arithmetic of these biextensions. This unifies and extends Miller's standard algorithm to compute pairings along with other algorithms like elliptic nets and theta functions, and allows to adapt...

2024/502 (PDF) Last updated: 2024-03-29
Best of Two Worlds: Efficient, Usable and Auditable Biometric ABC on the Blockchain
Neyire Deniz Sarier
Applications

In [1], two generic constructions for biometric-based non-transferable Attribute Based Credentials (biometric ABC) are presented, which offer different trade-offs between efficiency and trust assumptions. In this paper, we focus on the second scheme denoted as BioABC-ZK that tries to remove the strong (and unrealistic) trust assumption on the Reader R, and show that BioABC-ZK has a security flaw for a colluding R and Verifier V. Besides, BioABC-ZK lacks GDPR-compliance, which requires secure...

2024/491 (PDF) Last updated: 2024-03-27
Updatable Policy-Compliant Signatures
Christian Badertscher, Monosij Maitra, Christian Matt, Hendrik Waldner
Cryptographic protocols

Policy-compliant signatures (PCS) are a recently introduced primitive by Badertscher et al. [TCC 2021] in which a central authority distributes secret and public keys associated with sets of attributes (e.g., nationality, affiliation with a specific department, or age) to its users. The authority also enforces a policy determining which senders can sign messages for which receivers based on a joint check of their attributes. For example, senders and receivers must have the same nationality,...

2024/488 (PDF) Last updated: 2024-06-03
Improving Generic Attacks Using Exceptional Functions
Xavier Bonnetain, Rachelle Heim Boissier, Gaëtan Leurent, André Schrottenloher
Attacks and cryptanalysis

Over the past ten years, there have been many attacks on symmetric constructions using the statistical properties of random functions. Initially, these attacks targeted iterated hash constructions and their combiners, developing a wide array of methods based on internal collisions and on the average behavior of iterated random functions. More recently, Gilbert et al. (EUROCRYPT 2023) introduced a forgery attack on so-called duplex-based Authenticated Encryption modes which was based on...

2024/484 (PDF) Last updated: 2024-03-25
Harmonizing PUFs for Forward Secure Authenticated Key Exchange with Symmetric Primitives
Harishma Boyapally, Durba Chatterjee, Kuheli Pratihar, Sayandeep Saha, Debdeep Mukhopadhyay, Shivam Bhasin
Cryptographic protocols

Physically Unclonable Functions (PUFs) have been a potent choice for enabling low-cost, secure communication. However, in most applications, one party holds the PUF, and the other securely stores the challenge-response pairs (CRPs). It does not remove the need for secure storage entirely, which is one of the goals of PUFs. This paper proposes a PUF-based construction called Harmonizing PUFs ($\textsf{H_PUF}$s), allowing two independent PUFs to generate the same outcome without storing...

2024/437 (PDF) Last updated: 2024-07-04
Insecurity of MuSig and Bellare-Neven Multi-Signatures with Delayed Message Selection
Sela Navot
Public-key cryptography

Multi-signature schemes in pairing-free settings require multiple communication rounds, prompting efforts to reduce the number of signing rounds that need to be executed after the signers receive the message to sign. In MuSig and Bellare-Neven multi-signatures, the signing protocol does not use the message until the third (and final) signing round. This structure seemingly allows pre-processing of the first two signing rounds before the signers receive the message. However, we demonstrate...

2024/435 (PDF) Last updated: 2024-03-13
Unbiasable Verifiable Random Functions
Emanuele Giunta, Alistair Stewart
Public-key cryptography

Verifiable Random Functions (VRFs) play a pivotal role in Proof of Stake (PoS) blockchain due to their applications in secret leader election protocols. However, the original definition by Micali, Rabin and Vadhan is by itself insufficient for such applications. The primary concern is that adversaries may craft VRF key pairs with skewed output distribution, allowing them to unfairly increase their winning chances. To address this issue David, Gaži, Kiayias and Russel (2017/573) proposed a...

