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Abstract

A threshold key encapsulation mechanism (TKEM) facilitates the secure distribution of session keys
among multiple participants, allowing key recovery through a threshold number of shares. TKEM has
gained significant attention, especially for decentralized systems, including blockchains. However, exist-
ing constructions often rely on trusted setups, which pose security risks such as a single point of failure,
and are limited by fixed participant numbers and thresholds. To overcome this, we propose a dynamic
TKEM with a transparent setup, allowing for a flexible selection of recipients and thresholds without
relying on trusted third parties in the setup phase. In addition, our construction does not rely on pair-
ing operations. We prove the security of our TKEM under the decisional Diffie-Hellman assumption,
ensuring selective chosen-ciphertext security and decapsulation consistency. Our proof-of-concept im-
plementation highlights the practicality and efficiency of this approach, advancing the field of threshold
cryptography.

1 Introduction

A threshold key encapsulation mechanism (TKEM) is a useful primitive in threshold cryptosystems, which
distributes a session key among multiple parties. In the concept of TKEM with threshold parameters (n, t),
the session key is split into n shares and encapsulated as a ciphertext header. Collecting at least t shares
allows decapsulation of the header by reconstructing the original session key. TKEMs must fulfill two
security requirements: chosen-ciphertext attack (CCA) security and decapsulation consistency (DC). Briefly,
CCA security ensures that no adversary with fewer than t shares can gain any useful information about a
session key corresponding to a given ciphertext header. A weaker notion, known as selective CCA security,
applies only to a specific set of recipients chosen in advance. DC guarantees that any valid set of t shares
out of n will consistently reconstruct the same session key.

Dynamic TKEMs allow the parameters (n, t) to be determined during encapsulation. This flexibility
ensures that the number of participating parties and the required shares for decapsulation can change as
needed. Furthermore, a transparent setup allows for the generation of public parameters without any secret
trapdoor, ensuring that no single party can compromise the system. This is crucial for mitigating the risk of
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a single point of failure, thus establishing TKEMs as essential in distributed systems such as blockchain and
decentralized finance (DeFi) [10, 20].

Despite the importance of TKEM, only a few results on dynamic threshold cryptosystems have been
proposed (e.g., [13, 20, 28]), focusing on threshold public key encryption (TPKE). TPKE is analogous to
TKEM in that both require collaboration among multiple parties to reconstruct a message (in TPKE) or a
key (in TKEM). Although they can be converted into each other, TKEM is advantageous for transmitting
large messages when integrated with a data encapsulation mechanism [30].

1.1 Our results

We propose a dynamic TKEM with a transparent setup, which is constructed without the need for pairing
operations. Moreover, the proposed TKEM meets the security requirements, which are proven based on the
decisional Diffie-Hellman assumption and underlying cryptographic primitives, in the random oracle model.
We remark that this is the first result on threshold cryptosystems, as shown in Table 1. To do this, we focus
on the following steps:
Dynamic Threshold: To achieve this, we employ the approach originating from [28], which utilizes a public
key encryption (PKE) scheme, non-interactive zero-knowledge (NIZK) proof systems, and a polynomial-
based secret sharing scheme. The secret sharing scheme is generally used to support the (n, t)-threshold
setting. More precisely, a polynomial f of degree t− 1 is used to share the secret s0 = f (0) by splitting it
into n shares as f (idx1), . . . , f (idxn), where idxi is assigned to a user i. Any t shares out of n can be used to
reconstruct the secret by interpolation: s0 = ∑Li(0) f (idxi), where Li(0) is the Lagrange coefficient. To be
dynamic, such a polynomial and its shares are now generated during encapsulation. Each share is encrypted
using the PKE scheme under its corresponding public key and then included in the ciphertext header. The
resulting ciphertext header additionally contains an NIZK proof, ensuring that the ciphertext header is well-
formed; that is, the corresponding secret is correctly shared, and the shares are properly encrypted. Note that
the construction in [28], following the above approach, employs a pairing-based PKE with a non-interactive
opening (PKENO) scheme and a Groth-Sahai proof system [21], which relies on a trusted setup that we aim
to avoid.
Transparent Setup: As we explained before, Groth-Sahai proof systems are problematic because they
require a trusted setup to guarantee that public structured reference strings are generated without a trapdoor
for real-world use. Since the trusted setup demands significant computational effort, and such strings can be
subverted, as shown in [4], we address this problem by eliminating Groth-Sahai proof systems throughout
our construction. One could consider applying NIZK proof systems transformed by the Fiat-Shamir heuristic
[18], where the generation of strings is publicly verifiable, yielding a transparent setup. This is, however, not
easily achieved, as Groth-Sahai proof systems are designed to prove complex mathematical structures; for
example, proving both a group element M ∈G and a scalar f (idx1) ∈ Zp such that Mg f (idx1) ∈G, where G
is a finite group of order p. This cannot be handled by Fiat-Shamir transformed systems. Hence, we design
our TKEM so that only scalars need to be proven while ensuring the well-formedness of our ciphertext
header. To this end, we focus on the work of [15], originally used for constructing signature-based witness
encryption. This literature demonstrates the way to prove that polynomial-based shares as exponents over
a group G, as demonstrated above, are correct to reconstruct the secret via Fiat-Shamir transformed NIZK
proof systems. However, in [15], pairing operations are still needed for proving other aspects of well-
formedness, such as the structure of the BLS scheme [6]. We carefully extend this proof system to be an
entirely pairing-free construction, as described below.
Pairing-Free Construction: Pairing operations are relatively more expensive than exponentiations over a
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Table 1: Comparison with the existing dynamic threshold cryptosystems

Size Dynamic Transparent Pairing
Method

Security
Assumption

PP PK&SK CT Threshold Setup Free Model
DP08 [13] O(N) O(1) O(1) △ X† X KEM ROM MSE-DDH
SES16a [28] O(1) O(1) O(n) O O X PKE§ STM DBDH/DLIN
SES16b [28] O(1) O(1) O(n) O X X PKE STM DLIN
GKPW24 [20] O(N) O(1) O(1) △ X X PKE ROM GGM
Ours O(1) O(1) O(n) O O O KEM ROM DDH
‘O’ indicates that the corresponding property is satisfied, while ‘△’ indicates that it is satisfied with restrictions
based on N (the maximum number of n participants). ‘X’ indicates that the corresponding property is not
satisfied. ROM and STM refer to the random oracle model and the standard model, respectively. † requires
key distribution with a higher level of trust. § indicates the conceptual difference where public verification of
the well-formedness of CT is not allowed. Cryptographic assumptions in the last column are involved in the
selective CCA security.

conventional group. To eliminate the dependency on pairings, we employ a technique for double ElGamal
encryption with shared randomness, which is a well-known solution for constructing a CCA secure PKE
scheme. This decision is mainly due to the fact that the structure of such ElGamal ciphertexts can be
efficiently proven by statements for the equality of discrete logarithms. These statements can be ensured
by using Fiat-Shamir transformed NIZK systems that we aim to utilize. Furthermore, the security of the
employed PKE scheme contributes to the selective CCA security of TKEM, as shown in [28]. Based on
this, our ciphertext header contains variant ElGamal cipheretexts to encrypt shares of participants. Finally,
we elaborately incorporate statements to prove its well-formedness (i.e., that the encrypted shares are all
correct). A detailed description will be demonstrated in Section 3.2.

In fact, our approach results in a TKEM producing a ciphertext header of size O(n), where n is the
number of participants, leading to computational inefficiency. This comes from the fact that neither ElGamal
ciphertexts nor NIZK proofs can be aggregated. Nevertheless, the proposed TKEM could be a step towards
future constructions with constant-size ciphertext headers. Moreover, to the best of our knowledge, no
existing construction offers the features we have outlined above.

1.2 Related Works

Threshold cryptography was first introduced in [14], and since then, subsequent research has explored vari-
ous fields, including KEM, PKE, and signature, as follows.

