
Elastic Block Ciphers

Debra L. Cook, Moti Yung, and Angelos D. Keromytis
Department of Computer Science

Columbia University�
dcook,moti,angelos � @cs.columbia.edu

May 30, 2004

Abstract. We introduce the new concept of elastic block ciphers, symmetric-
key encryption algorithms that (1) for a variable-size input do not expand the
plaintext (i.e., do not require plaintext padding) and (2) adjust their computational
load proportionally to the size increase. Contrary to stream ciphers, elastic block
ciphers maintain the diffusion property and non-synchronicity of traditional block
ciphers. Elastic block ciphers are ideal (when combined with encryption modes)
for applications where length-preserving encryption is most beneficial, such as
protecting variable-length database fields or network packets.
We present a general algorithm for converting a traditional block cipher, such as
AES, to its elastic version, and analyze the security of the resulting cipher against
key recovery attacks. Our approach allows us to “stretch” the supported block
size of a block cipher up to twice the original length, while increasing the com-
putational load proportionally to the expanded block size. Our approach does not
allow us to use the original cipher as a “black box” (i.e., as an ideal cipher or a
pseudorandom permutation as is used in constructing modes of encryption). Nev-
ertheless, under some reasonable conditions on the cipher’s structure and its key
schedule, we reduce certain key recovery attacks of the elastic version to such
attacks on the fixed-size block cipher. This schema and the security reduction en-
able us to capitalize on secure ciphers and their already established security prop-
erties in developing elastic designs. We note that we are not aware of previous
“reduction type” proofs of security in the area of concrete (i.e., non “black-box”)
block cipher design. Our work puts forth the notion of elasticity in block cipher
design.

Keywords: Cipher Design, Variable Length Block Cipher, Elastic Block Ciphers,
Encryption Algorithm, Key Recovey Attacks, Security Proofs.

1 Introduction

Block ciphers typically support a small number of block sizes, usually just one. Since
the length of the data to be encrypted is often not a multiple of the block size, plaintext-
padding schemes are necessary. Although widely used in practice, padding imposes
additional computational and space overheads to the encryption process. For example,
most data fields in a database do not interact well with the typical block sizes: integers
are often 32 bits long, doubles are 80 bits and strings are of arbitrary length. Thus,
the amount of space that is “wasted” due to encryption can be significant in a large
database. Similar issues arise when considering network traffic protection, e.g., in IPsec



[1]. Furthermore, certain applications require that the length of the protected data re-
main the same. A natural alternative, using a stream cipher, is not always attractive
since it sacrifices data and key diffusion, and it further requires synchrony between the
sender and the receiver, which is an unsuitable assumption for many applications. The
ideal solution combines the length-preserving aspects of stream ciphers with the dif-
fusion properties of block ciphers, and uses existing and well analyzed components or
algorithms, to leverage prior work as much as possible.

We introduce the new concept of an elastic block cipher, which allows us to “stretch”
the supported block size of a block cipher up to a length double the original block
size, while increasing the computational load proportionally to the “stretched” block
size. This, together with modes of operation, permit block sizes to be set based on an
application’s requirements, allowing, for example, a non-traditional block size to be
used for all blocks, or a traditional block size to be used for all but the last block in
a given mode of operation. Such a cipher will be very useful in database and network
traffic encryption, as well as other applications of encryption.

In this paper, we propose and analyze a general method for creating an elastic block
cipher from an existing block cipher. Our intent is not to design an ad-hoc new cipher,
but to systematically build upon existing block ciphers. We neither modify the round
function of the base block cipher nor decrease the number of rounds applied to each
bit (position), but rather create a method by which bits beyond the supported block size
can be interleaved with bits in the supported block size. Our method takes a novel ap-
proach that permits a reduction to be formed between the elastic and original cipher,
allowing us to relate the security of the elastic version to that of the fixed-size “tradi-
tional” version. We utilize the reduction to evaluate the security of elastic block ciphers
against certain key recovery attacks. We are not aware of existing proof methods that ar-
gue about sub-ciphers in the area of concrete block cipher design when the basic block
cipher is not treated as a black box (due to efficiency requirements in our case). The
importance of such a proof is that it allows one to exploit the established and provable
properties of existing ciphers in establishing certain properties of the new design.

There has been little previous work on variable-length pseudo-random functions
(PRFs). The focus has been on variable-length inputs with fixed-length outputs as ap-
plicable to MACs and hash functions [2–5] and, more recently, on modes that work
on multiples of the original block length [6, 7]. While there have been proposals for
variable-length block ciphers in the past, such as [8], we take a different approach in
that we do not wish to design a new cipher but rather provide a mechanism for convert-
ing existing block ciphers into variable-length block ciphers.

A noteworthy proposal for a variable length-block cipher created by converting any
existing block cipher into one that accepts variable size block lengths is [9], which
demonstrates that the problem we deal with has been noticed. The method in [9] in-
volves two applications of the cipher for block lengths between the original length and
less than twice that length. Therefore, the resulting cipher requires twice the work of the
original block cipher per block, regardless of the block size. In comparison, the work-
load in our construction gradually expands to twice that of the original block cipher as
the block length expands (which was one of our design goals). For example, when both
schemes are applied to 128-bit AES, our scheme requires one extra round to encrypt

2



a 136-bit plaintext; whereas, the method in [9] requires ten extra rounds. Unlike our
construction, [9] does not modify the original block cipher but adds operations around
it, treating the original cipher as a pseudo-random permutation (PRP) and analyzes it as
a black box. In our method, we cannot treat the original cipher as a black box but need
to add to its internals. This is, perhaps, the major methodological difference between
the works. While we do not modify the round function of the original block cipher in
our construction (and thus allow for reduction-type proofs), we alter the inputs to each
round, add whitening steps (when not already present), and extend the key schedule. A
novelty of our methodology is that while modifying the cipher in this fashion, we are
able to maintain a reduction between the original and elastic versions which permits us
to link their security against key recovery attacks.