2024/434 (PDF) Last updated: 2024-03-13
Parameter-Hiding Order-Revealing Encryption without Pairings
Cong Peng, Rongmao Chen, Yi Wang, Debiao He, Xinyi Huang
Cryptographic protocols

Order-Revealing Encryption (ORE) provides a practical solution for conducting range queries over encrypted data. Achieving a desirable privacy-efficiency tradeoff in designing ORE schemes has posed a significant challenge. At Asiacrypt 2018, Cash et al. proposed Parameter-hiding ORE (pORE), which specifically targets scenarios where the data distribution shape is known, but the underlying parameters (such as mean and variance) need to be protected. However, existing pORE constructions rely...

2024/429 (PDF) Last updated: 2024-05-29
FOLEAGE: $\mathbb{F}_4$OLE-Based Multi-Party Computation for Boolean Circuits
Maxime Bombar, Dung Bui, Geoffroy Couteau, Alain Couvreur, Clément Ducros, Sacha Servan-Schreiber
Cryptographic protocols

Secure Multi-party Computation (MPC) allows two or more parties to compute any public function over their privately-held inputs, without revealing any information beyond the result of the computation. Modern protocols for MPC generate a large amount of input-independent preprocessing material called multiplication triples, in an offline phase. This preprocessing can later be used by the parties to efficiently instantiate an input-dependent online phase computing the function. To date, the...

2024/425 (PDF) Last updated: 2024-03-12
Kolmogorov Comes to Cryptomania: On Interactive Kolmogorov Complexity and Key-Agreement
Marshall Ball, Yanyi Liu, Noam Mazor, Rafael Pass
Foundations

Only a handful candidates for computational assumptions that imply secure key-agreement protocols (KA) are known, and even fewer are believed to be quantum safe. In this paper, we present a new hardness assumption---the worst-case hardness of a promise problem related to an interactive version of Kolmogorov Complexity. Roughly speaking, the promise problem requires telling apart tuples of strings $(\pi,x,y)$ with relatively (w.r.t. $K(\pi)$) low time-bounded Interactive Kolmogorov...

2024/421 (PDF) Last updated: 2024-07-11
LLRing: Logarithmic Linkable Ring Signatures with Transparent Setup
Xiangyu Hui, Sid Chi-Kin Chau
Cryptographic protocols

Linkable ring signatures are an important cryptographic primitive for anonymized applications, such as e-voting, e-cash and confidential transactions. To eliminate backdoor and overhead in a trusted setup, transparent setup in the discrete logarithm or pairing settings has received considerable attention in practice. Recent advances have improved the proof sizes and verification efficiency of linkable ring signatures with a transparent setup to achieve logarithmic bounds. Omniring (CCS '19)...

2024/414 (PDF) Last updated: 2024-07-18
Quantum One-Wayness of the Single-Round Sponge with Invertible Permutations
Joseph Carolan, Alexander Poremba
Foundations

Sponge hashing is a widely used class of cryptographic hash algorithms which underlies the current international hash function standard SHA-3. In a nutshell, a sponge function takes as input a bit-stream of any length and processes it via a simple iterative procedure: it repeatedly feeds each block of the input into a so-called block function, and then produces a digest by once again iterating the block function on the final output bits. While much is known about the post-quantum security of...

2024/387 (PDF) Last updated: 2024-04-28
Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine
Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, Ye Zhang
Cryptographic protocols

In this paper, we explore a novel Zero-knowledge Virtual Machine (zkVM) framework leveraging succinct, non-interactive zero-knowledge proofs for verifiable computation over any code. Our approach divides program execution proof into two stages. In the first stage, the process breaks down program execution into segments, identifying and grouping identical sections. These segments are then proved through data-parallel circuits that allow for varying amounts of duplication. In the subsequent...

2024/379 (PDF) Last updated: 2024-06-04
SyRA: Sybil-Resilient Anonymous Signatures with Applications to Decentralized Identity
Elizabeth Crites, Aggelos Kiayias, Markulf Kohlweiss, Amirreza Sarencheh
Cryptographic protocols

We introduce a new cryptographic primitive, called Sybil-Resilient Anonymous (SyRA) signatures, which enable users to generate, on demand, unlinkable pseudonyms tied to any given context, and issue signatures on behalf of these pseudonyms. Concretely, given a personhood relation, an issuer (who may be a distributed entity) enables users to prove their personhood and extract an associated long-term key, which can then be used to issue signatures for any given context and message....