Dynamic Threshold KEM & PKE: The first dynamic threshold TKEM was constructed by Delerablée and
Pointcheval [13], referred to here as DP08. While providing constant-size ciphertexts regardless of the num-
ber of participants, their construction relies on pairing operations. Moreover, DP08 has limitations in several
respects: the dynamic threshold property is restricted as the maximum number of n participants must be fixed
during the initial setup stage. Additionally, a trusted setup is required, involving a master key to distribute
n secret keys. Regarding security, their selective CCA security is proven based on the multi-sequence of
exponent Diffie-Hellman (MSE-DDH) assumption, which is a q-type assumption and may not hold against
the attacks as shown in [9]. Constructing TPKE is another research topic in threshold cryptography. No-
tably, two fully dynamic threshold TPKE schemes, denoted as SES16a and SES16b, were presented in [28].
Both are proven secure based on the standard assumption, such as the decision linear (DLIN) assumption
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and the decisional bilinear Diffie-Hellman (DBDH) assumption, in the standard model. This makes their
constructions theoretically stronger than those proven in the random oracle model (ROM). However, both
depend on pairing operations. In particular, SES16b presents a concrete construction following the design
paradigm described earlier (by utilizing Groth-Sahai systems), thus requiring a trusted setup. On the other
hand, SES16a provides a generic construction whose instantiation allows a transparent setup. This origi-
nates from the required primitives, such as one-time signatures, commitment schemes, and PKENO, none
of which need the help of a trusted setup. However, the syntax of SES16a differs slightly from others, even
though TPKE is compatible with TKEM. The main difference is that the well-formedness of ciphertexts (in
the context of TPKE) could not be publicly verified. Recently, Garg et al. [20] proposed a remarkable TPKE
scheme, denoted as GKPW24, achieving constant-size ciphertexts. In contrast to DP08, this particularly
removes the need for distributed key generation. This advantage is largely due to the succinctness of the
Kate–Zaverucha–Goldberg polynomial commitment scheme [23] combined with the Fiat-Shamir heuristic
in the ROM. However, such a commitment scheme relies on structured reference strings (SRS) that embed
a trapdoor, thus requiring trust to ensure the trapdoor is not leaked. Indeed, in GKPW24, revealing the
trapdoor can undermine even the semantic security of the scheme. Moreover, its security is proven in the
generic group model, which is viewed as less robust than the standard model and ROM. Note that all the
constructions mentioned earlier, including our TKEM, are secure against selective CCA.

Threshold Signatures: Extensive research has extended Schnorr signatures to construct threshold signature
(TS) schemes, including [2,3,5,11,24,27,31], which are proven secure under the discrete logarithm problem
in the ROM. However, these schemes require a trusted setup, either by executing a distributed key generation
protocol or by designating a specific party to generate keys for all participants. Conversely, some pairing-
based TS schemes [12, 19] enable a silent setup setting, where keys are generated locally and the setup is
performed without interaction. Nevertheless, as in [20], a certain level of trust remains necessary to generate
an SRS. Another line of research has investigated lattice-based TS schemes for post-quantum security (e.g.,
[1, 8, 16, 17, 22, 26]), though none of these constructions achieve a transparent setup.

2 Preliminaries

In this section, we provide the necessary prior knowledge to understand our paper.

2.1 Notations

For n ∈ N, [n] denotes the set {1, . . . ,n}. For a,b ∈ Z such that a < b, [a,b] denotes the set {a, . . . ,b}. We
especially use Zp to denote [0, p] when p is a prime. A small bold letter means a vector, whereas a large bold

letter means a matrix. Given a vector v, v⊤ means the transposed v. The meaning of a $← S is the uniformly
random sampling of the element a from the set S.

2.2 Complexity Assumptions

Assumption 1. (Decisional Diffie-Hellman assumption, DDH). Let G be a cyclic group of prime order
p and g be a random generator of G. We say that the DDH assumption holds, if for any probabilistic
polynomial-time (PPT) algorithm A, the following advantage is negligible:

AdvDDH(λ ) := |Pr[A(G, p,g,gα ,gβ ,gαβ )] = 1 : g $←G,α,β
$← Zp]

−Pr[A(G, p,g,gα ,gβ ,D)] = 1 : g,D $←G,α,β
$← Zp]|
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2.3 Lagrange Interpolation

Lagrange interpolation is a way to recover shared secret values efficiently. Let f (γ) = ∑
t−1
j=0 s jγ

j be a (t−1)-
degree polynomial and let (γ1, f (γ1)), . . . ,(γn, f (γn)) be n points evaluated by the polynomial with n > t.
Given any t points out of the n points, we can recover the secret value s0 = f (0): Specifically, without
loss of generality, these t points are represented as (γ1, f (γ1)), . . . ,(γt , f (γt)). Then we can compute s0 =

∑i∈[t] f (γi)Li(0) where Li(0) = ∏ j∈[t], j ̸=i
−γ j

γi−γ j
is the Lagrange basis at the point 0.

2.4 Reed-Solomon Codes

Reed-Solomon codes are denoted as RSn+1,t [γ] for a vector γ = (γ0, . . . ,γn)
⊤ ∈ Zn+1

p , where t ∈ [n]. For each
(t − 1)-degree polynomial f (γ) = ∏

t−1
j=0 s jγ

j, we let s = (s0 . . . ,st−1)
⊤ ∈ Zt

p and f = ( f (γ0), . . . , f (γn))
⊤.

Then RSn+1,t [γ] consists of two matrices G =(γ j
i )i, j ∈Z(n+1)×t

p and H=( 1
∏ℓ∈[0,n],ℓ̸= j γ j−γℓ

γ i
j)i, j ∈Z(n−t+1)×(n+1)

p .
The former is a generator matrix since G · s = f, and the latter is a parity-check matrix since H ·G = 0. We
adopt such Reed-Solomon codes to verify that f was correctly generated by G, as in [15]. Note that f is
correctly generated only if the equation H · f = H ·G · s = 0 holds.

2.5 Non-Interactive Zero-Knowledge Proofs

Non-interactive zero-knowledge (NIZK) proofs are defined with an NP-language LR = {s ∈ {0,1}∗|∃w :
(s,w) ∈R}, whereR⊆ {0,1}∗×{0,1}∗ is efficiently recognizable relation. If s ∈ LR, then we call such a
s true statement for a witness w; otherwise, a false statement.

The NIZK proof system includes the following algorithms:

• Prove(CRS,s,w): It takes a common reference string CRS, a statement s, and a witness w as input,
and outputs a proof π .

• Verify(CRS,s,π): It takes a common reference string CRS, a statement s, and a proof π as input, and
outputs 1 when s is true and 0 otherwise.

Moreover, the NIZK-proof system should satisfy the following properties:

• Completeness: A verifier should successfully verify the proof generated by an honest prover who has
a witness.

• Soundness: For a false statement s, a cheating prover cannot falsely convince the honest verifier that
s is true.

• Zero-knowledge: There is a simulator S, not knowing a witness, which can generate a simulated proof
that is indistinguishable from a real one.

In the case of non-interactive zero knowledge of proof of knowledge (NIZK-PoK), the extractability is
stronger than the soundness, of which description is as follows:

• Extractability: Whenever a (potentially cheating) prover produces two valid proofs with respect to a
statement, an efficient extractor can extract the witness from the information available to the adversary.
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3 Dynamic TKEM with Transparent Setup

In this section, we introduce the definition and security models of a dynamic TKEM with transparent setup.
Hereafter, for the sake of clarity, we will refer to it simply as a TKEM unless otherwise stated. We then
propose our construction.

3.1 Definitions

We begin with the syntax of a TKEM. Our syntax is defined as a modification of dynamic TPKE [28], re-
sulting in the TKEM concept. To ensure a transparent setup, no secret information is embedded in the Setup
algorithm. Each user generates their own public and secret keys by running the KeyGen algorithm. The
Encap algorithm produces a ciphertext header and a session key based on the specified threshold numbers
t and n. Notably, an encapsulator (i.e., a user running the algorithm) can chooses t and n in advance each
time the the algorithm is run, thereby reflecting the dynamic threshold setting. Due to the CHVerify algo-
rithm, one can check if a given ciphertext header is well-formed or not. A legitimated user can decapsulate a
given ciphertext header by running the ShareDecaps algorithm, which yields a (decapsulated) share. Each
share can be verified through the ShareVerify algorithm. With a collection of t or more verified shares,
the Combine algorithm recovers and outputs the session key. These algorithms are formally described as
follows:

Definition 3.1 (Threshold Key Encapsulation Mechanism, TKEM). A TKEM consists of the following six
algorithms:

Setup(1λ )→ PP: The setup algorithm takes as input a security parameter λ and outputs the public param-
eters PP.

KeyGen(PP)→ (PK,SK): The key generation algorithm takes as input the public parameters PP, and it
outputs a public key PK and a private key SK.

Encaps(PP,PL, t)→ (CH,K): The encapsulation algorithm takes as input the public parameters PP, a list
of public keys PL = (PK1, . . . ,PKn), and a threshold value t. It outputs a ciphertext header CH and a
session key K.

CHVerify(PP,PL,CH)→ {0,1}: The ciphertext header verify algorithm takes as input the public param-
eters PP, a list of public keys PL = (PK1, . . . ,PKn), and a ciphertext header CH. It outputs 1 if a
ciphertext header is valid and 0 otherwise.

ShareDecaps(PP,PL,CH,SKi)→ µi: The share decapsulation algorithm takes as input the public param-
eters PP, a list of public keys PL = (PK1, . . . ,PKn), a ciphertext header CH, and a private key SKi. It
outputs a decapsulated share µi.

ShareVerify(PP,CH,µi,PKi)→ {0,1}: The share verification algorithm takes as input the public param-
eters PP, a ciphertext header CH, a decapsulated share µi, and a public key PKi. It outputs 1 if the
share is valid and 0 otherwise.