Our work proposes elasticity of block size as a criterion for cipher design, creating
areas for future work. These areas include the analysis of elastic versions of concrete
ciphers and their security against cryptanalytic techniques not addressed here (since
security of block ciphers need to consider various types of specific attacks).

The remainder of the paper is organized as follows. Section 2 explains our approach
for constructing elastic block ciphers from existing block ciphers. Section 3 presents a
security analysis for our scheme. To this end, we introduce the concept of a reduction
between ciphers to relate the security of the elastic and original versions of a cipher.
Section 4 concludes the paper.

2 Elastic Block Cipher Construction

2.1 Algorithm

We begin with a description of the algorithm for modifying the encryption and decryp-
tion functions of existing block ciphers to accept blocks of size � to ������� bits, where
� is the block size of the original block cipher. (The resulting block cipher can accept
blocks of length ��� , but the original block cipher can be applied to two blocks without
padding in that case.) We neither modify the round function of the block cipher nor de-
crease the number of rounds applied to each bit; instead, we create a method by which
bits beyond the supported block size can be interleaved with bits in the supported block
size. We explain the reasoning behind the specific steps in Section 2.2.

We assume that the appropriate amount of key material is available. The exact key
expansion algorithm will depend on the specific block cipher, so we skip that discussion
for now; we describe its properties later on. In this paper, we focus on the basic algo-
rithm independent of the original block cipher. Subtleties specific to particular types of
block ciphers, such as those using Feistel networks, are noted and are left for subse-
quent work. Figure 1 illustrates the resulting cipher when the modifications are applied
to the version of AES [10] that accepts ���	� -bit inputs.

The following notation and terms will be used in the description and analysis of the
elastic block cipher:
Notation:

– 
 denotes any existing block cipher that is structured as a sequence of rounds.
– � denotes the number of rounds in 
 .

3



– � denotes the block length of the input to 
 in bits.
– � denotes a single block of plaintext.
– � denotes a single block of ciphertext.
– � is an integer in the range � ��� � � ��� .
– 

	 denotes the modified 
 with ���
� bit input for any valid value of � . 
�	 will be

referred to as the elastic version of 
 .
– 
�	����� denotes 
�	 for a specific value of � .
– ��	 denotes the number of rounds in 
�	 .
– � denotes a key.
– ��� denotes a set of round keys resulting from the key expansion.
– 
�� and 
���� will refer to 
 with the round keys resulting from expanding key � ,

and to 
 with the round keys ��� , respectively.

Terminology:

– A bit (position) input to a block cipher is called active in a round if the bit is input
to the round function. For example, in DES [11], half of the bits are active in each
round, while in AES all bits are active in each round.

– The round function will refer to one entire round of 
 . For example, if 
 is a
Feistel network, the round function of 
 will be viewed as consisting of one entire
round of the Feistel network as opposed to just the function used within the Feistel
network.

Given 
 and a plaintext � of length ����� bits, make the following modifications to

 ’s encryption function to create the encryption function of 
�	 :
1. Set the number of rounds, ��	 , such that each of the � �!� bits is input to and active

in the same number of rounds in 
�	 as each of the � bits is in 
 . ��	#" �$�&%'� �)(	��* .
2. XOR all �+��� bits with key material as the first step. If 
 includes whitening

as the first step prior to the first round, the step is modified to include �$�,� bits
(the original � -bits “inner block” whitening for the leftmost bits, as well as “side
whitening” of the extra � bits). If 
 does not have an initial whitening step, this
step is added to 
-	 . In either case, additional bits of expanded key material are
required beyond the amount needed for 
 (for the side whitening and perhaps the
added inner-block whitening).

3. (Optional) Add a simple key-dependent mixing step that permutes or mixes the bits
in a manner that any individual bit is not guaranteed to be in the rightmost � bits
with a probability of 1. This will be referred to as the mixing step and is viewed as
the identity function if it is omitted. Similarly, a key dependent mixing step may be
added at the end of the last round.

4. Use the leftmost � -bits that are output from the mixing step as the input to the round
function.

5. If the round function includes XORing with key material at the end of the round
and/or as a final step in the algorithm, the whitening should be performed on all
�.�/� bits (inner-block as well as side whitening). If 
 does not contain end-of-round
whitening and/or whitening as the last step in the algorithm, add these whitening
steps and apply them to all �0� � bits. In either case, additional bits of expanded
key material are required beyond the amount required by 
 .

4



128 bits y bits

AddRoundKey

Plaintext 128+y bits,  0 ≤ y < 128 bits

S-Box
Shiftrows
MixColumns

AddRoundKey

⊕

AES round, except last

Addition to round to swap y bits.
XOR y bits left out of round with
y bits that were in the round, and
swap the two segments 

Total # of rounds  = ! 10(128+y)/128"

S-Box
Shiftrows

AddRoundKey

128+y  bit ciphertext

last round

Key Dependent Mixing

Key Dependent MixingOptional

Optional

Fig. 1. Elastic Version of AES

6. Alternate which � bits are left out of the round by XORing the � bits left out of the
previous round with � bits from the round’s output, then swap the result with the �
bits left out of the previous round. Specifically:
(a) Let � denote the � bits that were left out of the round.
(b) Let � denote some subset of � bits from the round’s output of � bits. A different

set of � bits (in terms of position) is selected in each round. How to best
select � is dependent on the specific block cipher. We discuss this further in
Section 2.2.

