Dates are inconsistent

Dates are inconsistent

18 results sorted by ID

2024/1594 (PDF) Last updated: 2024-10-08
Bit-fixing Correlation Attacks on Goldreich's Pseudorandom Generators
Ximing Fu, Mo Li, Shihan Lyu, Chuanyi Liu
Attacks and cryptanalysis

We introduce a powerful attack, termed the bit-fixing correlation attack, on Goldreich's pseudorandom generators (PRGs), specifically focusing on those based on the $\mathsf{XOR}\text{-}\mathsf{THR}$ predicate. By exploiting the bit-fixing correlation property, we derive correlation equations with high bias by fixing certain bits. Utilizing two solvers to handle these high-bias correlation equations, we present inverse attacks on $\mathsf{XOR}\text{-}\mathsf{THR}$ based PRGs within the...

2024/1505 (PDF) Last updated: 2024-10-10
FINALLY: A Multi-Key FHE Scheme Based on NTRU and LWE
Jeongeun Park, Barry Van Leeuwen, Oliver Zajonc
Cryptographic protocols

Multi-key fully homomorphic encryption (MKFHE), a generalization of fully homomorphic encryption (FHE), enables a computation over encrypted data under multiple keys. The first MKFHE schemes were based on the NTRU primitive, however these early NTRU based FHE schemes were found to be insecure due to the problem of over-stretched parameters. Recently, in the case of standard (non-multi key) FHE a secure version, called FINAL, of NTRU has been found. In this work we extend FINAL to an...

2023/1808 (PDF) Last updated: 2024-04-13
Small Stretch Problem of the DCT Scheme and How to Fix It
Yuchao Chen, Tingting Guo, Lei Hu, Lina Shang, Shuping Mao, Peng Wang
Secret-key cryptography

DCT is a beyond-birthday-bound~(BBB) deterministic authenticated encryption~(DAE) mode proposed by Forler et al. in ACISP 2016, ensuring integrity by redundancy. The instantiation of DCT employs the BRW polynomial, which is more efficient than the usual polynomial in GCM by reducing half of the multiplication operations. However, we show that DCT suffers from a small stretch problem similar to GCM. When the stretch length $\tau$ is small, choosing a special $m$-block message, we can reduce...

2023/1792 (PDF) Last updated: 2024-07-23
Sloth: Key Stretching and Deniable Encryption using Secure Elements on Smartphones
Daniel Hugenroth, Alberto Sonnino, Sam Cutler, Alastair R. Beresford
Cryptographic protocols

Privacy enhancing technologies must not only protect sensitive data in-transit, but also locally at-rest. For example, anonymity networks hide the sender and/or recipient of a message from network adversaries. However, if a participating device is physically captured, its owner can be pressured to give access to the stored conversations. Therefore, client software should allow the user to plausibly deny the existence of meaningful data. Since biometrics can be collected without consent and...

2022/1218 (PDF) Last updated: 2022-09-21
Stretching Cube Attacks: Improved Methods to Recover Massive Superpolies
Jiahui He, Kai Hu, Bart Preneel, Meiqin Wang
Secret-key cryptography

Cube attacks exploit the algebraic properties of symmetric ciphers by recovering a special polynomial, the superpoly, and subsequently the secret key. When the algebraic normal forms of the corresponding Boolean functions are not available, the division property based approach allows to recover the exact superpoly in a clever way. However, the computational cost to recover the superpoly becomes prohibitive as the number of rounds of the cipher increases. For example, the nested monomial...

2021/1334 (PDF) Last updated: 2021-10-05
Indistinguishability Obfuscation from LPN over F_p, DLIN, and PRGs in NC^0
Aayush Jain, Huijia Lin, Amit Sahai
Foundations

In this work, we study what minimal sets of assumptions suffice for constructing indistinguishability obfuscation ($i\mathcal{O}$). We prove: {\bf Theorem}(Informal): Assume sub-exponential security of the following assumptions: - the Learning Parity with Noise ($\mathsf{LPN}$) assumption over general prime fields $\mathbb{F}_p$ with polynomially many $\mathsf{LPN}$ samples and error rate $1/k^\delta$, where $k$ is the dimension of the $\mathsf{LPN}$ secret, and $\delta>0$ is any...