Combine(PP,PL,CH,{µi}i∈S)→ K: The combining algorithm takes as input the public parameters PP,
a list of public keys PL = (PK1, . . . ,PKn), a ciphertext header CH, and a set of decapsulated shares
{µi}i∈S. It outputs a session key K or ⊥.
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A TKEM is correct if the following conditions are satisfied: Let n and t be integers such that 1 ≤ t ≤ n.
For any PP generated by Setup(1λ ), any (PK1,SK1), . . . ,(PKn,SKn) generated by KeyGen(PP), and any
(CH,K) generated by Encaps(PP,PL, t) for PL = (PK1, . . . ,PKn), it is required that

• CHVerify(PP,PL,CH) = 1.

• For any PKi ∈ PL, we have that µi = ShareDecaps(PP,PL,CH,SKi) and ShareVerify(PP,CH,µi,
PKi) = 1.

• For any S= {i1, . . . , it}⊆ [n] such that |S|= t and PKi j ∈PL, we have that {µi = ShareDecaps(PP,PL,
CH,SKi)}i∈S and Combine(PP,PL,CH,{µi}i∈S) = K .

Now, we consider the IND-CCA security of a TKEM, implying that the adversary cannot obtain any in-
formation about a session key corresponding to a given ciphertext header. In the security game, a challenger
C provides an honest public key list to an adversary A. Then A submits a corrupted public key list to C.
Moreover, A has access to a share decapsulation oracle, which enables to obtain a share of the ciphertext
header. The goal of A is to distinguish between the real session key and a randomly chosen key. Further
details are as follows.

Definition 3.2 (IND-CCA Security). The IND-CCA security game, denoted as GIND-CCA
A , between a chal-

lenger C and an adversary A is demonstrated as follows:

Setup: C obtains PP by running Setup(1λ ) and gives PP to A. It generates (PK1,SK1), . . . ,(PKn1 ,SKn1)
for honest users by running KeyGen(PP). It then gives UH = {PK1, . . . ,PKn1} toA. Next,A submits
UC = {PKn1+1, . . . ,PKn1+n2} of corrupted users.

Query 1: To obtain shares for honest users, A can make a share decapsulation query that includes a
ciphertext header CH, a list of public keys PL = {PK′1, . . . ,PK′n} ⊆ UH ∪UC, and a public key PKi ∈
UH . If CHVerify(PP,PL,CH) ̸= 1, then C outputs ⊥. Otherwise, C returns a share µi that is obtained
by running ShareDecaps(PP,PL,CH,SKi) to A.

Challenge: A provides a list of challenge public keys PL∗ = {PK∗1 , . . . ,PK∗n∗} ⊆ UH ∪UC and a challenge
threshold t∗ ∈ [n∗] such that |PL∗ ∩ UC| ≤ t∗ − 1. C selects a random K∗0 and obtains (CH∗,K∗1 )
by running Encaps(PP,PL∗, t∗). Next, it chooses a random bit b ∈ {0,1} and gives the challenge
ciphertext tuple (CH∗,K∗b ) to A.

Query 2: A may additionally request share decapsulation queries and C handles these queries as in Query
1, except that A is not allowed to request a query for the challenge ciphertext header CH∗.

Guess: Finally, A submits a bit b′ ∈ {0,1}. C outputs 1 if b = b′. Otherwise, it outputs 0.

The advantage of A in the security parameter λ is defined as AdvIND-CCA
T KEM (λ ) =

∣∣Pr[GIND-CCA
A = 1]− 1

2

∣∣
where the probability is taken over all the randomness of the game. A TKEM is IND-CCA secure if for any
PPT adversary A, AdvIND-CCA

T KEM (λ ) is negligible.

Remark 1 (Selective IND-CCA). We proved our TKEM in the selective IND-CCA security model, where the
selective security is considered a weaker notion. The main difference between the selective security game
and the full security game (Definition 3.2) is that PL∗ is now defined as PL∗=PL∗C∪PL∗H . Here, PL∗C consists
of corrupted public keys chosen by A in the setup phase to be used in the challenge phase. Specifically, A
having PP submits a challenge threshold t∗ and PL∗C = {PL∗1, . . . ,PL∗t∗−1} to C. After receiving UH , A
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then submits PLR to C, such that PLR ∪PL∗C becomes UC (i.e., a list of corrupted public keys). During the
challenge phase, A submits PL∗H , which defines PL∗ as described. We denote the advantage of A in the
selective IND-CCA game as AdvSE-IND-CCA

T KEM .

The decapsulation consistency (DC) is also a crucial security requirement of a TKEM. The DC security
ensures that, for any valid shares generated from the same ciphertext header, their combination yields the
same session key. Similar to the IND-CCA security, an adversary A against DC may compromise some
public keys. Therefore, in the DC security game, A finally submits a ciphertext header and two distinct
sets of shares derived from the header. The goal of A is that all shares in both sets are valid, and their
combination results in different keys.

Definition 3.3 (DC Security). The DC security game, denoted as GDC
A , between a challenger C and an

adversary A is demonstrated as follows:

Setup: C obtains PP by running Setup(1λ ) and gives PP to A. It generates key pairs (PK1,SK1), . . . ,
(PKn1 ,SKn1) for honest users by running KeyGen(PP). It then gives UH = {PK1, . . . ,PKn1} to A.
Next, A submits UC = {PKn1+1, . . . ,PKn1+n2} of corrupted users.

Query: To obtain shares for honest users,A can make a share decapsulation query that includes a ciphertext
header CH, a list of public keys PL = {PK1, . . . ,PKn} ⊆ UH ∪UC, and a public key PKi ∈ UH . Then
C returns a share µi that is obtained by running ShareDecaps(PP,PL,CH,SKi) to A.

Forge: Finally, A outputs a ciphertext header CH∗ for a list of public keys PL∗ = {PK∗1 , . . . ,PK∗n∗} ⊆
UH ∪UC and a threshold t∗ ∈ [n∗], and two sets of decapsulated shares {µi}i∈S and {µ ′j} j∈S′ such that
t∗ ≤ |S| = |S′| ≤ n∗ and S,S′ ⊆ [n∗]. C outputs 1 if the following three conditions are satisfied: 1)
Combine(PP,PL∗,CH∗,{µi}i∈S) ̸= Combine(PP,PL∗,CH∗,{µ ′j} j∈S′), 2) for all i ∈ S and all j ∈ S′,
ShareVerify(PP,CH∗,µi,PK∗i ) = 1∧ShareVerify(PP,CH∗,µ ′j,PK∗j ) = 1, and 3) CHVerify(PP,PL∗,
CH∗) = 1. Otherwise, it outputs 0.

The advantage ofA in the security parameter λ is defined as AdvDC
T KEM(λ ) = Pr[GDC

A = 1] where the proba-
bility is taken over all the randomness of the game. A TKEM is DC secure if for any PPT adversary A, the
advantage of A is negligible.

3.2 Proposed TKEM

3.2.1 High-level description

To construct our TKEM, we begin by combining the ElGamal PKE scheme and Fiat-Shamir transformed
NIZK-proof systems. Let the public key and the secret key of a user (indicated by idxi) be PKi = Xi = gxi

and ski = xi, respectively. Due to the dynamic setting, an encapsulator chooses threshold values t and n to
define a (t−1)-degree polynomial f (γ) = ∑

t−1
j=0 s jγ

j. Consider that each f (idxi) is a share for reconstructing
the secret s0 = f (0). We have the following structure:

C = (K ·gs0 ,gr,{Ai = g f (idxi) ·X r
i }i∈[n]),

where K is a session key hidden with gs0 and the tuple (gr,Ai) is an ElGamal ciphertext of g f (idxi) under
Xi. Using the Lagrange interpolation, one can derive gs0 from at least t shares included in g f (idxi). These
shares in exponent can be obtained by eliminating X r

i = (gr)xi through the ElGamal decryption process.
However, since the employed ElGamal scheme is not secure against IND-CCA, the structure of C inherits
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this weak security. We therefore apply the Naor-Yung transformation [25] to the encryption scheme, which
is a classical solution for achieving CCA-security. This transformation results in the double key setting
where PKi = (Xi = gxi ,Yi = gyi) and ski = (xi,yi). Consequently, the elements {Bi = g f (idxi) ·Y r

i }i∈[n] are
additionally included in C. Now, it is required to prove that (K ·g f (0),gr,{Ai,Bi}) is well-formed. However,
this is not easily done due to the structure involving merged the double ElGamal ciphertexts with the hidden
session key. To address this, we adopt the approach of Mcfly [15] by letting K = hr. This allows us to use
NIZK-WF (see Chapter 3.3.2), an efficient Fiat-Shamir transformed NIZK system that proves the same r is
used in the exponent, thereby ensuring the well-formedness that we require. Note that the public parameter
for this NIZK can be publicly generated, and hence, no trapdoor is embedded therein.

For additional security reasons, we require two NIZK systems: NIZK-PoK (see Chapter 3.3.1) that
proves knowledge of discrete logarithms and NIZK-EDL (see Chapter 3.3.3) that proves the equality of
discrete logarithms. Regarding IND-CCA, our security proof must use secret keys of corrupted users to
generate a challenge ciphertext header, but these keys are committed and submitted by an adversary. There-
fore, extractions of the secrets are necessary from proofs of knowledge. To be DC secure, each share
(encrypted under PKi) should be obtained by following the decryption with ski, and if so, X r

i = Ai/g f (idxi)

can be computed correctly. This is ensured by checking the equality of the discrete logarithms of Xi and X r
i

on g and gr, respectively.