(c) Set ��������� .
(d) Swap � and � to form the input to the next round.
This step will be referred to as “swapping” or the “swap step,” and may be added to
the last round if we require that all rounds be identical. However, having the swap
in the last round does not provide additional security.

The result, 
�	 , is a permutation on � � � bits. Its inverse, the decryption function,
consists of the same steps with the round keys applied in the reverse order and the round
function replaced by its inverse.

5



2.2 Explanation of Algorithm

The method was designed for 
 	 to be equivalent to 
 (with the possible addition of
whitening and the optional key-dependent mixing steps) when the data is an integral
number of � -bit blocks, while accommodating a range of � to ��� � � -bit blocks. The
following is an explanation of why specific steps are included in the construction.

Step 1: Each bit position of the input is required to be active in the same number of
rounds in 
,	 as the number of rounds in which each bit is active in 
 . This requirement
allows the computational workload to increase proportionately to the block size while
avoiding a reduced round attack on 
 from being applied to 
,	 . Consider what happens
if � " � � � and no rounds were added to 
 when creating 
 	 : � � � bits would be
active in only �� of the rounds in which a bit is normally active in 
 . As � increases,
the number of rounds increases gradually from �+� � when ��� % � �� *�� � to �	� when
� � ��� % � �� *�� �	�

Step 2: The initial whitening is performed on all � �,� bits in order to prevent an
adversary from learning � input bits to the second round in a known-plaintext attack.

Step 3: A key-dependent permutation or mixing of bytes prior to the first round in-
creases the extent to which the first round contributes to preventing a differential attack.
The mixing step will need to take less time than a single round; otherwise, an additional
round can be added instead to decrease the probability of a specific differential occur-
ring. A trivial mixing that prevents the attacker from knowing with probability 1 which
� bits are excluded from the first round is a key-dependent rotation. This guarantees
any particular bit is within the � bits with probability � �� . Similarly, a key-dependent
mixing step after the last round will prevent a single round differential from occurring
with a probability of 1 in the first round of decryption.

Step 5: Including all �$�
� bits in the whitening performed at the end of a round
prevents an adversary from learning any of the output bits of the next-to-last round.
Suppose the additional � bits were not included in the whitening; then the ciphertext,
� , for the block would include the � bits that were excluded from the last round. Since
no bit is excluded from 2 consecutive rounds, an adversary would be provided with �
bits of output from the next to last round, potentially aiding in cryptanalysis.

Step 6: � � � is performed instead of merely swapping � and � in order to increase
the rate of diffusion. If 
 does not have complete diffusion in one round, then at the
end of the first round there is some subset 
 of bits output from the round that have
not been impacted by some of the bits in � . While the bits in � may impact 
 in the
second round, swapping � and � would result in the bits in � having no impact in the
second round; whereas, swapping � with � � � will allow the bits in � to impact
the second round. The selection of � depends on the round function of the specific
block cipher. The bit positions selected for � should vary amongst the rounds to ensure
that all bit positions are involved in both the � -bit and � -bit components, as opposed
to always selecting the same � positions for use in � . If all input bits to the round are
utilized in the same manner, the bit positions chosen for � can be rotated across the
rounds. For example, in AES all bytes are processed by the same functions within the
round. In that case, it is sufficient to select � to be consecutive bits starting at position�
� �

� �
����������� ��� in round � for some constants � � and � � . If the input bits are treated
differently in the round (for example, in RC6 the input consists of � words of which

6



one pair is operated-on differently than the other pair), then swap the bits such that each
bit participates in each pair the same number of times. Another benefit of the XOR is a
reduction in the ability to specify a � -bit differential in the input to the second round. If
the optional key-dependent mixing step is omitted, then without the XOR a differential
in the second round’s input of � bits can be obtained with probability �.� ��� regardless of
the round function, by choosing the rightmost � bits of the original input appropriately.

An issue that is left to subsequent work is how to select the bits to be swapped (or
adding the swap step less often) when the original cipher’s round function is structured
such that only a subset of the � bits are processed by the round function in each round
or subsets of the � bits are processed differently by the round function.

Decryption: The inverse of the round function, if it is not its own inverse, must be
used for decryption. While the structure is similar to an unbalanced Feistel network,
it is not a Feistel network due to bits output from the round function in the ����� round
becoming the bits omitted from the � � ��� � round. In constrast, in an (unbalanced) Feistel
network bits input to the round function in the ����� round become the bits omitted from
the round function in the � � �	� � round. 1 Thus, it is not possible to perform decryption
by simply running the ciphertext through the encryption function of 
�	 with the round
keys used in reverse order. Designing the elastic cipher in this manner increases the
diffusion rate compared to that of an unbalanced Feistel network.

2.3 Key Schedule

Our obvious options in creating the key schedule for 
 	 include modifying the key
schedule of 
 to produce additional bytes, or increasing the original key length and
running the key schedule multiple times. A third, less obvious option is to use an ex-
isting efficient stream cipher that is considered secure in practice, to generate all or
part of the key schedule, independent of the choice of 
 . The stream cipher can either
serve as the entire key schedule, replacing that of 
 , or provide only the additional key
bits needed for whitening and the mixing step, while using the original key schedule
of 
 for all other expanded key bits. Using a stream cipher may result in the expanded
key being more (pseudo-)random than the output of the key schedule of 
 and the key
schedule for 
�	 (as a schema) need not be changed for new choices of 
 .

