Dates are inconsistent

Dates are inconsistent

5 results sorted by ID

Possible spell-corrected query: sap
2024/1293 (PDF) Last updated: 2024-08-18
Greyhound: Fast Polynomial Commitments from Lattices
Ngoc Khanh Nguyen, Gregor Seiler
Cryptographic protocols

In this paper, we propose Greyhound, the first concretely efficient polynomial commitment scheme from standard lattice assumptions. At the core of our construction lies a simple three-round protocol for proving evaluations for polynomials of bounded degree $N$ with verifier time complexity $O(\sqrt{N})$. By composing it with the LaBRADOR proof system (CRYPTO 2023), we obtain a succinct proof of polynomial evaluation (i.e. polylogarithmic in $N$) that admits a sublinear verifier...

2024/306 (PDF) Last updated: 2024-06-01
Concretely Efficient Lattice-based Polynomial Commitment from Standard Assumptions
Intak Hwang, Jinyeong Seo, Yongsoo Song
Cryptographic protocols

Polynomial commitment is a crucial cryptographic primitive in constructing zkSNARKs. Most practical constructions to date are either vulnerable against quantum adversaries or lack homomorphic properties, which are essential for recursive proof composition and proof batching. Recently, lattice-based constructions have drawn attention for their potential to achieve all the desirable properties, though they often suffer from concrete inefficiency or rely on newly introduced assumptions...

2023/1469 (PDF) Last updated: 2023-11-25
SLAP: Succinct Lattice-Based Polynomial Commitments from Standard Assumptions
Martin R. Albrecht, Giacomo Fenzi, Oleksandra Lapiha, Ngoc Khanh Nguyen
Public-key cryptography

Recent works on lattice-based extractable polynomial commitments can be grouped into two classes: (i) non-interactive constructions that stem from the functional commitment by Albrecht, Cini, Lai, Malavolta and Thyagarajan (CRYPTO 2022), and (ii) lattice adaptations of the Bulletproofs protocol (S&P 2018). The former class enjoys security in the standard model, albeit a knowledge assumption is desired. In contrast, Bulletproof-like protocols can be made secure under falsifiable assumptions,...

2020/1611 (PDF) Last updated: 2022-02-09
SLAP: Simple Lattice-Based Private Stream Aggregation Protocol
Jonathan Takeshita, Ryan Karl, Ting Gong, Taeho Jung
Cryptographic protocols

Private Stream Aggregation (PSA) protocols allow for the secure aggregation of time-series data, affording security and privacy to users' private data, with significantly better efficiency than general secure computation such as homomorphic encryption, multiparty computation, and secure hardware based approaches. Earlier PSA protocols face limitations including needless complexity, a lack of post-quantum security, or other practical issues. In this work, we present SLAP, a Simple...

2016/905 (PDF) Last updated: 2016-09-19
Generalized Desynchronization Attack on UMAP: Application to RCIA, KMAP, SLAP and SASI$^+$ protocols
Masoumeh Safkhani, Nasour Bagheri
Cryptographic protocols

Tian et al. proposed a permutation based authentication protocol entitled RAPP. However, it came out very soon that it suffers from several security treats such as desynchronization attack. Following RAPP, several protocols have been proposed in literature to defeat such attacks. Among them, some protocols suggested to keep a record of old parameters by both the reader and the tag. In this paper we present a genrilized version of all such protocols, named GUMAP, and present an efficent...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.