3.2.2 Construction

Our TKEM is described as follows:

TKEM.Setup(1λ ): It first generates a cyclic group G of prime order p with a random generator g ∈ G. It
selects a random element h ∈ G. Next, it chooses four hash functions H0,H1,H2,H4 : {0,1}∗→ Zp

and H3 : {0,1}∗→ Zℓ
p. Finally, it outputs public parameters PP = (p,G,g,h,H0,H1,H2,H3,H4). We

implicitly set CRSPoK = (p,G,g,H1) and CRSWF = (p,G,g,h,H2,H3).

TKEM.KeyGen(PP): It first selects random exponents x,y ∈ Zp and computes X = gx and Y = gy. It gen-
erates a proof π = NIZK-PoK.Prove(CRSPoK ,(X = gx ∧Y = gy),(x,y)) for the proof of knowledge
(x,y). Finally, it outputs a public key PK = (X ,Y,π) and a private key SK = (x,y).

TKEM.Encaps(PP,PL, t): Let PL = {PK1, . . . ,PKn} where PKi = (Xi,Yi,πi). It proceeds as follows:

1. For each πi ∈ PKi, it checks that NIZK-PoK.Verify(CRSPoK ,(X = gx∧Y = gy),πi) = 1. If one
of these checks fails, it outputs ⊥.

2. It chooses random exponents s0, . . . ,st−1 ∈ Zp and defines a (t− 1)-degree polynomial f (γ) =
∑

t−1
j=0 s j · γ j such that f (0) = s0.

3. For PKi ∈ PL, it calculates H0(PKi) = idxi and f (idxi).

4. It selects random exponent r ∈ Zp and builds CL = (C1,C2,(A1,B1), . . . ,(An,Bn), t) such that
C1 = hrgs0 ,C2 = gr, Ai = g f (idxi)X r

i , and Bi = g f (idxi)Y r
i for all i ∈ [n].

5. Next, it generates a proof ψ =NIZK-WF.Prove(CRSWF ,(CL,PK1, . . . ,PKn)
1,r) for the well-

formedness of CL.

6. Finally, it outputs a ciphertext header CH = (CL,ψ) and a session key K = hr.
1This is an informal statement meaning that CL is well-formed with respect to PK1, . . . ,PKn. A formal description is provided

in Section 3.3.2
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TKEM.CHVerify(PP,PL,CH): : Let PL = {PK1, . . . ,PKn} and CH = (CL,ψ), where CL = (C1,C2,(A1,
B1), . . . ,(An,Bn), t). It outpus 1 if NIZK-WF.Verify(CRSWF ,(CL,PK1, . . . ,PKn),ψ) = 1 and 0 other-
wise.

TKEM.ShareDecaps(PP,PL,CH,SKi) : Let PL = {PK1, . . . ,PKn} and CH = (CL,ψ), where CL = (C1,
C2,(A1,B1), . . . ,(An,Bn), t), and SKi = (xi,yi). To decapsulate a share, it proceeds as follows:

1. It implicitly sets CRSEDL = (p,G,g,C2,H4).

2. It computes Di = Ai ·(C2)
−xi and generates a proof σi = NIZK-EDL.Prove(CRSEDL,(Xi = gxi ∧

Ai/Di = (gr)xi ∧Yi = gyi ∧Bi/Di = (gr)yi),(xi,yi)) for the equality of discrete logarithms.

3. Finally, it outputs a decapsulated share µi = (Di,σi).

TKEM.ShareVerify(PP,CH,µi,PKi) : Let CH = (CL,ψ), where CL = (C1,C2,(A1,B1), . . . ,(An,Bn), t),
µi =(Di,σi), and PKi =(Xi,Yi,πi). It implicitly sets CRSEDL =(p,G,g,C2,H4). If NIZK-EDL.Verify
(CRSEDL,(Xi = gxi ∧Ai/Di = (gr)xi ∧Yi = gyi ∧Bi/Di = (gr)yi),σi) = 1, then outputs 1. Otherwise it
outputs 0.

TKEM.Combine(PP,PL,CH,{µi}i∈S) : Let PL = {PK1, . . . ,PKn} and CH = (CL,ψ), where CL = (C1,
C2,(A1,B1), . . . ,(An,Bn), t), µi = (Di,σi), and |S|= t. To derive a session key, it proceeds as follows:

1. It outputs a session key K = C1 ·∏ j∈S D−L j(0)
j where L j(0) = ∏k∈S,k ̸= j(−idxk)/(idx j− idxk) is

a Lagrange coefficient.

The correctness of our TKEM is given by the completeness of used NIZK proof systems and the follow-
ing equation:

C1 ·∏
j∈[t]

D−L j(0)
j = hrg f (0) ·∏

j∈S
(g f (idx j))−L j(0) = hrg f (0) ·g∑ j∈S− f (idx j)L j(0)

= hrg f (0) ·g− f (0) = hr = K.

Remark 2. Note that this setup algorithm can be transparent by ensuring that such generations do not
require any secret information. Specifically, the generation for (g,G) is deterministic and public, and the
element h can be generated by a map-to-point hash function. This can be publicly verified given the specifi-
cation of the function.

Remark 3. Since our TKEM supports a full dynamic property, the threshold parameters (t,n) are determined
by the encapsulator. In practice, the output lengths of H3 and a parity check matrix H are decided based on
(t,n). Furthermore, both the verifier and the decapsulator can use (t,n) to generate the same H3 and H as
used by the encapsulator.

3.3 Underlying NIZK

In this section, we describe three underlying NIZK proof systems that are constructed using the Fiat-Shamir
transformation in the random oracle model: NIZK-PoK, NIZK-WF, and NIZK-EDL. Notably, our NIZK-
WF system is a modification of [15] eliminating the need for pairings, whereas the other systems rely on
the well-known NIZK system for a generalized representation [7]. Thus, we carefully demonstrate that the
NIZK-WF satisfies all properties described in Section 3.3. In the following description, the notations used
retain the same meanings as previously defined.
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3.3.1 NIZK for the Proof of Knowledge (NIZK-PoK)

The underlying NIZK-PoK system for the relationRPoK =
{
(sPoK ,wPoK)

}
, where sPoK = (X = gx∧Y = gy)

and wPoK = (x,y), is described as follows:

NIZK-PoK.Prove(CRSPoK ,sPoK ,wPoK): Let CRSPoK = (p,G,g,H1). It first selects random exponents
r1,r2 ∈ Zp to compute R1 = gr1 and R2 = gr2 . Next, it obtains e = H1(X ,Y,R1,R2) and calculates
z1 = r1 + ex and z2 = r2 + ey. It outputs a proof π = (e,z1,z2).

NIZK-PoK.Verify(CRSPoK ,sPoK ,π): For π = (e,z1,z2), it computes R1 = gz1 ·X−e and R′2 = gz2 ·Y−e and

checks e ?
= H1(X ,Y,R1,R2). If this check succeeds, it outputs 1. Otherwise, it outputs 0.

According to [7], the NIZK-PoK system guarantees the properties of completeness, zero-knowledge, and
extractability. Here, as mentioned in Section 3.3, the extractability is considered rather than the soundness.

3.3.2 NIZK for the Proof of Well-Formedness (NIZK-WF)

Let a list of ciphertext elements be denoted as CL = (C1,C2,(A1,B1), . . . ,(An,Bn), t) such that C1 = hrg f (0),
C2 = gr,Ai = g f (idxi)X r

i , and Bi = g f (idxi)Y r
i . We say that CL is well-formed for our TKEM if and only if the

following conditions are satisfied:

1. The same exponent r is used for all elements in CL.

2. For all i ∈ [n], both Ai and Bi are ElGamal ciphertexts of the same f (idxi).

3. Each f (idxi) is a valid secret share of the secret f (0).

Fortunately, the conditions 1 and 2 might be handled with the existing techniques for NIZK-EDL and for the
double ElGamal encryption with the shared randomness, respectively. We thus focus on the final condition:
By the Reed-Solomon (RS) codes, anyone given (0, idx1, . . . , idxn) can obtain a parity check matrix H ∈
Z(n−t+1)×(n+1)

p such that H · f = 0, where f = ( f (0), f (idx1), . . . , f (idxn))
⊤. Assume that a vector v∈Zn−t+1

p

has the uniformly random distribution via the random oracle. The fact that v⊤ ·H · f = v⊤ ·0 = 0 implies that
secret shares are all valid with overwhelming probability. Based on these, there is a way to check whether f is
composed of valid secret shares: From CL and w = (w0, . . . ,wn)

⊤, we can derive the following components:

CA =Cw0
1

n

∏
i=1

Awi
i , CB =Cw0

1

n

∏
i=1

Bwi
i , HA = hw0

n

∏
i=1

Xwi
i , HB = hw0

n

∏
i=1

Y wi
i . (1)

Assume that hr in C1, X r
i in Ai, and Y r

i in Yi are well-formed, which partially satisfies the condition 1 above.
We then have the following relations:

CA = (hrg f (0))w0
n

∏
i=1

(g f (idxi)X r
i )

wi = (hw0
n

∏
i=1

Xwi
i )rg f (0)w0+∑

n
i=1 f (idxi)wi = Hr

A ·gw⊤f,

CB = (hrg f (0))w0
n

∏
i=1

(g f (idxi)Y r
i )

wi = (hw0
n

∏
i=1

Y wi
i )rg f (0)w0+∑

n
i=1 f (idxi)wi = Hr

B ·gw⊤f.