We make the following assumption regarding the expanded keys used for the elastic
version of the cipher. In our analysis, we embed a copy of 
 inside a prefix of 
 	 and
assume the round keys bits used outside the embedded 
 are independent of (do not
give any information about) the round key bits used inside the embedded copy of 
 .
We call this independence property needed for the analysis, “proper expansion” of the
key schedule of the elastic cipher. Given the lack of any reduction proofs in the area of
concrete block cipher design, and given that such idealization of the key schedule can
be achieved by certain scheduling methods that can be adopted (e.g., use a stream cipher
to get the “independent” portion of the expanded key bits, and model them in the proof

1 Within the context of our work, the term unbalanced Feistel network refers to a Feistel network
in which the left and right parts are not of equal length as defined in [12]. The term “unbalanced
Feistel network” has been used in at least one other context to refer to Feistel networks in which
the input and output are of different lengths.

7



as partial round keys that can be known/ controlled without affecting the security of
the other round keys), we feel that this is reasonable assumption for initiating analytic
methods that validate the security of a design against given attacks via “reduction-type”
proofs in this area. (We note that we can embed 
 in a place different from the prefix of

 	 and obtain the same relationship between the security of 
�	 and 
 , but our analysis
in Section 3 concentrates on one embedding of 
 within the prefix of 
 	 .)

3 Security of ���

3.1 Overview

For any concrete block cipher used in practice (and not treated as a pseudorandom
permutation or a member of a family of functions), the cipher cannot be proven secure
in a theoretical sense but rather is proven secure against known types of attacks. Thus,
we can only do the same for the elastic version of such a cipher. In order to provide
a general understanding of the security of our construction, we provide a method for
reducing the security of the elastic version to that of the original version, showing that a
security weakness in 
�	 implies a weakness in 
 . Our security analysis of 
�	 exploits
the relationship between 
 	 and 
 and the proper expansion assumption on the key
schedule. Specifically, we exploit the fact that an instance of 
 is embedded in 
 	 .

We concentrate on key-recovery attacks. We show how to reduce 
 	 to 
 in a
manner that allows an attack that finds the round keys of 
 	 to find the round keys
for 
 . Security against key-recovery attacks does not by itself imply security (e.g., the
identity function which ignores the key is insecure while key recovery is imposible).
However, all concrete attacks against real ciphers (differential, linear, etc.) attempt key
recovery and thus practical block ciphers should be secure against such attacks.

In order to focus on the core components of the algorithm for creating 
 	 from

 , we consider 
 without the optional key-dependent mixing steps described in step 3
of the algorithm. If present, these intuitively only serve to increase the security of 
0	
since they prevent an attacker from knowing with probability 1 which bits are omitted
from the first application of the round function. Furthermore, since the mixing steps are
added steps (as opposed to modifications to components of 
 ) using key material that
is independent of the round and whitening key material (by our assumption on the key
schedule), they do not impact our analysis which is entirely dependent on the fact that

�	 contains an instance of 
 in a manner that permits a reduction from 
�	 to 
 .

3.2 Round Key Recovery Attack

As mentioned above, we use the fact that an instance of 
 is embedded in 
 	 to create
a reduction from 

	 to 
 . As a result of this reduction, an attack against 
�	 that allows
an attacker to determine some of the round keys implies an attack against 
 itself which
is polynomially related (with a concrete polynomial) in resources to the attack on 
 	 .
Assuming that 
 itself is resistant to such attacks, we conclude that 
�	 does not reveal
round-key bits to the attacker. The reduction requires a set of (plaintext, ciphertext)
pairs. This is not considered a limiting factor because in most types of attacks, whether

8



they are known plaintext, chosen plaintext, adaptive plaintext, chosen ciphertext etc., the
attacker acquires a set of such pairs. We also assume that 
 has end-of-round whitening
and that the key scheduling and expansion method is input-independent. Again, these
assumptions apply to many ciphers, or versions of ciphers that contain whitening and
expand the key.

⊕

b bits 1 bit

round  function

⊕ key  bits ⊕ key  bit

⊕

round  function

⊕ key  bits ⊕ key  bit

⊕

round  function

⊕ key  bits ⊕ key  bit

round  function

⊕ key  bits ⊕ key  bit

r-3 rounds

Round 1

Round 2

Round r

Round r+1

b bits

round  function

⊕ key  bits

X ⊕=

round  function

⊕ key  bits

round  function

⊕ key  bits

r-3 rounds

Round 1

Round 2

Round r

Input after initial whitening

Input after initial whitening

X

X

Fig. 2. � within ���

Before we formally claim the security, we first draw attention to the fact that the
operations performed in 
�	 in its prefix until the leftmost � bit positions go through as
many rounds as in 
 , can be shown to be an application of 
 , as depicted intuitively
in Figure 2. This relationship can be used to convert an attack which finds the round
keys for 
 	 to an attack which finds the round keys for 
 . Recall that 
�� � denotes
G using round keys ��� . Specifically, if 
���	 ������� � "
	 ��� , a set of round keys,
��� , for 
 such that 
���� ��� � "�	 can be formed from the round keys and the round

9



outputs in 
 	 by collapsing the end-of-round whitening and swapping steps in 
 	
into a whitening step. The leftmost � bits of the round key for the initial whitening are
unchanged, and the rightmost � bits are dropped. While the resulting round keys provide
good whitening to the rounds of the copy of 
 (due to the proper expansion property),
they will vary in rounds � to � per (plaintext, ciphertext) pair due to the previous round’s
output impacting the end-of-round whitening step. However, it is possible to use these
keys to solve for the round keys of 
 as will be argued below.