2024/350 (PDF) Last updated: 2024-02-27
Automating Collision Attacks on RIPEMD-160
Yingxin Li, Fukang Liu, Gaoli Wang
Attacks and cryptanalysis

As an ISO/IEC standard, the hash function RIPEMD-160 has been used to generate the Bitcoin address with SHA-256. However, due to the complex double-branch structure of RIPEMD-160, the best collision attack only reaches 36 out of 80 steps of RIPEMD-160, and the best semi-free-start (SFS) collision attack only reaches 40 steps. To improve the 36-step collision attack proposed at EUROCRYPT 2023, we explored the possibility of using different message differences to increase the number of...

2024/349 (PDF) Last updated: 2024-02-27
New Records in Collision Attacks on SHA-2
Yingxin Li, Fukang Liu, Gaoli Wang
Attacks and cryptanalysis

The SHA-2 family including SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224 and SHA512/256 is a U.S. federal standard pub- lished by NIST. Especially, there is no doubt that SHA-256 is one of the most important hash functions used in real-world applications. Due to its complex design compared with SHA-1, there is almost no progress in collision attacks on SHA-2 after ASIACRYPT 2015. In this work, we retake this challenge and aim to significantly improve collision attacks on the SHA-2...

2024/341 (PDF) Last updated: 2024-02-27
VeriSimplePIR: Verifiability in SimplePIR at No Online Cost for Honest Servers
Leo de Castro, Keewoo Lee
Cryptographic protocols

We present VeriSimplePIR, a verifiable version of the state-of-the-art semi-honest SimplePIR protocol. VeriSimplePIR is a stateful verifiable PIR scheme guaranteeing that all queries are consistent with a fixed, well-formed database. It is the first efficient verifiable PIR scheme to not rely on an honest digest to ensure security; any digest, even one produced by a malicious server, is sufficient to commit to some database. This is due to our extractable verification procedure, which can...

2024/328 (PDF) Last updated: 2024-02-26
Attribute-Based Signatures with Advanced Delegation, and Tracing
Cécile Delerablée, Lénaïck Gouriou, David Pointcheval
Public-key cryptography

Attribute-based cryptography allows fine-grained control on the use of the private key. In particular, attribute-based signature (ABS) specifies the capabilities of the signer, which can only sign messages associated to a policy that is authorized by his set of attributes. Furthermore, we can expect signature to not leak any information about the identity of the signer. ABS is a useful tool for identity-preserving authentication process which requires granular access-control, and can...

2024/327 (PDF) Last updated: 2024-02-26
Registered Functional Encryptions from Pairings
Ziqi Zhu, Jiangtao Li, Kai Zhang, Junqing Gong, Haifeng Qian
Public-key cryptography

This work initiates the study of concrete registered functional encryption (Reg-FE) beyond ``all-or-nothing'' functionalities: - We build the first Reg-FE for linear function or inner-product evaluation (Reg-IPFE) from pairings. The scheme achieves adaptive IND-security under $k$-Lin assumption in the prime-order bilinear group. A minor modification yields the first Registered Inner-Product Encryption (Reg-IPE) scheme from $k$-Lin assumption. Prior work achieves the same security in...

2024/322 (PDF) Last updated: 2024-02-25
Theoretical Explanation and Improvement of Deep Learning-aided Cryptanalysis
Weixi Zheng, Liu Zhang, Zilong Wang
Attacks and cryptanalysis

At CRYPTO 2019, Gohr demonstrated that differential-neural distinguishers (DNDs) for Speck32/64 can learn more features than classical cryptanalysis's differential distribution tables (DDT). Furthermore, a non-classical key recovery procedure is devised by combining the Upper Confidence Bound (UCB) strategy and the BayesianKeySearch algorithm. Consequently, the time complexity of 11-round key recovery attacks on Speck32/64 is significantly reduced compared with the state-of-the-art results...