If we set w⊤ = v⊤ ·H then w⊤ · f = v⊤ ·H · f = 0, which results in CA = Hr
A ∧CB = Hr

B. Let Pi = Ai/Bi

and Qi = Xi/Yi for all i ∈ [n]. The remaining condition (including the condition 2) is now ensured by
C2 = gr ∧Pi = Qr

i for the same r. Consequently, we only need to verify that the exponent r is consistently
used for g, HA, HB, and Pi, thereby completing the verification of all conditions simultaneously. To formally
prove this argument, we provide the following lemma.
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Lemma 3.1. Let CL = (C1,C2,(A1,B1), . . .(An,Bn), t) be a list of ciphertext elements. If there exists an
exponent r such that (C2 = gr∧CA = Hr

A∧CB = Hr
B∧P1 = Qr

1∧ . . .∧Pn = Qr
n), then CL is well-formed with

probability of at least 1−3/p.

Proof. We demonstrate that if CL is not well-formed, then such an exponent r exists with negligible proba-
bility. Consider that CL is defined as

(
hr0g f0(0),gr,(g f1(idx1)X r1

1 ,g f ′1(idx1)Y r′1
1 ), . . . ,(g fn(idxn)X rn

n ,g f ′n(idxn)Y r′n
n ), t

)
.

If, for all i∈ [n], the event E1 where r = ri = r′i and the event E2 where f0 = fi = f ′i occur together, CL is con-
sidered well-formed. Hence, when CL is not well-formed, there are three distinct cases: (Case 1) ¬E1∧¬E2,
(Case 2) ¬E1∧E2, and (Case 3) E1∧¬E2.

In Case 1, from the equations in (1), the equation loggCA− logg Hr
A = 0 gives the following:

loggCA− logg Hr
A = logg h ·w0 · r0 +w0 · f0(0)+

n

∑
i=1

wi(xiri + fi(idxi))− (logg h ·w0 +
n

∑
i=1

wixi) · r

= (logg h · r0 + f0(0)− logg h · r) ·w0 +
n

∑
i=1

(xiri + fi(idxi)− xir) ·wi = 0. (2)

Similarly, we have the following equation:

loggCb− logg Hr
b = (logg h · r0 + f0(0)− logg h · r) ·w0 +

n

∑
i=1

(yir′i + f ′i (idxi)− yir) ·wi = 0. (3)

To achieve CA = Hr
A and Cb = Hr

b without controlling the random oracle H3, all of terms in (2) and (3) must
be zero. This is because w = (w0, . . . ,wn)

⊤ was determined by v = H3(CL). However, in this way, CL
has the structure (hr,gr,{X r

i ,Y
r
i }, t), which is still well-formed with respect to the zero polynomial (i.e., all

coefficients are zero). This contradicts the assumption that CL is not well-formed. Hence, there must be at
least one non-zero term in (2). This implies that CA = Hr

A holds with a probability of at most 1/p (due to the
Schwartz-Zippel Lemma [29, 32]).

In Case 2, we can have f0(0)w0 +∑
n
i=1 fi(idxi)wi = 0, i.e., w⊤ · f = 0, where f = ( f0(0), f1(idx1), . . . ,

fn(idxn)). Hence, the equation (2) can be simplified as (logg h · r0− logg h · r) ·w0 +∑
n
i=1(xiri−xir) ·wi = 0,

where at least one non-zero term exists, because E1 does not happen. Therefore, CA = Hr
A holds with

probability of at most 1/p.
In Case 3, assuming that Pi = Ai/Bi = (Xi/Yi)

r = Qr
i , we have fi(idxi) = f ′i (idxi) as

logg Pi− logg Qr
i = ( fi(idxi)+ xiri− f ′i (idxi)− yir′i)− r(xi− yi) = fi(idxi)− f ′i (idxi) = 0.

From this, there must some i such that f0 ̸= fi of f (defined as before). Let H be a parity check matrix of
the RS codes, with respect to f′ = ( f (0), f (idx1), . . . , f (idxn))

⊤, where f = f0. Then CA = Hr
A results in

w⊤ · f = v⊤ ·H · f = 0 with f ̸= f′. However, this holds when the randomly sampled v unfortunately leads to
this equality. The probability that such a bad v is sampled is at most 1/p.

Based on these, for the underlying NIZK-WF system, we can define the relationRWF =
{
(sWF ,wWF)

}
,

where sWF = (C2 = gr ∧CA = Hr
A ∧CB = Hr

B ∧ P1 = Qr
1 ∧ . . .∧ Pn = Qr

n) and wWF = r. However, for
the sake of simplicity in our TKEM explanation, we informally define the alternative statement s′WF =
(CL,PK1, . . . ,PKn) to mean that CL is well-formed with respect to PK1, . . . ,PKn. In this way, the following
proving and verification algorithms of the NIZK-NF system start by computing CA, CB, and {Pi,Qi}.
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NIZK-WF.Prove(CRSWF ,s′WF ,wWF): Let CRSWF = (p,G,g,h,H2,H3), CL = (C1,C2,(A1,B1), . . . ,(An,
Bn), t) ∈ s′WF , and PKi = (Xi,Yi,πi) ∈ s′WF . To generate a proof, it proceeds as follow:

1. It prepares a parity check matrix H ∈ Z(n−t+1)×(n+1)
p of the RS codes. Next, it obtains a random

vector v = H3(CL,n− t +1) ∈ Zn−t+1
p and computes w⊤ = v⊤ ·H where w = (w0, . . . ,wn)

⊤.
2. It computes CA =Cw0

1 ∏
n
i=1 Awi

i , CB =Cw0
1 ∏

n
i=1 Bwi

i , HA = hw0 ∏
n
i=1 Xwi

i , and HB = hw0 ∏
n
i=1Y wi

i .
3. It computes Pi = Ai/Bi and Qi = Xi/Yi for i ∈ [n].
4. It selects random u ∈ Zp and sets U = gu,UA = Hu

A,UB = Hu
B, and Ui = Pu

i for i ∈ [n].
5. And it obtains e = H2(CL,CA,CB,HA,HB,(P1,Q1), . . . ,(Pn,Qn),U,UA,UB,U1, . . . ,Un).
6. It calculates z = u+ er and outputs a proof ψ = (e,z).

NIZK-WF.Verify(CRSWF ,s′WF ,ψ): Let CL = (C1,C2,(A1,B1), . . . ,(An,Bn), t), PKi = (Xi,Yi,πi), and ψ =
(e,z). It proceeds as follows;

1. It prepares a parity check matrix H ∈ Z(n−t+1)×(n+1)
p of the RS codes. It obtains a random vector

v = H3(CL,n− t +1) ∈ Zn−t+1
p and computes w⊤ = v⊤ ·H where w = (w0, . . . ,wn)

⊤.
2. It computes CA =Cw0

1 ∏
n
i=1 Awi

i , CB =Cw0
1 ∏

n
i=1 Bwi

i , HA = hw0 ∏
n
i=1 Xwi

i , and HB = hw0 ∏
n
i=1Y wi

i .
3. It computes Pi = Ai/Bi and Qi = Xi/Yi for i ∈ [n].
4. It computes U ′ = gz ·C−e

2 , U ′A = Hz
A ·C

−e
A ,U ′B = Hz

B ·C
−e
B , and U ′i = Qz

i ·P
−e
i for i ∈ [n].

5. It checks e ?
= H2(CL,CA,CB,HA,HB,(P1,Q1), . . . ,(Pn,Qn),U ′,U ′A,U

′
B,U

′
1, . . . ,U

′
n).

6. If the check succeeds, it outputs 1. Otherwise, it outputs 0.

Completeness. Let f = ( f (0), f (idx1), . . . , f (idxn))
⊤ be a vector of polynomial values that are honestly

generated and embedded in ciphertext elements CL. We have v⊤ ·H ·f=w⊤ ·f= f (0)w0+∑
n
i=1 f (idxi)wi = 0

since H · f = 0 where H is the parity check matrix. Thus, we obtain the following equations

CA =Cw0
1

n

∏
i=1

Awi
i =

(
hrg f (0))w0

n

∏
i=1

(
g f (idxi)X r

i
)wi =

(
hw0

n

∏
i=1

Xwi
i

)rg f (0)w0+∑
n
i=1 f (idxi)wi = Hr

A,

CB =Cw0
1

n

∏
i=1

Bwi
i =

(
hrg f (0))w0

n

∏
i=1

(
g f (idxi)Y r

i
)wi =

(
hw0

n

∏
i=1

Y wi
i

)rg f (0)w0+∑
n
i=1 f (idxi)wi = Hr

B,

Qi = Ai/Bi = (g f (idxi)X r
i )/(g f (idxi)Y r

i ) = (Xi/Yi)
r = Pr

i for i ∈ [n].