Theorem I: If there exists an attack on 
 	 that allows the round keys to be determined
for the first � rounds, then there exists a polynomially related attack on 
 with � rounds,
assuming:

– 
 contains end-of-round whitening.
– No message-related round keys. Namely, if there are expanded key bits utilized in

 aside from the initial and end-of-round whitening steps, these expanded key bits
depend only on the key and do not vary across inputs.

– The expanded key bits are done via proper expansion (defined in Section 2.3).

With respect to the first condition placed on 
 in Theorem I, the condition may be
removed if the attack on 
 	 involves solving for the round-key bits directly and allows
the bits used in the whitening steps to be set to � for bit positions not swapped and to
� or � , as necessary, for bit positions swapped, to ensure the whitening on the leftmost
� bits is equivalent to XORing with ��� which is the same as having no whitening in 
 .
If the attack on 
 	 finds all possible keys or sets of round keys, the attack must find
the key(s) or set(s) of round keys corresponding to round keys that are equivalent to
XORing with � �

In proving the theorem, we will describe two methods of utilizing the attack on 
�	
to attack 
 . Before beginning, we prove a claim which will assist the reader in under-
standing the linkage between 
 and 
 	 . The claim shows that for any set of (plaintext,
ciphertext) pairs encrypted under some set of round keys in 
 	 , there exists a corre-
sponding set of (plaintext, ciphertext) pairs for 
 where the round keys used in 
 	 for
the round function and the leftmost � bits of each whitening step are the same as those
used in 
 , the plaintexts used in 
 are the leftmost � bits of the plaintexts used in 
 	 ,
and the ciphertexts for 
 are the same as the leftmost � bits of output of the � ��� round
of 
�	 prior to the swap step.

Claim I: Let
� ��� � � 	 � � � denote a set of � (plaintext, ciphertext) pairs and let

� ��� "� � � � " � . If 
�� ��� � � " 	 � , then there exist � sets of round keys for the first � rounds
of 
�	 that are consistent with inputs � � � � producing 	 � � � � as the output of the
� ��� round prior to the swap at the end of the � ��� round, for � " � to � , such that the
following condition applies:

Condition I: The leftmost � bits used for whitening in each round are identical across
the � sets and any bits used internal to the round function are identical across the �
sets.

Furthermore, � may be any valid value. The bits in
� � are not used and thus no restric-

tions are placed on their values.

Proof: Let ��� " �
����� for ��" � to � � be the set of round keys corresponding to key

� for 
 . ���
	 denotes the key bits used for initial whitening. For ��� � � 	 � � , form a set of

10



Round
Function 

IN (b bits) Y (y bits)

B = b whitening
key bits

y whitening
key bits = Y

XOR y bits
of OUT’ with
Y’

Y’ = 0

OUT

OUT’

OUT’ y bits from OUT’

Converted round key for G = (B with y bits replaced by their XOR with Y’) = B

Fig. 3. Converted Key Unchanged in Left � Bits

the first � round keys for 
 	 as follows: Pick a constant string,
�

, of � bits, such as a
string of � 	�� . Let � � � � be the input to 
 	 . Let ��� � 	 " �

��� � 	� for � "&� to � � denote
the round keys for 
 	 through the � ��� round for the pair � � � � 	 � � . Set any bits in ��� � 	�
used internal to the round function to be the same as the corresponding bits in ��� � . Set
the leftmost � bits used for whitening in ��� � 	� to the � bits used for whitening in ���
� �
Set the rightmost � bits used for whitening in ��� � 	� to be the same as the � bits left out
of the round function in round � of 
 	 . This is illustrated by Figure 3. Notice that the
leftmost � bits used for whitening in each round are identical across the � sets, and any
bits used internal to the round function are identical across the � sets; specifically, they
correspond to ��� in each case, and the rightmost � bits used in each whitening step
differ based on � � � � 	 � � across the � sets.

The operations of 
�	 on the leftmost � bits through round � , prior to the last swap,
are identical to the operations in 
 � ��� � � because the swap step in 

	 results in XORing
� bits of a round function’s output with �/� 	�� . Therefore, the leftmost � bits output from
the � ��� round prior to the swap in the � ��� round is 	 � � Therefore, for � " � to � there
exists a set of round keys, ��� � 	 for 
�	������� such that 
�	 ��� � � produces 	 � as the leftmost �
bits in the � ��� round prior to the swap step and Condition I holds, thus proving Claim I.

Proof of Theorem I: We now describe the reduction and two attacks. The attacks are
presented in terms of solving for the round keys from round � to � , but may also be
performed by working from round � back to the initial whitening. The first method’s
efficiency is dependent on �#� � � � � and ��� and may be the least useful of the two. We
present it first in order to illustrate the method by which round keys for 
!	 can be
converted into round keys for 
��
First method:

11



This method produces an attack on 
 that runs in time polynomial in the attack on

�	 and � . It is more efficient than an exhaustive key search when ���

� � ���� � . The attack
works as follows: Assume there exists a known (plaintext, ciphertext) pair attack on 
0	
which produces the round keys either by finding the original key and then expanding it,
or by finding the round keys directly. Using round keys for rounds 0 to � of 
�	 , convert
the round keys into round keys for 
 one round at a time. For each round, extract the
largest set of (plaintext, ciphertext) pairs used in the attack on 
 	 that have the same
converted round key. Each round may reduce the size of the set of pairs by � � . The end
result is a set of round keys for 
 that are consistent with a set of ������	��
���
 � -bit (plaintext,
ciphertext) pairs for 
 . We then describe how to take a set of (plaintext, ciphertext) pairs
for 
 , convert them into a set of (plaintext, ciphertext) pairs for 
 	 in order to run the
attack on 
 	 to find the round keys for 
 . Finally, we discuss the bounds on � for which
this attack is more efficient than an exhaustive key search.