2024/293 (PDF) Last updated: 2024-02-21
Registered Attribute-Based Signature
Yijian Zhang, Jun Zhao, Ziqi Zhu, Junqing Gong, Jie Chen
Public-key cryptography

This paper introduces the notion of registered attribute-based signature (registered ABS). Distinctly different from classical attribute-based signature (ABS), registered ABS allows any user to generate their own public/secret key pair and register it with the system. The key curator is critical to keep the system flowing, which is a fully transparent entity that does not retain secrets. Our results can be summarized as follows. -This paper provides the first definition of registered...

2024/264 (PDF) Last updated: 2024-03-13
Extractable Witness Encryption for KZG Commitments and Efficient Laconic OT
Nils Fleischhacker, Mathias Hall-Andersen, Mark Simkin
Cryptographic protocols

We present a concretely efficient and simple extractable witness encryption scheme for KZG polynomial commitments. It allows to encrypt a message towards a triple $(\mathsf{com}, \alpha, \beta)$, where $\mathsf{com}$ is a KZG commitment for some polynomial $f$. Anyone with an opening for the commitment attesting $f(\alpha) = \beta$ can decrypt, but without knowledge of a valid opening the message is computationally hidden. Our construction is simple and highly efficient. The ciphertext is...

2024/263 (PDF) Last updated: 2024-02-16
Threshold Encryption with Silent Setup
Sanjam Garg, Dimitris Kolonelos, Guru-Vamsi Policharla, Mingyuan Wang
Public-key cryptography

We build a concretely efficient threshold encryption scheme where the joint public key of a set of parties is computed as a deterministic function of their locally computed public keys, enabling a silent setup phase. By eliminating interaction from the setup phase, our scheme immediately enjoys several highly desirable features such as asynchronous setup, multiverse support, and dynamic threshold. Prior to our work, the only known constructions of threshold encryption with silent setup...

2024/253 (PDF) Last updated: 2024-02-17
2PC-MPC: Emulating Two Party ECDSA in Large-Scale MPC
Offir Friedman, Avichai Marmor, Dolev Mutzari, Omer Sadika, Yehonatan C. Scaly, Yuval Spiizer, Avishay Yanai
Cryptographic protocols

Motivated by the need for a massively decentralized network concurrently servicing many clients, we present novel low-overhead UC-secure, publicly verifiable, threshold ECDSA protocols with identifiable abort. For the first time, we show how to reduce the message complexity from O(n^2) to O(n) and the computational complexity from O(n) to practically O(1) (per party, where n is the number of parties). We require only a broadcast channel for communication. Therefore, we natively support...

2024/233 (PDF) Last updated: 2024-02-14
Cayley hashing with cookies
Vladimir Shpilrain, Bianca Sosnovski
Cryptographic protocols

Cayley hash functions are based on a simple idea of using a pair of semigroup elements, $A$ and $B$, to hash the 0 and 1 bit, respectively, and then to hash an arbitrary bit string in the natural way, by using multiplication of elements in the semigroup. The main advantage of Cayley hash functions compared to, say, hash functions in the SHA family is that when an already hashed document is amended, one does not have to hash the whole amended document all over again, but rather hash just...

2024/226 (PDF) Last updated: 2024-04-25
Attribute-based Keyed (Fully) Homomorphic Encryption
Keita Emura, Shingo Sato, Atsushi Takayasu
Public-key cryptography

Keyed homomorphic public key encryption (KHPKE) is a variant of homomorphic public key encryption, where only users who have a homomorphic evaluation key can perform a homomorphic evaluation. Then, KHPKE satisfies the CCA2 security against users who do not have a homomorphic evaluation key, while it satisfies the CCA1 security against users who have the key. Thus far, several KHPKE schemes have been proposed under the standard Diffie-Hellman-type assumptions and keyed fully homomorphic...