If e = H2(CL,CA,CB,HA,HB,(Q1,P1), . . . ,(Qn,Pn),U,UA,UB,U1, . . . ,Un) and z = u+ er, then it is easy to
check that the following verification equations are satisfied as

gz = gu · (gr)e =U ·Ce
2, Hz

A = Hu
A · (Hr

A)
e =UA ·Ce

A, Hz
B = Hu

B · (Hr
B)

e =UA ·Ce
B,

Qz
i = Qu

i · (Qr
i )

e =Ui · ((Xi/Yi)
r)e =Ui · (Pi)

e for i ∈ [n].

Soundness. Due to Lemma 3.1, the NIZK-WF system essentially proves the equality of discrete logarithms,
as in our NIZK-EDL system. Therefore, according to [7], it is clear that this system guarantees the soundness
property.

Zero-Knowledge. This property can be easily achieved for a simulated proof ψ = (U,UA,UB,U1, . . . ,Un,z)
if a simulator first selects random exponents e,z ∈ Zp and sets elements U = gz ·C−e

2 , UA = Hz
A ·C

−e
A , UB =

Hz
B ·C

−e
B and Ui = Qz

i ·P
−e
i for i ∈ [n] by programming the random oracle. This simulated proof is identically

distributed to the real one.

13



Table 2: Differences between Hybrid games from G0 to G5

Game
Session Key Ciphertext Header

NIZK
Decap.

K∗0 K∗1 C∗1 B∗t∗ . . . B∗n∗ Keys

G0 R hr hrg f (0) g f (idxt∗ )Y r
t∗ . . . g f (idxn∗ )Y r

n∗ Real xi

G1 R hr hrg f (0) g f (idxt∗ )Y r
t∗ . . . g f (idxn∗ )Y r

n∗ Sim xi

G2 R hr hrg f (0) Rt∗ . . . Rn∗ Sim xi

G3 R hr hrg f (0) Rt∗ . . . Rn∗ Sim yi

G4 R hr R1 Rt∗ . . . Rn∗ Sim yi

G5 R R0 R1 Rt∗ . . . Rn∗ Sim yi

In our selective IND-CCA security proof, a challenge ciphertext header CH∗ = ((C∗1 ,C
∗
2 ,(A

∗
1,B
∗
1),

. . . ,(A∗n∗ ,B
∗
n∗), t

∗),ψ∗) related a session key K∗b (b ∈ {0,1}) changes from game G0 to G5, with the vary-
ing components indicated by grey boxes. Each of R,R0, . . .Rn∗ denotes random replacement. In the NIZK

column, Real indicates that all NIZK proofs given to an adversary are generated as real ones, while Sim in-
dicates that they are generated by a zero-knowledge simulator. The Decap.keys column represents the secret
key used to respond to share decapsulation queries. Components not shown in the table remain unchanged.

3.3.3 NIZK for the Proof of Equality of Discrete Logarithms (NIZK-EDL)

The underlying NIZK-EDL system for the relationREDL =
{
(sEDL,wEDL)

}
, where sEDL = (X1 = gx∧X2 =

gx
2∧Y1 = gy∧Y2 = gy

2) and wEDL = (x,y), is described as follows:

NIZK-EDL.Prove(CRSEDL,sEDL,wEDL): Let CRSEDL = (p,G,g,g2,H4). It first select random exponents
u,v ∈ Zp and sets U1 = gu,U2 = gu

2, V1 = gv,V2 = gv
2. Next, it obtains e = H4(g,g2,X1,X2,Y1,Y2,U1,

U2,V1,V2) and calculates z1 = u+ ex and z2 = v+ ey. It outputs a proof σ = (e,z1,z2).

NIZK-EDL.Verify(CRSEDL,sEDL,σ): Let σ = (e,z1,z2). It computes U ′1 = gz1 · X−e
1 , U ′2 = gz1

2 · X
−e
2 ,

V ′1 = gz2 ·Y−e
1 , and V ′2 = gz2 ·Y−e

2 and checks that e ?
= H4(g,g2,X1,X2,Y1,Y2,U1,U2,V1,V2). If the

check succeeds, it outputs 1. Otherwise, it outputs 0.

Since the NIZK-EDL system can be derived from [7], this system guarantees the properties of completeness,
zero-knowledge, and soundness.

4 Security Analysis

In this section, we prove that our TKEM, proposed in Section 3.2, guarantees the selective IND-CCA secu-
rity and the DC security.

Theorem 4.1. The proposed TKEM is selective IND-CCA secure if the DDH assumption holds, the underly-
ing NIZK systems are zero-knowledge, the NIZK-EDL is sound, and hash functions are modeled as random
oracles.
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Proof. To prove the selective IND-CCA security of our TKEM, we define a sequence of hybrid games
G0,G1, . . . ,G5. As shown in Table 2, G0 is the original game defined in Definition 3.2, where an adversary
A aims to distinguish which of {K∗b}b∈{0,1} is associated with a given ciphertext header CH∗. We will show a
gradual change from the initial game G0 to the final game G5, which is not detectable by any PPT algorithm
(i.e., a distinguisher). In G5, the challenged CH∗ is independent of both K∗0 and K∗1 . From the adversary’s
standpoint, there is no information that could break this security.

Let CH∗ be composed of ((C∗1 ,C
∗
2 ,{A∗i ,B∗i }n∗

i=1, t
∗),ψ∗) and let Si be the event that Gi outputs 1. The

detailed descriptions of hybrid games are given as follows:

Game G0: This game G0 is the original game. Thus, we obtain the following equation

AdvSE-IND-CCA
T KEM (λ ) =

∣∣Pr[S0]−1/2
∣∣.

Game G1: This game G1 is the same as G0 except that proofs all NIZK proofs are replaced by simulated
proofs that are generated without the corresponding witness. By the zero-knowledge property of each
NIZK system, we obtain the following inequation∣∣Pr[S1]−Pr[S0]

∣∣≤ AdvZK
NIZK-PoK(λ )+AdvZK

NIZK-WF(λ )+AdvZK
NIZK-EDL(λ ).

Game G2: This game G2 is the same as G1 except that {Bi}i∈[t∗,n∗] in CH∗ are replaced by {Ri}i∈[t∗,n∗],

respectively, where Ri
$←G. From Lemma 4.2, we have the following inequation∣∣Pr[S2]−Pr[S1]

∣∣≤ AdvDDH(λ ).

Game G3: This game G3 is the same as G2 except for handling a share decapsulation query of (CH,PL,PKi).
To respond this query, CH is now decapsulated by using yi ∈ SKi, instead of xi. This modification is
detectable if A creates a particular CH = (. . . ,(Ai,Bi), . . .) where Bi does not mirror Ai, but passes
the CHVerify algorithm. However, this is possible with negligible probability due to the soundness
property of NIZK-WF. Hence, we have the following inequation∣∣Pr[S3]−Pr[S2]

∣∣≤ AdvSound
NIZK-WF(λ ).

Game G4: This game G4 the same as G3 except that C1 in CH∗ is replaced by R1
$←G. From Lemma 4.3,

we obtain the following inequation∣∣Pr[S4]−Pr[S3]
∣∣≤ AdvDDH(λ ).

Game G5: This game G5 is the same as G4 except that K∗1 is set to R0
$←G. From Lemma 4.4, we obtain

the following inequation ∣∣Pr[S5]−Pr[S4]
∣∣≤ AdvDDH(λ ).

In this final game G5, the advantage of A is zero, and we thus have Pr[S5]−1/2 = 0.

By combining all together, we can obtain the following inequation that bounds the advantage of A as

AdvSE-IND-CCA
T KEM (λ ) =

∣∣Pr[S0]−1/2
∣∣≤ 5

∑
k=1

∣∣Pr[Sk−1]−Pr[Sk]
∣∣+ ∣∣Pr[S5]−1/2

∣∣
≤ AdvZK

NIZK-PoK(λ )+AdvZK
NIZK-WF(λ )+AdvZK

NIZK-EDL(λ )+AdvSound
NIZK-WF(λ )+3AdvDDH(λ ).

This completes the proof.
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Lemma 4.2. If the DDH assumption holds, then no PPT algorithm can distinguish between G1 and G2.