Let
� � � ����� � " � � � � � � � � 	 � � � � � � (for � " � to � ) denote a set of � known

���
� -bit (plaintext, ciphertext) pairs for 

	�� where
� � � � " �

	 � � " � and
� � � � " � � � � ",� �

Assume the existence of an algorithm ��� � that finds all possible keys,
� � � � , corre-

sponding to
� � � � ��� � in time less than a exhaustive search for the key. Let � denote the

number of keys found. Without loss of generality, it is assumed the keys are available in
expanded form. The key bits for the initial whitening will be referred to as “round key
� � ”

Let 
," ��� ��� � for � " � to � be the set of expanded keys used for whitening for
which

� ��� is from the expansion of key �
� and 
�	��� � � � � � � � " 	 � � � � for � " � to � .
Let � � � � denote any key material utilized within the round function. The values

found for such key bits will be the same for the solutions derived by the attack for 
 	
and 
 .

Let
� � � ����� ��" � ��� � � � � � ��� � � � � � � � such that � � � � � � is the output of the � ��� round of


�	 , where
� � � � " � and

� � � � "�� .
Let 
 	�" ��� � 	� � � � 	� " bits of

� � ��� 
 corresponding to rounds � to � used for
whitening � be the set of expanded key bits used for whitening in rounds � to � of 
 	 .

For each
� ����� 
 	 and each � � � � � � ��� � � � � ��� � � � ����� � , convert the round keys

to round keys for 
 . Let
� ��	� � be the converted key corresponding to the ����� element of� � � � ��� � and the � ��� element of 
 	 . The part of

� ��	� � corresponding to round � will be
identical across all elements. When the round keys are converted, at most � bits change
in the leftmost � bits. Thus, the resulting round keys for round ! , � �"! � � can be
divided for each of the � impacted bits into those that have a � in the affected bit and
those that have a � in the affected bit. For ! " � to � , define 
�	� �$# % as the maximum-
sized set of

� � 	� � � from 
�� ��# % 
'& that have identical round key(s) for round ! , where

 	� �$#�( " 
 	 . Let

� � � ����� � ��# % � be the corresponding elements of
� � � ����� � . When form-

ing
� � � ����� � �$# % � , at least � � � � � � � ����� � �$# % 
'& � � of the elements from

� � � ����� � ��# % 
'& �
are included.

To illustrate how the sets 
 	� �$# % and
� � � ����� � ��# % � are created, consider the example

shown in Figure 4 where � " � , � " � , and the leftmost � bits are swapped with
the � bits in the swap step. The round number is ! and

� � � � ��� � ��# % 
'& � contains three
(plaintext, ciphertext) pairs. Suppose the outputs of the round function in the ! ��� of 
�	
are �.� � � � �)� ��� �)� � � and ����� ��� � and the whitening bits in the ! ��� round are � ���.� �.� . The

12



converted round keys corresponding to the three cases are � ��� ��� � ��� � and ��� �.� . Since
����� � occurs in the majority of the cases, set the ! ��� round key of 
 to ��� �.� . 
 	� ��# %
contains the round keys for rounds 0 to ! � � from 
 	� ��# % 
'& and �)� �.� , and

� � � ����� � ��# % �
contains the second and third (plaintext, ciphertext) pairs from

� � � ������� ��# % 
'& � .

1001   01 1100   11 1111   11

KB KB

KB = 0110
KY = 01

KBKY KY KY

1111   00 1010   10 1001   10

1111   11 0010   10 0001   10

1001 1100 1111

0110 1110

1111 0010 0001

1110

converted
key bits

converted
key bits

converted
key bits

Fig. 4. Forming � ������ %

Let
� � � � ��� � � " � � � � � 	 � � � � � � � � � ��� � � � � � � � � � � ��� � ��# � � � .

� � � � ����� � � ���� (	� � � � � � � � ��� � � is a set of (plaintext, ciphertext) pairs for which 
 � � � � � � " 	 �	���� � � 	 � � � � � � ����� � � with the whitening round keys of ��� � 
 	� ��# % and any additional
key material utilized by the rounds is the same as that for 
�	 , namely � � � � .

For now, we are only concerned with obtaining a set, and not necessarily the largest,
of (plaintext, ciphertext) pairs corresponding to a common key. In order to produce the
largest set of (plaintext, ciphertext) pairs with a common key, every possible 
 	� �$# % can
be formed for each round, and the iteration for the ! � � � � round applied to each. This
will create a tree of depth � with at most � � children of each node.

Let 
 � denote the time to run � rounds of 
 	 , and 
�� denote the time to run � � � .
In the case of obtaining at least one set

� � � � ��� � ��# � � of size
� �� ��� , the time required

beyond 
�� consists of: � �

 � time to obtain the outputs of the first � rounds for each� � � � ��� � , � � � � � � time to perform the conversion of the round keys from 
 	 to round
keys for 
 and � � � � � � time to form the 
 	� ��# � sets. Thus, the additional time required
to attack 
 (beyond the time required to attack 
 	 � � � ) is � �

 � ��� � � � � � . The only
unknown value is � , the number of keys produced by the attack on 
 	 � � � . If � is

13



large enough, to the extent that it approaches the average number of keys to test in a
brute force attack on 
 	 , then this contradicts the assumption that an efficient attack
exists on 
 	 , because the attacker is left with a large set of potential keys for decrypting
additional ciphertexts.