2021/999 (PDF) Last updated: 2021-09-08
NTRU Fatigue: How Stretched is Overstretched?
Léo Ducas, Wessel van Woerden
Public-key cryptography

Until recently lattice reduction attacks on NTRU lattices were thought to behave similar as on (ring-)LWE lattices with the same parameters. However several works (Albrecht-Bai-Ducas 2016, Kirchner-Fouque 2017) showed a significant gap for large moduli $q$, the so-called overstretched regime of NTRU. With the NTRU scheme being a finalist to the NIST PQC competition it is important to understand ---both asymptotically and concretely--- where the fatigue point lies exactly, i.e. at which $q$...

2021/649 (PDF) Last updated: 2023-06-12
On the Algebraic Immunity - Resiliency trade-off, implications for Goldreich's Pseudorandom Generator
Aurélien Dupin, Pierrick Méaux, Mélissa Rossi

Goldreich's pseudorandom generator is a well-known building block for many theoretical cryptographic constructions from multi-party computation to indistinguishability obfuscation. Its unique efficiency comes from the use of random local functions: each bit of the output is computed by applying some fixed public $n$-variable Boolean function $f$ to a random public size-$n$ tuple of distinct input bits. The characteristics that a Boolean function $f$ must have to ensure pseudorandomness is a...

2020/1003 (PDF) Last updated: 2020-11-12
Indistinguishability Obfuscation from Well-Founded Assumptions
Aayush Jain, Huijia Lin, Amit Sahai
Foundations

Indistinguishability obfuscation, introduced by [Barak et. al. Crypto’2001], aims to compile programs into unintelligible ones while preserving functionality. It is a fascinating and powerful object that has been shown to enable a host of new cryptographic goals and beyond. However, constructions of indistinguishability obfuscation have remained elusive, with all other proposals relying on heuristics or newly conjectured hardness assumptions. In this work, we show how to construct...

2020/764 (PDF) Last updated: 2021-03-09
Indistinguishability Obfuscation from Simple-to-State Hard Problems: New Assumptions, New Techniques, and Simplification
Romain Gay, Aayush Jain, Huijia Lin, Amit Sahai
Foundations

In this work, we study the question of what set of simple-to-state assumptions suffice for constructing functional encryption and indistinguishability obfuscation ($i\mathcal{O}$), supporting all functions describable by polynomial-size circuits. Our work improves over the state-of-the-art work of Jain, Lin, Matt, and Sahai (Eurocrypt 2019) in multiple dimensions. New Assumption: Previous to our work, all constructions of $i\mathcal{O}$ from simple assumptions required novel...

2018/221 (PDF) Last updated: 2024-08-05
Bandwidth-Hard Functions: Reductions and Lower Bounds
Jeremiah Blocki, Peiyuan Liu, Ling Ren, Samson Zhou
Foundations

Memory Hard Functions (MHFs) have been proposed as an answer to the growing inequality between the computational speed of general purpose CPUs and Application Specific Integrated Circuits (ASICs). MHFs have seen widespread applications including password hashing, key stretching and proofs of work. Several metrics have been proposed to quantify the ``memory hardness'' of a function. Cumulative memory complexity (CMC) (Alwen and Serbinenko, STOC 2015) (or amortized Area $\times$ Time...

2018/112 (PDF) Last updated: 2020-04-23
Just in Time Hashing
Benjamin Harsha, Jeremiah Blocki
Cryptographic protocols

In the past few years billions of user passwords have been exposed to the threat of offline cracking attempts. Such brute-force cracking attempts are increasingly dangerous as password cracking hardware continues to improve and as users continue to select low entropy passwords. Key-stretching techniques such as hash iteration and memory hard functions can help to mitigate the risk, but increased key-stretching effort necessarily increases authentication delay so this defense is fundamentally...