Proof. Given a DDH tuple (g, ĝ1 = gα , ĝ2 = gβ ,D), we can construct a reduction R that serves as a chal-
lenger to an adversary A in the selective IND-CCA security game. R interacts with A as follows:

Setup: R randomly chooses r̂ ∈ Zp to compute h = gr̂. R generates public parameters PP = (p,G,g,h,H0,
H1,H2,H3,H4) as in the real scheme, except that these hash functions are modeled as random oracles. After
R sends PP to A, the adversary responds with t∗ and PL∗C such that |PL∗C|= t∗. R first sets UH as empty. R
generates each public key PKi of honest users as follows:

1. It chooses xi,ρi,1,ρi,2 ∈ Zp randomly and stores them to deal with the challenge phase.

2. It computes Xi = gxi and Yi = ĝρi,1
1 gρi,2 .

3. It simulates a proof πi of NIZK-PoK.

4. It adds PKi = (Xi,Yi,πi) to UH .

Clearly, |UH | is polynomially bounded. Upon receiving UH from R, A submits PLR leading to a public key
list UC of corrupted users, such that UC = PL∗C ∪PLR. For PK j = (X j,Yj,π j) ∈ UC, if any π j is invalid, R
returns ⊥. Otherwise,R extracts and stores the witness (x j,y j) corresponding to π j. During the simulation,
yi ∈ SKi is implicitly set to yi = αρi,1 +ρi,2, where a is unknown to R. Since ρi,1 and ρi,2 are both chosen
randomly and independently of A, this yi is indistinguishable from the real one.

Query 1: The hash oracles are managed by returning a random value for a new input, without simulat-
ing NIZK proofs. When A requests a share decapsulation query for (PL,CH,PKi), where CHVerify(PP,
PL,CH) = 1 and PKi ∈ UH ,R returns µi = ShareDecaps(PP,PL,CH,SKi) using xi ∈ SKi, as a response.

Challenge: A first sends PL∗H ∈ UH and t∗. Let PL∗ = PL∗C ∪PL∗H be rewritten by {PK∗1 , . . . ,PK∗n∗}. For
all PK∗i , R obtains H0(PK∗i ) = idx∗i . R then randomly picks s0, . . . ,st∗−1 ∈ Zp and generates a (t∗ −
1)-degree polynomial f (γ) = ∑

t∗−1
j=0 s jγ

j. The challenge ciphertext header CH∗ = (C∗1 ,C
∗
2 ,(A

∗
1,B
∗
1), . . . ,

(A∗n∗ ,B
∗
n∗), t

∗,ψ∗) is generated as follows:

1. It computes C∗1 = ĝr̂
2gs0 and C∗2 = ĝ2.

2. For i ∈ [n∗], it computes A∗i = g f (idx∗i )ĝxi
2 .

3. For i ∈ [t∗−1], it computes B∗i = g f (idx∗i )ĝyi,1
2 . For i ∈ [t∗,n∗], it computes B∗i = g f (idx∗i )Dρi,1 ĝρi,2

2

4. It simulates a proof ψ∗ of NIZK-WF.

ThenR flips a bit b ∈ {0,1} to produce a session key that is a random element K∗0 ∈G (if b̂ = 0) or K∗1 = ĝr̂
2

(otherwise). R finally sends both CH∗ and K∗b to A.

Query 2: Same as Query 1 with the restriction that CH∗ cannot be asked as a share decapsulation query.

Guess: At the end, A outputs a guess b′ ∈ {0,1}.

If D = gab, R simulates G1. This is because for i ∈ [t∗,n∗], we have B∗i = g f (idx∗i )Dρi,1 ĝρi,2
2 = g f (idx∗i )

gαβρi,1+βρi,2 = g f (idx∗i )Y β

i . Otherwise, each B∗i , where i∈ [t∗,n∗], has a random distribution that is independent
of each other. Thus, R simulates G2. Based on this, any distinguisher G1 and G2 can be converted into a
DDH solver, and thereby, |Pr[S1]−Pr[S2]| ≤ AdvDDH(λ ).
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Lemma 4.3. If the DDH assumption holds, then no PPT algorithm can distinguish between G3 and G4.

Proof. Let R be a reduction acting as a challenger to a selective IND-CCA adversary A. R interacts with
A as follows:

Setup: R first generates PP = (G, p,g,h,H0,H1,H2,H3,H4), where h = gr̂ for r̂ $← Zp, the hash func-
tions are modeled as random oracles, and the other components are as in the real scheme. Given PP,
A submits t∗ and PL∗C = {PK∗1 , . . . ,PK∗t∗−1}. After that, for i ∈ [t∗− 1], R sets H0(PK∗i ) = idx∗i , where
idx∗i is chosen at random, by programming the random oracle. R then computes the Lagrange basis

L∗i (γ) =
γ

idx∗i
∏ j∈[t∗−1]\{i}

γ−idx∗j
idx∗i−idx∗j

and also computes L∗0(γ) = ∏ j∈[t∗−1]
γ−idx∗j
−idx∗j

. Let UH be an empty set.
R proceeds as follows:

1. It chooses random yi,ρi ∈ Zp and stores them to deal with the challenge phase.

2. It computes Xi = ĝL∗0(idxi)
1 gρi and Yi = gyi .

3. It simulates a proof πi of NIZK-PoK.

4. It adds PKi = (Xi,Yi,πi) to UH

In this way, althoughR does not know xi = L∗0(idx∗i )α +ρi, this is well simulated as ρi is uniformly random
from A’s point of view. Once the generation of UH is completed, R sends it to A. In response, PLR is
provided by A, which results in UC = PL∗C ∪PLR. For each PK j = (X j,Yj,π j) ∈ UC, if π j is valid, R could
obtain the corresponding witnesses (x j,y j) by extraction of the proofs. Otherwise,R outputs ⊥.

Query 1: When A requests for some new input to the hash oracles, R returns a random value, except
when simulating the NIZK proofs. To respond to a share decapsulation query for (PL,CH,PKi), where
CHVerify(PP,PL,CH) = 1 and PKi ∈ UH ,R uses yi ∈ SKi to return µi = ShareDecaps(PP,PL,CH,SKi).

Challenge: A requests a challenge for PL∗H ∈UH with t∗. Consider PL∗H = {PK∗t∗ , . . . ,PK∗n∗} and H0(PK∗i ) =
idx∗i . R randomly picks η ,s1, . . . ,st∗−1 ∈ Zp and defines a degree t∗− 1 polynomial f (γ) = L∗0(γ)(η −
αβ )+∑

t∗−1
i=1 L∗i (γ)si. This polynomial can be constructed by interpolating t∗ points such that f (0) = η−αβ

and f (idx∗i ) = si for all i ∈ [1, t∗− 1]. Now, CH∗ = (C∗1 ,C
∗
2 ,(A

∗
1,B
∗
1), . . . ,(A

∗
n∗ ,B

∗
n∗), t

∗,ψ∗) is generated as
follows:

1. It generates C∗1 = ĝr̂
2gηD−1 and C∗2 = ĝ2.

2. For i ∈ [1, t∗−1], it computes A∗i = gsi ĝxi
2 . For i ∈ [t∗,n∗], it computes A∗i = gL∗0(idx∗i )η+∑

t∗−1
j=1 L∗j (idx∗i )s j ĝρi

2 .

3. For i ∈ [1, t∗−1], it computes B∗i = gsi ĝyi
2 . For i ∈ [t∗,n∗], it sets B∗i = Ri where Ri

$←G.

4. It simulates a proof ψ∗ of NIZK-WF.

Recall that R knows (xi,yi), where i ∈ [1, t∗− 1], extracted during the setup phase. Finally, R sends CH∗

and K∗b , where K∗b is determined as K∗0 = R $←G or K∗1 = ĝr̂
2, depending on a random bit b ∈ {0,1}.

Query 2: Same as Query 1, with the restriction that CH∗ cannot be asked as a share decapsulation query.

Guess: At the end, A outputs a guess b′ ∈ {0,1}.

Consider C∗2 = gr (i.e., β = r). The simulation of (A∗i ,B
∗
i ) in CH∗ is correct due to the following reason:
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• For i ∈ [1, t∗−1], A∗i = gsi ĝxi
2 = g f (idx∗i )X r

i and B∗i = gsi ĝyi
2 = g f (idx∗i )Y r

i .

• For i ∈ [t∗,n∗], A∗i = gL∗0(idx∗i )η+∑
t∗−1
j=1 L∗j (idx∗i )s j ĝρi

2 = gL∗0(idx∗i )(η−αβ )+∑
t∗−1
j=1 L∗j (idx∗i )s j(gL∗0(idx∗i )αgρi)β

= gL∗0(idx∗i ) f (0)+∑
t∗−1
j=1 L∗j (idx∗i ) f (idx∗j )(ĝL∗0(idx∗i )

1 gρi)β = g f (idx∗i )X r
i .

If D = gab, R simulates G3, since C∗1 = ĝr̂
2gη(D−1) = (gβ )r̂gη−αβ = hrg f (0) where f (0) = η−αβ . Other-

wise, C∗1 is uniformly random, resulting in R which simulates G4. Therefore, any distinguisher G3 and G4
can be converted into a DDH solver. Thus |Pr[S3]−Pr[S4]| ≤ AdvDDH(λ ).

Lemma 4.4. If the DDH assumption holds, then no PPT algorithm can distinguish between G4 and G5.