To perform the attack on 
 when given a set of (plaintext, ciphertext) pairs for 
 ,
convert the pairs into a set of (plaintext, ciphertext) pairs for 

	 and find the round keys
for 
,	 then for 
 as follows: Let ��� � ��� , where ��� � � ��	�� ��� denote a set of randomly
chosen round keys for rounds �+� � to the last round of 
 	 that will be held constant,
and let ����� �$# denote the last ��	 � � rounds of 
 	 using these round keys. Given a
set

� � ����� �	� � �
" � � � � � � 	 � � � � for � " � to � known (plaintext, ciphertext) pairs for

 � create the set

� � � � ��� � of (plaintext, ciphertext) pairs to use in the attack on 
 	 by
setting � � � � � " � � � � � and 	 � � � � " ��� � ��# � 	 � � � � � for � " � to � . This choice of
	 � � � � corresponds to an output of 	 � � � � in the � ��� round of 
 	 . For the set of � � �����
pairs are created,

� � � ��� � " � � � � � � ��� 	 � � � � � � . Apply the attack on 
�	 to solve for
the round keys of 
 	 then produce the sets

� � ����� � ��# � � and 
 � ��# � . The sets of round
keys in 
�� ��# � will be consistent with the (plaintext, ciphertext) pairs in

� � ����� � ��# � � .
We now discuss how the number of (plaintext, ciphertext) pairs required (i.e., the

number of encryptions required) compares to that of an exhaustive key search. Recall
the size of resulting set of (plaintext, ciphertext) pairs which are consistent with the
round keys is

� �� � � . When ��

� � �� the number of plaintexts encrypted, � , must be


 �
� � � to guarantee at least one (plaintext, ciphertext) pair is in

� � � ������� � , which is
more encryptions than required by an exhaustive key search. Without changing either
� or the length of � , this bound on � can be slightly increased to � � � � �� � � by using
� ��� bit plaintexts that are the same in the rightmost � bits, and by defining the � �
values representing the ciphertext output of 
 in the � ��� round of 
 	 to be the out-
put of the � ��� round prior to the swapping step. This will result in

� 
 	� ��# &
� " � and� 
 	� ��# �

� " � 
 	� �$# ��
'&
�
, thus in first and � ��� rounds the set of (plaintext, ciphertext) pairs

is not reduced. The number of (plaintext, ciphertext) pairs produced for 
 that are con-
sistent with the round keys for 
 is

� �� ���	��
�� 
 . Notice that increasing the number of
rounds in 
 increases the number of (plaintext, ciphertext) pairs required to guarantee� � � ����� � � is non-empty and will prevent the attack from being more efficient than an
exhaustive key search. While we prefer to not alter 
 in this manner, the efficiency of
the attack being based on the number of rounds is useful when setting 
 = 
 	 ����� , in
which case we are willing to adjust the rounds of 
 	 ����� , then creating a 
 	 for the new

 .

We define a direct attack on 
 	 ����� to be an attack that finds the key or round keys for

�	����� without attacking 
�	����� � , for � 	�
 � , and converting the round keys from 
 	 ����� �
to round keys for 

	����� � We define an indirect attack on 
0	� � � to be an attack that finds
the round keys for 
&	� � � � for some � 	�
 � , and uses them to find the round keys for


 	 � � � , and � 	 � � �
� � ���
 � � , where ��� is the number of rounds in 
 	 ����� . Our analysis

implies that if a direct attack exists on 
-	����� for � �
� � ���� � , then an attack requiring

less time than an exhaustive key search exists on 
 . However, it does not imply 
 	 �����
is secure for all � �

� � ���� � , because there may be a direct attack on 
 	 ����� � for some � 	
such that ��	 � � �

� � �� 
 � � , thus implying an indirect attack on 
 	 � � � . In the worst case,

14



� 	$" � � � and � � must be increased to
� � � � � for the attack to be more inefficient

than an exhaustive key search. If the length of � can be changed (as part of the design
of 
 	 ), setting

� � � to � � � � ��� � results in the bound being � � � � , thus allowing all
� � � � � � � � � .
Second method:

This attack runs in quadratic time in the number of rounds of 
 and avoids the
decrease in the number of (plaintext, ciphertext) pairs that occurs in the first method.
The attack on 
 	 is used to solve for round keys 0 and 1 for 
 , then repeatedly solves
for one round key of 
 at a time, using the output of one round of 
 as partial input to
a reduced round version of 
�	 , running the attack on 
�	 and converting the ��� � round
key of 
 	 to the round key for the next round of 
 . We assume that if an attack on

 	 with � rounds exists, then a reduced round attack on 
&	 exists for any number of
rounds � ��	 .