2024/190 (PDF) Last updated: 2024-02-08
Constructing Committing and Leakage-Resilient Authenticated Encryption
Patrick Struck, Maximiliane Weishäupl
Secret-key cryptography

The main goal of this work is to construct authenticated encryption (AE) that is both committing and leakage-resilient. As a first approach for this we consider generic composition as a well-known method for constructing AE schemes. While the leakage resilience of generic composition schemes has already been analyzed by Barwell et al. (AC'17), for committing security this is not the case. We fill this gap by providing a separate analysis of the generic composition paradigms with respect to...

2024/183 (PDF) Last updated: 2024-02-07
On Security Proofs of Existing Equivalence Class Signature Schemes
Balthazar Bauer, Georg Fuchsbauer
Public-key cryptography

Equivalence class signatures (EQS), introduced by Hanser and Slamanig (AC'14), sign vectors of elements from a bilinear group. Signatures can be ``adapted'', meaning that anyone can transform a signature on a vector to a (random) signature on any multiple of that vector. (Signatures thus authenticate equivalence classes.) A transformed signature/message pair is then indistinguishable from a random signature on a random message. EQS have been used to efficiently instantiate (delegatable)...

2024/179 (PDF) Last updated: 2024-02-16
Traitor Tracing without Trusted Authority from Registered Functional Encryption
Pedro Branco, Russell W. F. Lai, Monosij Maitra, Giulio Malavolta, Ahmadreza Rahimi, Ivy K. Y. Woo
Public-key cryptography

Traitor-tracing systems allow identifying the users who contributed to building a rogue decoder in a broadcast environment. In a traditional traitor-tracing system, a key authority is responsible for generating the global public parameters and issuing secret keys to users. All security is lost if the \emph{key authority itself} is corrupt. This raises the question: Can we construct a traitor-tracing scheme, without a trusted authority? In this work, we propose a new model for...

2024/178 (PDF) Last updated: 2024-02-09
Fast Public-Key Silent OT and More from Constrained Naor-Reingold
Dung Bui, Geoffroy Couteau, Pierre Meyer, Alain Passelègue, Mahshid Riahinia
Cryptographic protocols

Pseudorandom Correlation Functions (PCFs) allow two parties, given correlated evaluation keys, to locally generate arbitrarily many pseudorandom correlated strings, e.g. Oblivious Transfer (OT) correlations, which can then be used by the two parties to jointly run secure computation protocols. In this work, we provide a novel and simple approach for constructing PCFs for OT correlation, by relying on constrained pseudorandom functions for a class of constraints containing a weak...

2024/177 (PDF) Last updated: 2024-02-06
Registered Functional Encryption for Quadratic Functions from MDDH
Qiaohan Chu, Li Lin, Chen Qian, Jie Chen
Public-key cryptography

We present a Registered Functional Encryption (RFE) scheme for inner product and a RFE scheme for quadratic functions based on pairings and relying on the Matrix Decision Diffie-Hellman (MDDH) assumption and bilateral MDDH assumption. Previously, RFE is only known to be constructed from indistinguishability obfuscation (iO) in Francati-Friolo-Maitra-Malavolta-Rahimi-Venturi [Asiacrypt '23].

2024/168 (PDF) Last updated: 2024-05-09
Dragon: Decentralization at the cost of Representation after Arbitrary Grouping and Its Applications to Sub-cubic DKG and Interactive Consistency
Hanwen Feng, Zhenliang Lu, Qiang Tang
Cryptographic protocols

Several distributed protocols, including distributed key generation (DKG) and interactive consistency (IC), depend on $\mathcal{O}(n)$ instances of Byzantine Broadcast or Byzantine Agreement among $n$ nodes, resulting in ${\Theta}(n^3)$ communication overhead. In this paper, we provide a new methodology of realizing such broadcasts we call DRAGON: Decentralization at the cost of Representation after Arbitrary GrOupiNg. At the core of it, we arbitrarily group nodes into small ``shards''...