Proof. Given a DDH tuple (g, ĝ1 = gα , ĝ2 = gβ ,D), a reduction R interacts with a selective IND-CCA
adversary A as follows:

Setup: R sets h = ĝ1 and generates public parameters PP = (G, p,g,h,H0,H1,H2,H3,H4), where hash
functions are modeled as random oracles. After R sends PP to A, the adversary responds with t∗ and
PL∗C = {PK∗1 , . . . ,PK∗t∗−1}. R generates UH , initially set as empty, by following the process:

1. It randomly chooses xi,yi ∈ Zp to compute Xi = gxi and Yi = gyi .

2. It simulates a proof πi of NIZK-PoK.

3. Is adds PKi = (Xi,Yi,πi) to UH .

Since the tuple (Xi,Yi) is computed as in the real scheme, this simulation is correct. For UC = PL∗C ∪PLR,
where PLR is provided by A, R checks if the proof π j of PK j ∈ UC is valid or not. If not, R outputs ⊥.
Otherwise,R extracts the witness (x j,y j) from π j.

Query 1: The hash oracles are managed normally, by returning a random value for a new input except
when simulating NIZK proofs. When A requests a share decapsulation query for (PL,CH,PKi), where
CHVerify(PP,PL,CH) = 1 and PKi ∈ UH ,R returns µi = ShareDecaps(PP,PL,CH,SKi), especially using
yi ∈ SKi.

Challenge: WhenA submits PL∗H and t∗,R sets PL∗=PL∗C∪PL∗H = {PK∗1 , . . . ,PK∗n∗} and obtains H0(PK∗i )=
idx∗i for all PK∗i . After that,R generates a (t∗−1)-degree polynomial f (γ)=∑

t∗−1
j=0 s jγ

j, where s0, . . . ,st∗−1 ∈
Zp are chosen randomly. CH∗ = (C∗1 ,C

∗
2 ,(A

∗
1,B
∗
1), . . . ,(A

∗
n∗ ,B

∗
n∗), t

∗,ψ∗) is generated as follows:

1. It sets C∗1 = R1, where R1
$←G, and C∗2 = ĝ2.

2. For i ∈ [n∗], it computes A∗i = g f (idx∗i )ĝxi
2 .

3. For i ∈ [1, t∗−1], it computes B∗i = g f (idx∗i )ĝyi
2 . For i ∈ [t∗,n∗], it sets B∗i = Ri, where Ri

$←G.

4. Finally, it simulates a proof ψ∗ of NIZK-WF.

Depending on a randomly chosen b ∈ {0,1}, R determines either K∗0 ∈ G or K∗1 = D. R then sends both
CH∗ and K∗b to A.

Query 2: Same as Query 1 with the restriction that CH∗ cannot be asked as a share decapsulation query.
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Guess: At the end, A outputs a guess b′.

If D = gαβ ,R simulates G4. This is because K∗1 = (gα)β = hr by letting β = r. OtherwiseR simulates G5.
Based on this, any distinguisher G4 and G5 can be converted into a DDH solver, and thus |Pr[S4]−Pr[S5]| ≤
AdvDDH(λ ).

Theorem 4.5. The proposed TKEM is DC secure if the underlying NIZK-EDL and NIZK-WF systems are
both sound.

Proof. Suppose that there exists a PPT adversary A that can break our TKEM scheme in the DC security
game. We can construct a reductionR (acting as a challenger) that interacts with A as follows:

Setup : R first gives PP← Setup(1λ ) to A. It also give UH that includes a poly-bounded number of
(PKi = (Xi,Yi),SKi = (xi,yi))←KeyGen(PP). In response,R is given UC from A.

Query : A may request share decapsulation queries for (CH,PL,PKi), where PL⊆ UH ∪UC and PKi ∈ UH .
Then,R sends either ⊥ or µi, which can be obtained by running ShareDecaps(PP,PL,CH,SKi).

Forge : A outputs a ciphertext header CH∗ for a public key list PL∗ = {PK∗1 , . . . ,PK∗n∗} ⊂ UH ∪UC, a
threshold t∗, and two sets of shares {µi}i∈S and {µ ′j} j∈S′ , where t∗ ≤ |S|= |S′| ≤ n∗ and S,S′ ⊂ [n∗].

Assume that A wins with (CH∗,PL∗, t∗,{µi}i∈S,{µ ′j} j∈S′) that meets the three winning condition in Def-
inition 3.3. Let CH∗ = (C∗1 ,C

∗
2 ,(A

∗
1,B
∗
1), . . . ,(A

∗
n∗ ,B

∗
n∗),ψ

∗), µi = (Di,σi), and µ ′j = (D′j,σ
′
j). Due to

the condition 3), CHVerify(PP,PL∗,CH∗) = 1. This means CH is well-formed as ψ∗ of NIZK-WF is
sound. Therefore, we can write C∗1 = hrg f (0), C∗2 = gr, A∗i = g f (idx∗i )(gxi)r, and B∗i = g f (idx∗i )(gyi)r for the
same r ∈ G and the same polynomial f (γ). The condition 2) ensures that σi and σ ′j of NIZK-EDL are
valid. Since these proofs are all sound, we have the structures A∗i /Di = (C∗2)

xi and A∗j/D′j = (C∗2)
x j , which

can be rewritten as Di = A∗i /(C
∗
2)
−xi and D′j = A∗j/(C

∗
2)
−x j , respectively. We now show that the condi-

tion 1) never holds, which contradicts the hypothesis: Consider K = Combine(PP,PL∗,CH∗,{µi}i∈S) and
K′ = Combine(PP,PL∗,CH∗,{µ ′j} j∈S′). Specifically, K is computed as follows:

K =C∗1 ∏
i∈S

(Di)
−Li(0) = (hrg f (0))∏

i∈S
(g f (idx∗i )X r

i /(g
r)−xi)−Li(0)

= (hrg f (0))∏
i∈S

(g f (idx∗i ))−Li(0) = (hrg f (0))g− f (0) = hr.

Similarly, we can have K′ =C∗1 ∏ j∈S′(D′j)
−L j(0) = hr, leading to K = K′.

Consequently, A must compromise the soundness of NIZK-WF or NIZK-EDL to win the DC security
game, resulting in the advantage of A as follows.

AdvDC
T KEM(λ )≤ AdvSound

NIZK−EDL(λ )+AdvSound
NIZK−WF(λ ).

This completes the proof.

5 Implementation

We present a proof-of-concept implementation of our TKEM, of which goal is to demonstrate the feasibility
of our scheme, focusing on time evaluations. To do this, we utilize the Miracle-core library for implementing
cryptographic primitives in Python, chosen for its robustness in handling operations over the secp256k1
curve. The experiments are conducted on a Windows PC with a 3.70GHz Intel(R) i7-8700 processor and

19



16GB DDR4 RAM. Tables 3 and 4 show the average execution times for each algorithm, obtained by
running the corresponding algorithm multiple times with n receivers, where n ∈ {100,200,300,400,500},
under the threshold parameter t = n/2.

Table 3: Time evaluation of our TKEM

n Setup(ms) Keygen(s)† Encaps(s) CHVerify(s) ShareDecap(s)† ShareVerify(s)† Combine(s)

100 0.178 4.498 14.702 8.617 197.032 9.784 0.769

200 0.175 8.518 32.950 21.115 386.064 19.183 1.821

300 0.160 13.344 57.310 40.281 580.950 29.385 3.271

400 0.184 17.602 94.334 69.213 745.641 37.154 4.772

500 0.160 20.777 137.187 109.650 930.298 46.200 6.770

† is measured as total execution time over n.

As shown in Table 3, the performance results indicate that the time complexity of all algorithms, except
the Setup algorithm, increases approximately linearly with a small number of receivers. As n increases,
the results are expected to follow the theoretical complexity; for example, the execution time of the Encaps
algorithm grows proportionally to O(n3) due to the generation of a parity check matrix. We now focus
on the Encaps algorithm, particularly Step 5 therein, and the CHVerify algorithm. These are involved
in the NIZK-WF algorithms, which are crucial to the contributions of our TKEM. Table 4 provides the
time required to generate and verify the proofs of NIZK-WF. From this, we observe that NIZK-WF.Prove
algorithm becomes a bottleneck in the Encaps algorithm, but it takes within 2 min even for n = 500. Note
that these results are not optimized, and thus, further optimization could improve these results significantly.

Table 4: Time evaluation of the employed NIZK-WF algorithms

n WF.Prove(s) WF.Verify(s)

100 7.505 8.617

200 18.538 21.115

300 35.842 40.281

400 65.168 69.213

500 102.583 109.650

6 Conclusion

In this paper, we have proposed a dynamic TKEM with a transparent setup that avoids the use of pairings.
We have also proven the selective IND-CCA security and decapsulation consistency of our TKEM under
the DDH assumption and the security of Fiat-Shamir transformed NIZK systems, respectively, in the ROM.
The dynamic property of our TKEM allows a flexible selection of participants and thresholds, enhancing
adaptability in decentralized systems. One limitation of our TKEM is that the size of the ciphertext header
grows linearly with the number of receivers, O(n). Future work will focus on optimizing the ciphertext
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header size to further improve the practicality of our approach. This research contributes to the advancement
of threshold cryptography.
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