2016/580 (PDF) Last updated: 2016-06-16
Fine-grained Cryptography
Akshay Degwekar, Vinod Vaikuntanathan, Prashant Nalini Vasudevan

Fine-grained cryptographic primitives are ones that are secure against adversaries with a-priori bounded polynomial resources (time, space or parallel-time), where the honest algorithms use less resources than the adversaries they are designed to fool. Such primitives were previously studied in the context of time-bounded adversaries (Merkle, CACM 1978), space-bounded adversaries (Cachin and Maurer, CRYPTO 1997) and parallel-time-bounded adversaries (Håstad, IPL 1987). Our goal is to show...

2016/463 (PDF) Last updated: 2017-01-25
Authenticated Encryption with Variable Stretch
Reza Reyhanitabar, Serge Vaudenay, Damian Vizár
Secret-key cryptography

In conventional authenticated-encryption (AE) schemes, the ciphertext expansion, a.k.a. stretch or tag length, is a constant or a parameter of the scheme that must be fixed per key. However, using variable-length tags per key can be desirable in practice or may occur as a result of a misuse. The RAE definition by Hoang, Krovetz, and Rogaway (Eurocrypt 2015), aiming at the "best-possible" AE security, supports variable stretch among other strong features, but achieving the RAE goal incurs a...

2016/395 (PDF) Last updated: 2016-06-30
Efficient Beyond-Birthday-Bound-Secure Deterministic Authenticated Encryption with Minimal Stretch
Christian Forler, Eik List, Stefan Lucks, Jakob Wenzel
Secret-key cryptography

Block-cipher-based authenticated encryption has obtained considerable attention from the ongoing CAESAR competition. While the focus of CAESAR resides primarily on nonce-based authenticated encryption, Deterministic Authenticated Encryption (DAE) is used in domains such as key wrap, where the available message entropy motivates to omit the overhead for nonces. Since the highest possible security is desirable when protecting keys, beyond-birthday-bound (BBB) security is a valuable goal for...

2015/050 (PDF) Last updated: 2015-01-22
Stretching Groth-Sahai: NIZK Proofs of Partial Satisfiability
Carla Ràfols
Cryptographic protocols

Groth, Ostrovsky and Sahai constructed a non-interactive Zap for NP-languages by observing that the common reference string of their proof system for circuit satisfiability admits what they call correlated key generation. The latter means that it is possible to create from scratch two common reference strings in such a way that it can be publicly verified that at least one of them guarantees perfect soundness while it is computationally infeasible to tell which one. Their technique also...

2011/117 (PDF) Last updated: 2011-03-10
Bounded Vector Signatures and their Applications
Lei Wei, Scott E. Coull, Michael K. Reiter
Applications

Although malleability is undesirable in traditional digital signatures, schemes with limited malleability properties enable interesting functionalities that may be impossible to obtain otherwise (e.g., homomorphic signatures). In this paper, we introduce a new malleable signature scheme called bounded vector signatures. The proposed scheme allows a user to sign a multi-dimensional vector of values, along with a description of the context within which the vector should be interpreted. The...

2004/128 (PDF) (PS) Last updated: 2004-07-06
Elastic Block Ciphers
Debra L. Cook, Moti Yung, Angelos D. Keromytis
Secret-key cryptography

We introduce the new concept of elastic block ciphers, symmetric-key encryption algorithms that (1) for a variable-size input do not expand the plaintext (i.e., do not require plaintext padding) and (2) adjust their computational load proportionally to the size increase. Contrary to stream ciphers, elastic block ciphers maintain the diffusion property and non-synchronicity of traditional block ciphers. Elastic block ciphers are ideal (when combined with encryption modes) for applications...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.