2024/158 (PDF) Last updated: 2024-02-02
HiSE: Hierarchical (Threshold) Symmetric-key Encryption
Pousali Dey, Pratyay Mukherjee, Swagata Sasmal, Rohit Sinha
Cryptographic protocols

Threshold symmetric encryption (TSE), introduced by Agrawal et al. [DiSE, CCS 2018], provides scalable and decentralized solution for symmetric encryption by ensuring that the secret-key stays distributed at all times. They avoid having a single point of attack or failure, while achieving the necessary security requirements. TSE was further improved by Christodorescu et al. [ATSE, CCS 2021] to support an amortization feature which enables a “more privileged” client to encrypt records in bulk...

2024/106 (PDF) Last updated: 2024-01-24
A Trust-based Recommender System over Arbitrarily Partitioned Data with Privacy
Ibrahim Yakut, Huseyin Polat
Applications

Recommender systems are effective mechanisms for recommendations about what to watch, read, or taste based on user ratings about experienced products or services. To achieve higher quality recommendations, e-commerce parties may prefer to collaborate over partitioned data. Due to privacy issues, they might hesitate to work in pairs and some solutions motivate them to collaborate. This study examines how to estimate trust-based predictions on arbitrarily partitioned data in which two...

2024/100 (PDF) Last updated: 2024-04-30
FiveEyes: Cryptographic Biometric Authentication from the Iris
Luke Demarest, Sohaib Ahmad, Sixia Chen, Benjamin Fuller, Alexander Russell
Applications

Despite decades of effort, a stubborn chasm exists between the theory and practice of device-level biometric authentication. Deployed authentication algorithms rely on data that overtly leaks private information about the biometric; thus systems rely on externalized security measures such as trusted execution environments. The authentication algorithms have no cryptographic guarantees. This is particularly frustrating given the long line of research that has developed theoretical...

2024/062 Last updated: 2024-08-05
Double Difficulties, Defense in Depth A succinct authenticated key agreement protocol
WenBin Hsieh

In 2016, NIST announced an open competition with the goal of finding and standardizing a suitable quantum-resistant cryptographic algorithm, with the standard to be drafted in 2023. These algorithms aim to implement post-quantum secure key encapsulation mechanism (KEM) and digital signatures. However, the proposed algorithm does not consider authentication and is vulnerable to attacks such as man-in-the-middle. In this paper, we propose an authenticated key exchange algorithm to solve the...

2024/054 (PDF) Last updated: 2024-01-19
FEASE: Fast and Expressive Asymmetric Searchable Encryption
Long Meng, Liqun Chen, Yangguang Tian, Mark Manulis, Suhui Liu
Public-key cryptography

Asymmetric Searchable Encryption (ASE) is a promising cryptographic mechanism that enables a semi-trusted cloud server to perform keyword searches over encrypted data for users. To be useful, an ASE scheme must support expressive search queries, which are expressed as conjunction, disjunction, or any Boolean formulas. In this paper, we propose a fast and expressive ASE scheme that is adaptively secure, called FEASE. It requires only 3 pairing operations for searching any conjunctive set of...

2024/046 (PDF) Last updated: 2024-01-11
Quantum-Secure Hybrid Communication for Aviation Infrastructure
Benjamin Dowling, Bhagya Wimalasiri
Cryptographic protocols

The rapid digitization of aviation communication and its dependent critical operations demand secure protocols that address domain-specific security requirements within the unique functional constraints of the aviation industry. These secure protocols must provide sufficient security against current and possible future attackers, given the inherent nature of the aviation community, that is highly complex and averse to frequent upgrades as well as its high safety and cost considerations. In...

2024/035 (PDF) Last updated: 2024-05-01
A New Approach to Efficient and Secure Fixed-point Computation
Tore Kasper Frederiksen, Jonas Lindstrøm, Mikkel Wienberg Madsen, Anne Dorte Spangsberg
Cryptographic protocols

Secure Multi-Party Computation (MPC) constructions typically allow computation over a finite field or ring. While useful for many applications, certain real-world applications require the usage of decimal numbers. While it is possible to emulate floating-point operations in MPC, fixed-point computation has gained more traction in the practical space due to its simplicity and efficient realizations. Even so, current protocols for fixed-point MPC still require computing a secure truncation...