Given a set
� � � � ���	� � �
" � ��� � ��� 	 � � � � of � (plaintext, ciphertext) pairs for 
 ,

create a set
� � � � ��� ��" � � � � � � ��� 	 � � � � � � of � (plaintext, ciphertext) pairs for an �

round version of 
�	 . Note: we only require that the � bits appended to each � � � when
forming

� � � ����� � be a constant; we choose to use 0. The
� � values appended to the 	 � 	��

are arbitrary and do not need to be identical. Solve 
 	 for round keys 0 and 1. By the
pseudo-randomness of the round keys described in Section 2.3, sets of round keys exist
that correspond to

� � � � ��� � and which are identical in at least the first two rounds (the
round keys across all � pairs may be identical in all but the last round, but we are only
concerned with the first two rounds). Denote these as ��� 		 and ����	� . Use the leftmost �
bits of ��� 		 as round key 0, ��� 	 , for 
 . Since the rightmost � bits are identical across all
inputs to 
 	 , when ��� 	� is converted to a round key for 
 , the result will be the same
across all � elements of

� � � ����� � . Use the converted round key as round key 1, ��� � , for

 . For each � � � , apply the initial whitening and first round of 
 using the two converted
round keys. Let � � � denote the output of the first round of 
 for � " � to � . Using a
reduced round version of 
 	 with � � � rounds and the initial whitening removed, set� � � ����� � " � � � � � � ��� 	 � � � � � � and solve for the first round key of 
 	 . As before,
convert the resulting round key(s) to a round key for 
 . Again, the converted round
keys for 
 will be identical across all � values. Use the converted round key as the
second round key for 
 . Repeat the process for the remaining rounds of 
 , each time
using the outputs of the last round of 
 for which the round key has been determined
as the inputs to 
�	 and reducing the number of rounds in 
�	 by 1, to sequentially find
the round keys for 
 . This attack requires work equivalent of applying � rounds of 

when deriving the outputs of the n inputs to each round of 
 , �

� � � �
� �� rounds of 
 	

in the worst case if �+	� � requires knowing the output of each round of 
 	 to find the
first round key and � applications of ��	� � on �

� � � �
� �� rounds of 

	 when solving for the

round keys of 
�	 .

In summary, the attack on 
 described in this second method can be written as:
Input

� � � �����	� � �/" � ��� � ��� 	 � � � for � " � to � � .
Create

� � � � ��� ��" � � � � � � � � 	 � � � � � � for � " � to � � for a � round version of 
�	 ,
where the

� � 	 � are arbitrary.
Using ��� � , solve a � reduced round version of 
 	 for ��� 		 and ����	� .

15



Convert ��� 		 to ��� 	 and ��� 	� to ��� � .
Set � � � " first round output of 
 using ��� 	 and ��� � , for � " � to � .
For �0" � to � � �

�
� � � � ��� �/" � ��� � � � ��� 	 � � � � � � for � " � to � � .
Solve a � � � reduced round version of 
 	 for the first round key, ����	� .
Convert ����	� to form ��� � � � .� � �+� � � � " output of round �/� � of 
 on � � � using ��� � � � for � " � to � .

�

4 Conclusions

We have introduced a new concept, that of an elastic block cipher and presented a gen-
eral method for converting an existing block cipher that is based on a round function
into an elastic block cipher. The ability to create an elastic version of a block cipher al-
lows us to “stretch” the supported block size of the cipher up to twice the original length
while increasing the computational load proportionally to the block size. We show that
the existence of an attack on the elastic version that produces certain round keys im-
plies a key recovery attack exists on the original block cipher by creating a reduction
between the elastic and original versions of the block cipher; this methodological con-
tribution appears to be unique in the area of block cipher design. Practical applications
of elastic ciphers include database and network traffic encryption. Our work suggests
that the notion of elasticity can be a new design criterion for block ciphers. Our work
also suggests numerous questions for future work. Open issues include how to extend
the methodology presented here and how to further analyze elastic designs. Regarding
concrete instances of elastic ciphers, since the security of block ciphers is an involved
issue and requires consideration of various potential attacks, it is left open how to vali-
date these designs by concrete cryptanalysis of specific attacks, by performance analysis
and by considering their applications in various real contexts.

References

1. Kent, S., Atkinson, R.: Security Architecture for the Internet Protocol. Request for Com-
ments (Proposed Standard) 2401, Internet Engineering Task Force (1998)

2. An, J., Bellare, M.: Constructing VIL-MACs from FIL-MACs: Message Authentication
Under Weakened Assumptions. In: Proceedings of Advances in Cryptology - Crypto ’99,
LNCS 1666, Springer-Verlag. (1999)

3. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom Functions Re-Visited: The Cascade
Construction and its Concrete Security. In: Proceedings of Foundations of Computer Sci-
ence, IEEE. (1996)

4. Bernstein, D.: How to Stretch Random Functions: The Security of Protected Counter Sums.
In: Journal of Cryptology, Vol. 12(3), Springer-Verlag. (1999) 185–192

5. Black, J., Rogaway, P.: CBC MACs for Arbitrary-Length: The Three-Key Constructions. In:
Proceedings of Advances in Cryptology - Crypto 2000, LNCS 1880, Springer-Verlag. (2000)

6. Halevi, S., Rogaway, P.: A Tweakable Enciphering Mode. In: Proceedings of Advances in
Cryptology - Crypto 2003, LNCS 2729, Springer-Verlag. (2003)

16



7. Halevi, S., Rogaway, P.: A Parallelizable Enciphering Mode. Cryptology ePrint Archive,
Report 2003/147 (2003) http://eprint.iacr.org/.

8. Schroeppel, R.: Hasty Pudding Cipher. http://www.cs.arizona.edu/rcs/hpc
(1998)

9. Bellare, M., Rogaway, P.: On the Construction of Variable Length-Input Ciphers. In: Pro-
ceedings of Fast Software Encryption (FSE), LNCS 1636, Springer-Verlag. (1999)

10. FIPS 197: Advanced Encryption Standard (AES) (2001)
11. FIPS 46-3: Data Encryption Standard (DES) (1999)
12. Schneier, Kelsey: Unbalanced Feistel Networks and Block Cipher Design. In: Proceedings

of Fast Software Encryption (FSE), LNCS 1039, Springer-Verlag. (1996)

17