2024/012 (PDF) Last updated: 2024-01-04
Two-Round ID-PAKE with strong PFS and single pairing operation
Behnam Zahednejad, Gao Chong-zhi
Cryptographic protocols

IDentity-based Password Authentication and Key Establishment (ID-PAKE) is an interesting trade-off between the security and efficiency, specially due to the removal of costly Public Key Infrastructure (PKI). However, we observe that previous PAKE schemes such as Beguinet et al. (ACNS 2023), Pan et al. (ASIACRYPT 2023) , Abdallah et al. (CRYPTO 2020) etc. fail to achieve important security properties such as weak/strong Perfect Forward Secrecy (s-PFS), user authentication and resistance to...

2024/010 (PDF) Last updated: 2024-01-03
On the tropical two-sided discrete logarithm and a key exchange protocol based on the tropical algebra of pairs
Sulaiman Alhussaini, Craig Collett, Serge˘ı Sergeev
Attacks and cryptanalysis

Since the existing tropical cryptographic protocols are either susceptible to the Kotov-Ushakov attack and its generalization, or to attacks based on tropical matrix periodicity and predictive behaviour, several attempts have been made to propose protocols that resist such attacks. Despite these attempts, many of the proposed protocols remain vulnerable to attacks targeting the underlying hidden problems, one of which we call the tropical two-sided discrete logarithm with shift. An...

2023/1967 (PDF) Last updated: 2024-02-15
Monotone Policy BARGs from BARGs and Additively Homomorphic Encryption
Shafik Nassar, Brent Waters, David J. Wu
Foundations

A monotone policy batch $\mathsf{NP}$ language $\mathcal{L}_{\mathcal{R}, P}$ is parameterized by a monotone policy $P \colon \{0,1\}^k \to \{0,1\}$ and an $\mathsf{NP}$ relation $\mathcal{R}$. A statement $(x_1, \ldots, x_k)$ is a YES instance if there exists $w_1, \ldots, w_k$ where $P(\mathcal{R}(x_1, w_1), \ldots, \mathcal{R}(x_k, w_k)) = 1$. For example, we might say that an instance $(x_1, \ldots, x_k)$ is a YES instance if a majority of the statements are true. A monotone policy batch...

2023/1965 (PDF) Last updated: 2023-12-28
More Efficient Public-Key Cryptography with Leakage and Tamper Resilience
Shuai Han, Shengli Liu, Dawu Gu
Public-key cryptography

In this paper, we study the design of efficient signature and public-key encryption (PKE) schemes in the presence of both leakage and tampering attacks. Firstly, we formalize the strong leakage and tamper-resilient (sLTR) security model for signature, which provides strong existential unforgeability, and deals with bounded leakage and restricted tampering attacks, as a counterpart to the sLTR security introduced by Sun et al. (ACNS 2019) for PKE. Then, we present direct constructions...

2023/1958 (PDF) Last updated: 2023-12-25
Revisiting Pairing-friendly Curves with Embedding Degrees 10 and 14
Yu Dai, Debiao He, Cong Peng, Zhijian Yang, Chang-an Zhao

Since 2015, there has been a significant decrease in the asymptotic complexity of computing discrete logarithms in finite fields. As a result, the key sizes of many mainstream pairing-friendly curves have to be updated to maintain the desired security level. In PKC'20, Guillevic conducted a comprehensive assessment of the security of a series of pairing-friendly curves with embedding degrees ranging from $9$ to $17$. In this paper, we focus on pairing-friendly curves with embedding degrees...

2023/1947 (PDF) Last updated: 2024-03-29
Using Predicate Extension for Predicate Encryption to Generically Obtain Chosen-Ciphertext Security and Signatures
Marloes Venema, Leon Botros
Public-key cryptography

Predicate encryption (PE) is a type of public-key encryption that captures many useful primitives such as attribute-based encryption (ABE). Although much progress has been made to generically achieve security against chosen-plaintext attacks (CPA) efficiently, in practice, we also require security against chosen-ciphertext attacks (CCA). Because achieving CCA-security on a case-by-case basis is a complicated task, several generic conversion methods have been proposed, which typically target...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.